21819

3 Hours / 70 Marks
Seat No. \square

Instructions - (1) All Questions are Compulsory.
(2) Answer each next main Question on a new page.
(3) Illustrate your answers with neat sketches wherever necessary.
(4) Figures to the right indicate full marks.
(5) Use of Non-programmable Electronic Pocket Calculator is permissible.
(6) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.

1. Attempt any FIVE of the following:
a) Define Implicit function with suitable example.
b) State whether the function $f(x)=\frac{e^{x}-e^{-x}}{2}$, is even or odd.
c) Find $\frac{d y}{d x}$; if $y=\left(x^{4}+2 x\right) \cdot \sin 3 x$
d) Evaluate $\int x \cdot \cos x d x$
e) Evaluate $\int\left[e^{2 \log x}+e^{x \log 2}\right] d x$
f) Find the area under the curve $y=x^{2}$ from $x=0$ to $x=3$ with x -axis.
g) State Simpson's one third rule of numerical integration.
2. Attempt any THREE of the following:
a) If $y=f(x)=\frac{x-5}{5 x-1}$, show that $f(y)=x$.
b) Find $\frac{d y}{d x}$, if $13 x^{2}+2 x^{2} y+y^{3}=1$
c) A metal wire 40 cm long is bent to form a rectangle. Find its dimensions when area is maximum.
d) Show that radius of curvature at any point on the curve $y=a \log \left(\sec \frac{x}{a}\right)$, Where a is constant is $a \sec \frac{x}{a}$.
3. Attempt any THREE of the following:
a) The slope of the curve $2 y^{3}=a x^{2}+b$ at point $(1,-1)$ is same as the slope of $x+y=0$. Find a and b.
b) Find $\frac{d y}{d x}$, if $y=\sec ^{-1}\left[\frac{1}{4 x^{3}-3 x}\right]$
c) If $x=a \cos ^{3} \theta, y=a \sin ^{3} \theta$ find $\frac{d y}{d x}$ at $\theta=\frac{\pi}{4}$
d) Evaluate $\int \frac{e^{x}(x+1)}{\cos ^{2}\left(x e^{x}\right)} d x$
4. Attempt any THREE of the following:
a) Evaluate $\int \frac{\sec ^{2} x d x}{3 \tan ^{2} x-2 \tan x-5}$
b) Evaluate $\int \frac{d x}{1+\sin x+\cos x}$
c) Evaluate $\int x^{2} \cos 2 x d x$
d) Evaluate $\int_{5}^{10} \frac{d x}{(x-1)(x-2)}$
e) Evaluate $\int_{3}^{7} \frac{(10-x)^{2}}{x^{2}+(10-x)^{2}} d x$
5. Attempt any TWO of the following:
a) Find the area of the region included between parabola $y=x^{2}$ and $y=4$.
b) Attempt the following:
(i) Verify that $y=\log x$ is a solution of differential equation

$$
x \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}=0
$$

(ii) Solve: $\frac{d y}{d x}=e^{2 x-y}+x^{2} e^{-y}$
c) A particle starting with velocity $6 \mathrm{~m} / \mathrm{s}$ has an acceleration $\left(1-t^{2}\right) \mathrm{m} / \mathrm{s}^{2}$. When does it first comes to rest? How far has it then travelled?
6. Attempt any TWO of the following:
a) Attempt the following:
(i) Using Trapezoidal rule, calculate approximate value of $\int_{3}^{8} \log _{e} x d x$ by using following table.

x	3	4	5	6	7	8
$y=\log _{\mathrm{e}} x$	1.098	1.3863	1.6094	1.7918	1.9458	2.0794

(ii) Using Simpson's $\frac{1}{3}^{\text {rd }}$ rule, calculate the approximate value of $\int_{0}^{4} e^{x} d x$ by using following data:

x	0	1	2	3	4
$y=\mathrm{e}^{x}$	1	2.72	7.39	20.09	54.60

b) Evaluate $\int_{0}^{1} \frac{d x}{1+x^{2}}$ by Trapezoidal rule, taking $n=4$.

Hence, obtain approximate value of π.
c) Evaluate $\int_{0}^{\pi / 2} \sqrt{\cos x} d x$ using Simpson's $\frac{3}{8}$ rule with $n=8$

