\square

Instructions: (1) All Questions are compulsory.
(2) Figures to the right indicate full marks.
(3) Assume suitable data, if necessary.

Marks

1. Attempt any TEN :
(a) At what point of the curve $\mathrm{y}=\mathrm{e}^{x}$ the slope is 1 ?
(b) Find radius of curvature of $x y=12$ at $(3,4)$.
(c) If $\mathrm{f}^{\prime}(x)=7+6 x-3 x^{2}$ and $\mathrm{f}(-1)=0$ find $\mathrm{f}(x)$.
(d) Evaluate : $\int \tan ^{-1}\left[\frac{\cos x}{1+\sin x}\right] \mathrm{d} x$.
(e) Evaluate : $\int \frac{\mathrm{d} x}{1-\sin x}$
(f) Evaluate $: \int_{0}^{1} x \cdot \log x \cdot \mathrm{~d} x$.
(g) Form the differential equation for $x y=a^{2}$.
(h) Evaluate : $\int \frac{3 x-2}{3 x-1} \mathrm{~d} x$.
(i) A card is drawn from a pack of 52 cards. Find the probability that it is 3 or 4 .
(j) An unbiased coin is tossed 7 times. Find the probability of getting three heads.
(k) Find degree \& order of differential equation $\frac{d^{2} y}{d x^{2}}=\sqrt{1+\frac{d y}{d x}}$.
(1) Form a differential equation for $x^{2}+y^{2}=r^{2}$.
2. Attempt any FOUR :
(a) Evaluate $\int 3 \sin 4 x \cdot \cos 3 x \cdot d x$.
(b) Find equation of tangent \& normal to the curve $x^{2}+3 x y+y^{2}=5$ at point $(1,1)$.
(c) Find the radius of curvature for $\mathrm{y}=\log (\sin x)$ at $x=\frac{\pi}{2}$.
(d) $\int \frac{\sin \left(\mathrm{e}^{x}\right) \cdot \mathrm{e}^{x}}{\cos ^{2}\left(\mathrm{e}^{x}\right)} \mathrm{d} x$.
(e) Find the maximum and minimum value of function $\mathrm{f}(x)=2 x^{3}-9 x^{2}+12 x+5$.
(f) Evaluate : $\int \frac{\mathrm{d} x}{\mathrm{a}^{2} \cdot \sin ^{2} x+\mathrm{b}^{2} \cdot \cos ^{2} x}$.
3. Attempt any FOUR :
(a) Evaluate : $\int_{0}^{\frac{\pi}{4}} \log (1+\tan x) \mathrm{d} x$.
(b) Evaluate : $\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\mathrm{~d} x}{1+\cot x}$.
(c) Find area bounded by $y^{2}=6 x \& x^{2}=6 y$.
(d) Find area of one loop of $y=\sin 2 x$ from $x=0$ to $x=\frac{\pi}{2}$.
(e) Evaluate : $\int \tan ^{-1} \sqrt{x} \cdot \mathrm{~d} x$.

4. Attempt any FOUR :

(a) Find by integration the area of ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.
(b) Evaluate : $\int_{0}^{1} x(1-x)^{\frac{3}{2}} \mathrm{~d} x$.
(c) Solve : $\mathrm{y} \cdot \cos ^{2} x \cdot \frac{\mathrm{dy}}{\mathrm{d} x}=\tan x+2$ if $\mathrm{y}=2$ when $x=\frac{\pi}{4}$.
(d) Solve : $\frac{\mathrm{dy}}{\mathrm{d} x}=\frac{4 x-3 \mathrm{y}}{3 x-2 \mathrm{y}}$
(e) Find area enclosed by the parabola $\mathrm{y}^{2}=8 x \&$ line $\mathrm{y}=2 x$.
5. Attempt any FOUR :
(a) Solve the differential equation $\left(x^{2}+1\right) \mathrm{dy}-\left(\mathrm{y}^{2}+1\right) \mathrm{d} x=0$.
(b) Solve : $\frac{\mathrm{dy}}{\mathrm{d} x}=x^{3} \cdot \mathrm{y}^{3}-x y$.
(c) From 20 tickets marked 1 to 20, one ticket is drawn. Find probability that it is marked with multiple of 3 or 5 .
(d) Two dices are rolled. Find the probability that sum of the outcome number is perfect square.
(e) If a random variable has a Poisson's distribution such that $\mathrm{P}(2)=\mathrm{P}(3)$, find $P(5)$.
6. Attempt any FOUR :
(a) If $\mathrm{P}(\mathrm{A})=\frac{2}{3}, \mathrm{P}\left(\mathrm{B}^{\prime}\right)=\frac{3}{4} \& \mathrm{P}\left(\frac{\mathrm{A}}{\mathrm{B}}\right)=\frac{4}{5}$, find $\mathrm{P}(\mathrm{A} \cap \mathrm{B}) \& \mathrm{P}\left(\frac{\mathrm{B}}{\mathrm{A}}\right)$.
(b) Evaluate : $\int \frac{x+1}{x\left(x^{2}-4\right)} \cdot \mathrm{d} x$.
(c) Five men in a company of 20 are graduates. If 3 men are picked up out of 20 at random what is probability that -
(i) they are all graduates?
(ii) at least one is a graduate?
(d) A metal wire 36 cm long is bent to form rectangle. Find its dimensions when its area is maximum.
(e) Solve : $\cos ^{2} x \frac{\mathrm{dy}}{\mathrm{d} x}+\mathrm{y}=\tan x$.
(f) An unbiased coin is tossed 6 times. Find the probability of getting :
(i) two heads
(ii) at least 4 heads

