22201

11819
3 Hours / 70 Marks
Seat No. \square

Instructions: (1) All Questions are compulsory.
(2) Illustrate your answers with neat sketches wherever necessary.
(3) Figures to the right indicate full marks.
(4) Assume suitable data, if necessary.
(5) Use of Non-programmable Electronic Pocket Calculator is permissible.
(6) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.

Marks

1. Attempt any FIVE of the following :

(a) Define odd and even function with suitable example.
(b) If $\mathrm{f}(x)=\frac{x^{2}+9}{\sqrt{x-3}}$, find $\mathrm{f}(4)+\mathrm{f}(5)$.
(c) Find $\frac{\mathrm{dy}}{\mathrm{d} x}$ if $y=(3 \mathrm{a})^{x}+x^{(\log 3)}+x^{\mathrm{a}}+\mathrm{a}^{\mathrm{a}}$
(d) Evaluate $\int x^{2} \cdot \log x \mathrm{~d} x$
(e) Evaluate $\int \frac{\mathrm{d} x}{x^{2}+4 x+5}$
(f) Find the area bounded by the curve $\mathrm{y}=\sin x, x$ axis and the ordinate $x=0$,

$$
x=\frac{\pi}{2} .
$$

(g) State the trapezoidal rule of numerical integration.
2. Attempt any THREE of the following :
(a) Find $\frac{\mathrm{dy}}{\mathrm{d} x}$ if $x^{2}+y^{2}+x y-y=0$ at $(1,2)$
(b) If $x=a(\cos t+t \sin t)$ and $y=a(\sin t-t \cos t)$, find $\frac{d y}{d x}$ at $t=\frac{\pi}{4}$
(c) The rate of working of an engine is given by the expression $10 \mathrm{~V}+\frac{4000}{\mathrm{~V}}$, where ' V ' is the speed of the engine. Find the speed at which the rate of working is the least.
(d) A telegraph wire hangs in the form of a curve $y=a \cdot \log \left[\sec \left(\frac{x}{a}\right)\right]$. Where ' a ' is constant. Show that the curvature at any point is $\frac{1}{\mathrm{a}} \cos \left(\frac{x}{\mathrm{a}}\right)$.
3. Attempt any THREE of the following :
(a) Find equation of tangent to curve $x=\frac{1}{\mathrm{t}}, \mathrm{y}=1-\frac{1}{\mathrm{t}}$ when $\mathrm{t}=2$.
(b) Find $\frac{\mathrm{dy}}{\mathrm{d} x}$ if $\mathrm{y}=x^{x}+x \sqrt{x}$
(c) Find $\frac{d y}{d x}$ if $y=\tan ^{-1}\left[\frac{x}{\sqrt{1-x^{2}}}\right]$
(d) Evaluate $\int \frac{\sec ^{2} x}{(1+\tan x)(3+\tan x)} \mathrm{d} x$.

4. Attempt any THREE of the following :

(a) Evaluate $\int \frac{1}{x\left[9+\left(\log _{\mathrm{e}} x\right)^{2}\right]} \mathrm{d} x$
(b) Evaluate $\int \frac{1}{2 \sin x+3 \cos x} \mathrm{~d} x$
(c) Evaluate $\int \sec ^{3} x \mathrm{~d} x$
(d) Evaluate $\int \frac{2 x^{2}+5}{(x-1)(x+2)(x+3)} \mathrm{d} x$
(e) Evaluate $\int_{0}^{\pi / 2} \frac{1}{1+\sqrt{\cot x}} \mathrm{~d} x$
5. Attempt any TWO of the following :
(a) Find area of the region by the parabolas.
$y^{2}=9 x$ and $x^{2}=9 y$
(b) Attempt the following :
(i) Form a differential equation by eliminating arbitrary constant. If $\mathrm{y}=\mathrm{A} \sin x+\mathrm{B} \cos x$.
(ii) Solve $\left(1+x^{3}\right) \mathrm{dy}-x^{2} \mathrm{y} \mathrm{d} x=0$
(c) An electrical circuit containing an inductance L henries resistance R in series with an electromotive force. $E \sin \omega t$ satisfies the equation $L \frac{d i}{d t}+R i=E \sin \omega t$.

Find the value of the current at any time t, if initially there is no current.
6. Attempt any TWO of the following :
(a) (i) Using trapezoidal rule, calculate the approximate value of $\int_{0}^{4} \sqrt{x} \mathrm{~d} x$, given by

x	0	1	2	3	4
$\mathrm{y}=\sqrt{x}$	0	1	1.4142	1.7321	2

(ii) Evaluate $\int_{0}^{6} \frac{\mathrm{~d} x}{1+x^{2}}$ using trapezoidal rule by using following data :

x	0	1	2	3	4	5	6
$y=\frac{1}{1+x^{2}}$	1	0.5	0.2	0.1	0.588	0.0385	0.027

(b) Evaluate $\int_{0}^{1} \frac{\mathrm{~d} x}{1+x^{2}}$ by Simpson's $\frac{1 \text { rd }}{3}$ rule by taking 6 sub intervals.
(c) Using Simpson's $\frac{3 \text { th }}{8}$ rule to find $\int_{0}^{0.6} \mathrm{e}^{-x^{2}} \mathrm{~d} x$ by taking seven ordinates.

