Instructions:
1. All questions are compulsory.
2. Answer each next main question on a new page.
3. Illustrate your answers with neat sketches wherever necessary.
4. Figures to the right indicate full marks.
5. Assume suitable data, if necessary.
6. Use of Non-programmable Electronic Pocket Calculator is permissible.

<table>
<thead>
<tr>
<th>Marks</th>
<th>22103</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 Hours/70 Marks</td>
<td>Seat No.</td>
</tr>
</tbody>
</table>

1. Attempt any five of the following:
 a) Evaluate \(\log_3 81 \).
 b) Show that the points \((8, 1), (3, -4)\) and \((2, -5)\) are collinear using determinant.
 c) Without using calculator find the value of \(\sin(105^\circ)\).
 d) Find the area of a rhombus whose diagonals are of lengths 10 cm and 8.2 cm.
 e) If the volume of a sphere is \(\frac{4\pi}{3}\) \(\text{cm}^3\). Find its surface area.
 f) Find the range and coefficient of range of the data:
 50, 90, 120, 40, 180, 200, 80.
 g) If the coefficient of variation of certain data is 5 and mean is 60. Find the standard deviation.

2. Attempt any three of the following:
 a) If \(A = \begin{bmatrix} 2 & 1 \\ 0 & 3 \end{bmatrix} \) and \(B = \begin{bmatrix} 1 & 2 \\ 3 & -2 \end{bmatrix} \) whether \(AB \) is singular or non-singular matrix?
 b) Resolve into partial fractions \(\frac{x + 3}{(x - 1)(x + 1)(x + 5)} \).
 c) Using Cramer’s rule solve \(x - y - 2z = 1; 2x + 3y + 4z = 4; 3x - 2y - 6z = 5 \).
 d) Compute the standard deviation for 15, 22, 27, 11, 9, 21, 14, 9.
3. Attempt **any three** of the following:

 a) If \(\tan (x + y) = \frac{3}{4} \) and \(\tan (x - y) = \frac{8}{15} \). Prove that \(2x = \frac{77}{36} \).

 b) If \(A = 30^\circ \), verify that

 i) \(\sin 2A = 2 \sin A \cos A \)

 ii) \(\cos 2A = \frac{1 - \tan^2 A}{1 + \tan^2 A} \).

 c) Prove that \(\cos 20 \cos 40 \cos 60 \cos 80 = \frac{1}{16} \).

 d) Prove that \(\cos^{-1} \left(\frac{4}{5} \right) + \cos^{-1} \left(\frac{12}{13} \right) - \cos^{-1} \left(\frac{33}{65} \right) \).

4. Attempt **any three** of the following:

 a) If \(A = \begin{bmatrix} 2 & 5 & 6 \\ 0 & 1 & 2 \end{bmatrix} \) \(B = \begin{bmatrix} 6 & 1 \\ 0 & 4 \\ 5 & 7 \end{bmatrix} \). Verify that \((AB)^T = B^T A^T\).

 b) Resolve into partial fraction \(\frac{x^2 - x + 3}{(x - 2)(x^2 + 1)} \).

 c) Prove that \(\sin (A + B) \sin (A - B) = \sin^2 A - \sin^2 B \).

 d) If \(\sin A = \frac{1}{2} \) find the value of \(\sin 3A \).

 e) Prove that \(\frac{\sin 4A + \sin 5A + \sin 6A}{\cos 4A + \cos 5A + \cos 6A} = \tan 5A \).

5. Attempt **any two** of the following:

 a) i) Find the equation of straight line passes through the points \((3, 5) \) and \((4, 6) \).

 ii) Find the distance between the parallel lines \(3x - y + 7 = 0 \) and \(3x - y + 16 = 0 \).

 b) i) Find the acute angle between the lines \(2x + 3y + 5 = 0 \) and \(x - 2y - 4 = 0 \).

 ii) Find the equation of the line through the point of intersection of lines, \(4x + 3y = 8 \); and \(x + y = 1 \) and parallel to the line \(5x - 7y = 3 \).

 c) i) The area of a rectangular courtyard is 3000 sq.m. Its sides are in the ratio 6 : 5. Find the perimeter of courtyard.

 ii) A circus tent is cylindrical to a height of 3m and conical above it. If its diameter is 105 m and slant height of cone is 5m, calculate the area of total canvas required.
6. Attempt any two:

a) Using matrix inversion method, solve \(x + y + z = 3; x + 2y + 3z = 4; x + 4y + 9z = 6. \)

b) Find mean, standard deviation and coefficient of variance of the following:

<table>
<thead>
<tr>
<th>Class</th>
<th>0 – 10</th>
<th>10 – 20</th>
<th>20 – 30</th>
<th>30 – 40</th>
<th>40 – 50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>3</td>
<td>5</td>
<td>8</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

c) i) Calculate the range and coefficient of range for the following data:

<table>
<thead>
<tr>
<th>Class</th>
<th>21 – 25</th>
<th>26 – 30</th>
<th>31 – 35</th>
<th>36 – 40</th>
<th>41 – 45</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>4</td>
<td>16</td>
<td>38</td>
<td>12</td>
<td>10</td>
</tr>
</tbody>
</table>

ii) The two sets of observations are given below. Which of them is more consistent?

<table>
<thead>
<tr>
<th>Set I</th>
<th>Set II</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\bar{x} = 82.5)</td>
<td>(\bar{x} = 48.75)</td>
</tr>
<tr>
<td>(\sigma = 7.3)</td>
<td>(\sigma = 8.35)</td>
</tr>
</tbody>
</table>