22201

11819 3 Hours / 70 Marks

Instructions : (1) All Questions are *compulsory*.

- (2) Illustrate your answers with neat sketches wherever necessary.
- (3) Figures to the right indicate full marks.
- (4) Assume suitable data, if necessary.
- (5) Use of Non-programmable Electronic Pocket Calculator is permissible.
- (6) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.

1. Attempt any FIVE of the following :

(a) Define odd and even function with suitable example.

(b) If
$$f(x) = \frac{x^2 + 9}{\sqrt{x - 3}}$$
, find $f(4) + f(5)$.

(c) Find
$$\frac{dy}{dx}$$
 if $y = (3a)^x + x^{(\log 3)} + x^a + a^a$

(d) Evaluate
$$\int x^2 \cdot \log x \, dx$$

(e) Evaluate
$$\int \frac{\mathrm{d}x}{x^2 + 4x + 5}$$

[1 of 4]

Marks

10

P.T.O.

[2 of 4]

(f) Find the area bounded by the curve $y = \sin x$, x axis and the ordinate x = 0,

 $x=\frac{\pi}{2}$.

(g) State the trapezoidal rule of numerical integration.

2. Attempt any THREE of the following :

- (a) Find $\frac{dy}{dx}$ if $x^2 + y^2 + xy y = 0$ at (1, 2)
- (b) If $x = a(\cos t + t \sin t)$ and $y = a(\sin t t \cos t)$, find $\frac{dy}{dx}$ at $t = \frac{\pi}{4}$
- (c) The rate of working of an engine is given by the expression $10 \text{ V} + \frac{4000}{\text{ V}}$, where 'V' is the speed of the engine. Find the speed at which the rate of working is the least.

(d) A telegraph wire hangs in the form of a curve $y = a \cdot \log \left[\sec \left(\frac{x}{a} \right) \right]$. Where 'a' is constant. Show that the curvature at any point is $\frac{1}{a} \cos \left(\frac{x}{a} \right)$.

3. Attempt any THREE of the following :

(a) Find equation of tangent to curve $x = \frac{1}{t}$, $y = 1 - \frac{1}{t}$ when t = 2.

(b) Find
$$\frac{dy}{dx}$$
 if $y = x^x + x\sqrt{x}$

(c) Find
$$\frac{dy}{dx}$$
 if $y = \tan^{-1} \left[\frac{x}{\sqrt{1 - x^2}} \right]$

(d) Evaluate
$$\int \frac{\sec^2 x}{(1 + \tan x)(3 + \tan x)} dx.$$

12

12

4. Attempt any THREE of the following :

(a) Evaluate
$$\int \frac{1}{x[9 + (\log_e x)^2]} \, \mathrm{d}x$$

(b) Evaluate
$$\int \frac{1}{2\sin x + 3\cos x} \, \mathrm{d}x$$

(c) Evaluate
$$\int \sec^3 x \, dx$$

(d) Evaluate
$$\int \frac{2x^2 + 5}{(x-1)(x+2)(x+3)} dx$$

(e) Evaluate
$$\int_{0}^{\pi/2} \frac{1}{1 + \sqrt{\cot x}} \, \mathrm{d}x$$

5. Attempt any TWO of the following :

(a) Find area of the region by the parabolas.

$$y^2 = 9x$$
 and $x^2 = 9y$

- (b) Attempt the following :
 - (i) Form a differential equation by eliminating arbitrary constant. If $y = A \sin x + B \cos x$.
 - (ii) Solve $(1 + x^3)dy x^2y dx = 0$
- (c) An electrical circuit containing an inductance L henries resistance R in series with an electromotive force. E sin ωt satisfies the equation $L \frac{di}{dt} + Ri = E \sin \omega t$.

Find the value of the current at any time t, if initially there is no current.

P.T.O.

12

6. Attempt any TWO of the following :

(a) (i) Using trapezoidal rule, calculate the approximate value of $\int_{0}^{1} \sqrt{x} \, dx$,

given by

x	0	1	2	3	4
$y = \sqrt{x}$	0	1	1.4142	1.7321	2

(ii) Evaluate $\int_{0}^{6} \frac{dx}{1+x^2}$ using trapezoidal rule by using following data :

x	0	1	2	3	4	5	6
$y = \frac{1}{1+x^2}$	1	0.5	0.2	0.1	0.588	0.0385	0.027

- (b) Evaluate $\int_{0}^{1} \frac{dx}{1+x^2}$ by Simpson's $\frac{1}{3}$ rd rule by taking 6 sub intervals.
- (c) Using Simpson's $\frac{3}{8}^{\text{th}}$ rule to find $\int_{0}^{0.6} e^{-x^2} dx$ by taking seven ordinates.