22201

21718
3 Hours / 70 Marks
Seat No. \square

Instructions : (1) All Questions are compulsory.
(2) Answer each next main Question on a new page.
(3) Figures to the right indicate full marks.
(4) Assume suitable data, if necessary.
(5) Use of Non-programmable Electronic Pocket Calculator is permissible.
(6) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.

Marks

1. Attempt any FIVE of following :
(a) If $\mathrm{f}(x)=x^{4}-2 x+7$, find $\mathrm{f}(0)+\mathrm{f}(2)$.
(b) State whether the function $\mathrm{f}(x)=\frac{\mathrm{e}^{x}+\mathrm{e}^{-x}}{2}$ is odd or even.
(c) If $y=\log \left(x^{2}+2 x+5\right)$ then find $\frac{d y}{d x}$.
(d) Evaluate : $\int \frac{1-\cos 2 x}{1+\cos 2 x} \mathrm{~d} x$.
(e) Evaluate : $\int \frac{1}{2 x+5} \mathrm{~d} x$.
(f) Find the area under the parabola $\mathrm{y}^{2}=4 x$ bounded by the lines $x=0, \mathrm{y}=0$, $x=4$.
(g) State the trapezoidal rule of numerical integration.
2. Attempt any THREE of the following :
(a) If $x^{y}=\mathrm{e}^{x-y}$ then prove that $\frac{\mathrm{dy}}{\mathrm{d} x}=\frac{\log x}{(1+\log x)^{2}}$
(b) If $x=\mathrm{a}(\theta-\sin \theta), \mathrm{y}=\mathrm{a}(1-\cos \theta)$, then find $\frac{\mathrm{dy}}{\mathrm{d} x}$ at $\theta=\frac{\pi}{4}$
(c) Find maximum and minimum value of $\mathrm{y}=x^{3}-18 x^{2}+96 x$.
(d) Find radius of curvature of the curve $y=x^{3}$ at $(2,8)$.
3. Attempt any THREE of the following :
(a) Find $\frac{\mathrm{dy}}{\mathrm{d} x}$ if $\mathrm{y}=x^{x}+(\sin x)^{x}$.
(b) Find $\frac{d y}{d x}$ if $x^{2}+3 x y+y^{2}=5$.
(c) Evaluate: $\int \frac{\log (\tan x / 2)}{\sin x} \mathrm{~d} x$.
(d) Find the equation of the tangent to the circle $x^{2}+y^{2}+6 x-6 y-7=0$ at a point it cuts the x-axis.
4. Attempt any THREE of the following :
(a) Evaluate : $\int \frac{1}{5+4 \cos x} \mathrm{~d} x$.
(b) Evaluate : $\int \frac{x+1}{x\left(x^{2}-4\right)} \mathrm{d} x$.
(c) Evaluate : $\int \cos (\log x) \mathrm{d} x$.
(d) Evaluate: $\int \frac{1}{x^{2}+4 x+9} \mathrm{~d} x$.
(e) Evaluate : $\int_{1}^{5} \frac{\sqrt{9-x}}{\sqrt{9-x}+\sqrt{x+3}} \mathrm{~d} x$.
5. Attempt any TWO of the following :
(a) Find the area of the loop of a curve $y^{2}=x^{2}(1-x)$.
(b) Attempt the following :
(i) Form the differential equation of $\mathrm{y}=\mathrm{a} \sin x+\mathrm{b} \cos x$.
(ii) Solve : $\frac{\mathrm{dy}}{\mathrm{d} x}+\frac{\mathrm{y}}{x}=x^{2}$.
(c) A resistance of 100Ω and inductance of 0.1 henries are connected in series with a battery of 20 volts. Find the current in the circuit at any instant, if the relation between L, R and E is
$\mathrm{L} \frac{\mathrm{di}}{\mathrm{dt}}+\mathrm{Ri}=\mathrm{E}$.
6. Attempt any TWO of the following :
(a) (i) Using trapezoidal rule, evaluate $\int_{0}^{6} \mathrm{f}(x) \mathrm{d} x$ given by.

x	0	1	2	3	4	5	6
$\mathrm{f}(x)$	1	0.5	0.3333	0.25	0.2	0.6666	0.1428

(ii) Using Simpson's $1 / 3^{\text {rd }}$ rule, evaluate $\int_{1}^{2} \frac{1}{x} \mathrm{~d} x$ given by

x	1	1.25	1.5	1.75	2
$y=\mathrm{f}(x)$	1	0.8	0.6666	0.5714	0.5

(b) Evaluate $\int_{0}^{1} \frac{1}{1+x^{2}} \mathrm{~d} x$. Using Simpson's $1 / 3^{\text {rd }}$ rule divide the interval $[0,1]$ into six equal parts. Find approximate value of π.
(c) Evaluate $\int_{0}^{6} \frac{1}{1+x^{2}} \mathrm{~d} x$ by using Simpson's $3 / 8^{\text {th }}$ rule.

