21222
3 Hours / 70 Marks Seat No.
15 minutes extra for each hour
Instructions - (1) All Questions are Compulsory.
(2) Answer each next main Question on a new page.
(3) Illustrate your answers with neat sketches wherever necessary.
(4) Figures to the right indicate full marks.
(5) Assume suitable data, if necessary.
(6) Use of Non-programmable Electronic Pocket Calculator is permissible.
(7) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.

1. Solve any FIVE of the following: 10
a) If $\mathrm{f}(x)=x^{3}-3 x^{2}+5$, find $\mathrm{f}(0)+\mathrm{f}(2)$.
b) Show that $\mathrm{f}(x)=4 x^{4}+3 \cos x+x \sin x+1$ is an even function.
c) Find $\frac{d y}{d x}$ if $y=\mathrm{e}^{x} \cdot \sin x$.
d) Evaluate $\int \frac{1}{3 x+7} d x$
e) Evaluate $\int \cos ^{2} x d x$
f) Find the area under the curve $y=x^{2}$ from $x=0$ to $x=3$ with x-axis.
g) State the Trapezoidal rule of numerical integration.
2. Solve any THREE of the following:
a) Find $\frac{d y}{d x}$ if $x \sin y+y \sin x=0$
b) If $x=a(\theta-\sin \theta), \quad y=a(1-\cos \theta)$ find $\frac{d y}{d x}$
c) A manufacturer can sell x items at price of $₹(330-x)$ each.

The cost of producing x items is $₹\left(x^{2}+10 x+12\right)$. How many items must be sold so that his profit is maximum.
d) Find the radius of curvature for $y=x^{3}+3 x^{2}+2$ at $(1,2)$.
3. Solve any THREE of the following:
a) Find the equation of tangent to the curve

$$
2 x^{2}-x y+3 y^{2}=18 \text { at }(3,1)
$$

b) Find $\frac{d y}{d x}$ if $y=x^{\sin x}+(\tan x)^{x}$
c) Find $\frac{d y}{d x}$ if $y=\log \left(x \mathrm{e}^{x}\right)$
d) Evaluate $\int \frac{\cos \sqrt{x}}{\sqrt{x}} d x$
4. Solve any THREE of the following:
a) Evaluate $\int \frac{1}{x^{2}+3 x+2} d x$
b) Evaluate $\int \frac{1}{5+4 \cos x} d x$
c) Evaluate $\int \frac{1-\tan x}{1+\tan x} d x$
d) Evaluate $\int \frac{\log x}{x(\log x+2)(\log x+3)} d x$
e) Evaluate $\int_{0}^{7} \frac{\sqrt[3]{x}}{\sqrt[3]{x}+\sqrt[3]{7-x}} d x$
5. Solve any TWO of the following:
a) Find the area of the circle $x^{2}+y^{2}=25$ by using definite integration.
b) Attempt the following:
i) Find the order and degree of the D.E.

$$
\frac{d^{2} y}{d x^{2}}=\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{3 / 2}
$$

ii) Solve the D.E.

$$
x \sqrt{1-y^{2}} d x+y \sqrt{1-x^{2}} d y=0
$$

c) The velocity of a particle is given by $V=t^{2}-6 t+7$.

Find distance covered in 3 seconds.
6. Solve any TWO of the following:
a) i) Using Trapezoidal rule calculate the approximate value of $\int_{0}^{4} \mathrm{e}^{x} d x$ from given data:

x	0	1	2	3	4
y	1	2.72	7.39	20.09	54.60

ii) Evaluate $\int_{0}^{1} \frac{d x}{1+x^{2}} d x$ using Simpson's one third rule given

x	0	0.25	0.5	0.75	1
y	1	0.9412	0.8	0.64	0.5

b) Evaluate $\int_{0}^{6} \frac{1}{1+x} d x$ taking $\mathrm{h}=1$ by using Simpson's one third rule.
c) Evaluate $\int_{0}^{\pi} \sin x d x$ using Simpson's $3 / 8$ th rule. Divide the interval $[0, \pi]$ into 6 equal parts.

