Seat No. \square

Instructions : (1) All Questions are compulsory.
(2) Illustrate your answers with neat sketches wherever necessary.
(3) Figures to the right indicate full marks.
(4) Assume suitable data, if necessary.
(5) Use of Non-programmable Electronic Pocket Calculator is permissible.
(6) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.
(a) Find a point on the curve $y=x^{2}-6 x+8$ where the tangent is parallel to x axis.
(b) Find the radius of curvature of the curve $\mathrm{y}=x^{3}$ at $(1,1)$
(c) Evaluate $\int \frac{x^{2}}{4+x^{2}} \mathrm{~d} x$
(d) Evaluate $\int \log x \mathrm{~d} x$
(e) Evaluate $\int_{0}^{\infty} e^{-x} \mathrm{~d} x$
(f) Evaluate $\int \frac{\sin x}{\sin 2 x} \mathrm{~d} x$
(g) Find the area bounded by $\mathrm{y}=x^{2}-9, x=0, x=3$ and x-axis.
(h) Find order \& degree of D.E. $\left(\frac{d^{2} y}{d x^{2}}\right)^{2 / 3}=\sqrt{y+\frac{d y}{d x}}$
(i) Form a D.E. if $\mathrm{y}=\mathrm{a} \cos (x+\mathrm{b})$
(j) A coin is tossed 3 times. What is the probability of getting more than 2 heads?
(k) If a random variable has a Poisson distribution such that $\mathrm{P}(2)=\mathrm{P}(3)$, find $\mathrm{P}(5)$.
(1) If $\mathrm{P}(\mathrm{A})=\frac{2}{3}, \mathrm{P}\left(\mathrm{B}^{\prime}\right)=\frac{3}{4}, \mathrm{P}(\mathrm{A} / \mathrm{B})=\frac{4}{5}$, find $\mathrm{P}(\mathrm{A} \cap \mathrm{B})$
2. Attempt any FOUR :
(a) Find the equation of tangent $\&$ normal to the curve $2 x^{2}-x y+3 y^{2}-18=0$ at point $(3,1)$
(b) Find maximum \& minimum value of the function $\mathrm{y}=2 x^{3}-21 x^{2}+36 x-20$
(c) Find radius of curvature of $y=\log (\sin x)$ at $x=\frac{\pi}{2}$
(d) Evaluate $\int \tan ^{-1} x \mathrm{~d} x$
(e) Evaluate $\int \frac{\cos x \mathrm{~d} x}{(1+\sin x)(2+\sin x)(3+\sin x)}$
(f) Evaluate $\int \frac{\mathrm{d} x}{4+5 \cos x}$
3. Attempt any FOUR :
(a) Evaluate $\int_{1}^{5} \frac{\sqrt{9-x}}{\sqrt{9-x}+\sqrt{x+3}} \mathrm{~d} x$
(b) Evaluate $\int_{0}^{\pi / 2} \frac{\mathrm{~d} x}{9+16 \cos ^{2} x}$
(c) Find the area bounded by $y^{2}=4 x \& x^{2}=4 y$

4
(d) Solve $\frac{\mathrm{dy}}{\mathrm{d} x}=\mathrm{e}^{x-y}+x \mathrm{e}^{-\mathrm{y}}$
(e) Solve $\frac{\mathrm{dy}}{\mathrm{d} x}=\sin (x-\mathrm{y})$

4
(f) Solve $\left(y^{2}-x^{2}\right) d x-2 x y d y=0$

4. Attempt any FOUR :

(a) Evaluate $\int_{0}^{\pi / 2} \frac{\mathrm{~d} x}{1+\sqrt{\cot x}}$
(b) Evaluate $\int_{0}^{\pi / 4} \log (1+\tan \theta) \mathrm{d} \theta$
(c) Find area of circle $x^{2}+y^{2}=25$ using integration.
(d) Solve $\left(e^{4 x}+2 x y^{2}\right) d x+\left(\cos y+2 x^{2} y\right) d y=0$
(e) Solve $x \frac{\mathrm{dy}}{\mathrm{d} x}+\mathrm{y}=x^{3}$
(f) Solve $\left(x^{2}+1\right) \frac{d y}{d x}=\mathrm{e}^{\tan ^{-1} x}-\mathrm{y}$
5. Attempt any FOUR :
(a) Evaluate $\int_{0}^{1} \frac{\left(\tan ^{-1} x\right)^{2}}{1+x^{2}} \mathrm{~d} x$
(b) Evaluate $\int_{0}^{\pi / 2} \log (\tan x) \mathrm{d} x$
(c) Evaluate $\int x \sin x \cos x \mathrm{~d} x$
(d) A card is drawn from a pack, find the probability that the card is a diamond or a face card.
(e) If 2% of electric bulbs manufactured by a company are defective, find the probability that in a sample of 100 bulbs, 3 bulbs will be defective.
(f) From 20 tickets marked 1 to 20 , one ticket is drawn at random. Find the probability that marked with multiple of 3 or 5 .
6. Attempt any FOUR :
(a) In a college hostel there are 75 students out of which 20 students like to drink tea, 40 students like to drink coffee \& 20 like neither tea nor coffee. Two students from this hostel came to a canteen. Find the probability that both will order same drink.
(b) Fit a Poisson distribution to set of observations :

\boldsymbol{x}	0	1	2	3	4
\mathbf{f}	122	60	15	2	1

(c) If $\mathrm{P}(\mathrm{A})=\frac{1}{4}, \mathrm{P}(\mathrm{B})=\frac{1}{3}, \mathrm{P}(\mathrm{A} \cup \mathrm{B})=\frac{1}{2}$, find $\mathrm{P}\left(\mathrm{A} \cap \mathrm{B}^{\prime}\right) \& \mathrm{P}\left(\mathrm{A} / \mathrm{B}^{\prime}\right)$
(d) In a certain examination 500 students appeared. Mean score is 68 with S.D. 8 . Find the number of students scoring (i) less than 50 (ii) more than 60.
$(\mathrm{A}(2.25)=0.4878, \mathrm{~A}(1)=0.3413)$
(e) Divide 80 into two parts such that product of one \& cube of other is maximum.
(f) Find the equation of tangent to curve $x=\frac{1}{\mathrm{t}}, \mathrm{y}=\mathrm{t}-\frac{1}{\mathrm{t}}$ when $\mathrm{t}=2$

