

> WINTER-15 EXAMINATION Model Answer

Subject code :(17651)

Page 1 of 26

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.

2) The model answer and the answer written by candidate may vary but the examiner may try

to assess the understanding level of the candidate.

3) The language errors such as grammatical, spelling errors should not be given more

Importance (Not applicable for subject English and Communication Skills.

4) While assessing figures, examiner may give credit for principal components indicated in the

figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.

5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.

6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.

7) For programming language papers, credit may be given to any other program based on equivalent concept.

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-15 EXAMINATION Model Answer

Subject code :(17651)

Page 2 of 26

Q No.	Ans	wer		marks	Total
					marks
1a-i	Four Indian refineries with their locat	tion and capacity.		1 mark	4
	Name	Location	Capacity (MMTPA)	each	
	Reliance petroleum Ltd	Jamnagar	33		
	Indian Oil Corporation Limited	Koyali in Gujarat	13.7		
	Manglore Refinery and Petrochemicals Ltd	Manglore in Karnataka	9.69		
	Chennai Petroleum Corporation Ltd	Manali	9.5		
	Note:				
	Note: Any other Indian refineries should be g	given due considerati	on		
1-a-ii		given due considerati	on	1 mark	4
1-a-ii	Any other Indian refineries should be g				4
1-a-ii	Any other Indian refineries should be g Definition:	tage volume of isoc	octane in a mixtu	re each	4
1-a-ii	Any other Indian refineries should be go Definition: 1)OctaneNo:It is defined as the percent	tage volume of isoc	octane in a mixtu	re each	4
1-a-ii	 Any other Indian refineries should be get Definition: 1)OctaneNo:It is defined as the percent of isooctane and – heptanes that gives the percent of isooctane and – heptanes that gives the percent of the p	tage volume of isoc he same knocking ch	octane in a mixtu naracteristics as tl	re each ne	4
1-a-ii	 Any other Indian refineries should be get Definition: OctaneNo:It is defined as the percent of isooctane and – heptanes that gives the fuel under consideration. Aniline point:It is defined as the fuel as the fu	tage volume of isoc he same knocking ch minimum temperatu	octane in a mixtu naracteristics as tl	re each ne	4
1-a-ii	 Any other Indian refineries should be get Definition: OctaneNo:It is defined as the percent of isooctane and – heptanes that gives the fuel under consideration. Aniline point:It is defined as the volumes of anhydrous aniline and oil minimatical products of anhydrous aniline and oil minimatical point. 	tage volume of isoc he same knocking ch minimum temperatu ix together.	octane in a mixtu naracteristics as tl nre at which equ	re each ne	4
1-a-ii	 Any other Indian refineries should be get Definition: OctaneNo:It is defined as the percent of isooctane and – heptanes that gives the fuel under consideration. Aniline point:It is defined as the volumes of anhydrous aniline and oil mit 3) Drop point.Drop point is the temperation. 	tage volume of isoc he same knocking ch minimum temperatu ix together. nture at which the thic	octane in a mixtu naracteristics as th are at which equ	re each ne	4
1-a-ii	 Any other Indian refineries should be get Definition: OctaneNo:It is defined as the percent of isooctane and – heptanes that gives the fuel under consideration. Aniline point:It is defined as the volumes of anhydrous aniline and oil mit 3) Drop point.Drop point is the temperation soluble in the base oil that the grease beet 	tage volume of isoc he same knocking ch minimum temperatu ix together. hture at which the thic comes substantially f	octane in a mixtu naracteristics as th are at which equ ckener is so luid.	re each ne	4
1-a-ii	 Any other Indian refineries should be get Definition: OctaneNo:It is defined as the percent of isooctane and – heptanes that gives the fuel under consideration. Aniline point:It is defined as the volumes of anhydrous aniline and oil mit 3) Drop point.Drop point is the temperation. 	tage volume of isoc he same knocking ch minimum temperatu ix together. ature at which the thic comes substantially f rature at which oil wi	octane in a mixtu naracteristics as th are at which equ ckener is so luid. ill give enough	re each ne	4

WINTER-15 EXAMINATION Model Answer

Subject code :(17651)

Page **3** of **26**

	6		
	NaoH		
	Propulas		
	E 10%. Ca(OH)2		
	the port of the sector of the read of the sector		
		4	
	Propylere and provide and a vozale Caciza historia hade		
	Chlorine Dolychloride		
	Water Vecycle		
	and the second sec		
1a-iv	Refinery: Refinery is composed of a group of chemical engineering unit	2	4
	processes & unit operations used for refining certain material into products of		
	value.		
	Explanation for types of refineries-		
	1.Primary refinery: Simplest refinery consisting only of a distillation unit to	2	
	produce residual asphalt and sell all of overhead to another refinery.		
	2. Intermediate refinery: Produces motor fuel, distillate fuels and residuals		
	3. Complex refinery: The products of distillation are send to other units for		
	further processing and producing new products.		
1b-i	Fractions obtained from crude oil with their boiling point range and	1 mark	6
	uses(Any six)	each	

WINTER-15 EXAMINATION Model Answer

Subject code :(17651)

Page 4 of 26

Fractions	Boiling	Uses	
	point range		
1. Uncondensed gases	$\square 30^{\circ}C$	Domestic	
1. Cheondonsed gases		fuel,	
		synthesis of	
		organic	
		chemicals	
2. Petroleum ether	30-70°C	Solvent for	
		fats,	
		essential	
		oils, used in	
		dry cleaning.	
3.Gasoline or petrol or motor	40-120°C	As a motor	
spirit		fuel for IC	
Span,		engines,	
		solvent, in	
		dry cleaning.	
		di y cleaning.	
4. Naphtha	120-180°C	As a solvent	
_		and in dry	
		cleaning,	
		feed stock	
		for	
		petrochemic	
		als.	
		410.	
5. Kerosene oil	180-250°C	Illuminant,	
		fuel for	
		stoves	
6. Diesel oil	250-320°C	Diesel	
		engine fuels,	
		carbureting	
		of water gas	

WINTER-15 EXAMINATION Model Answer

Subject code :(17651)

Page 5 of 26

	7.Heavy oil On vacuum oil gives lub petroleum je paraffin wax 8.Residue	lly, greases,	320-400°C □ 400°C	Fuel for ships, metallurgica l furnaces, feed stock for cracking processes. Used for making roads and water proofing roof, as a fuel, for		
				moulding electrode rods.		
1b-ii	Importance of vacuum d	stillation in crude of	il refining.			6
	In atmospheric distillation	of crude oil, it is imp	ortant not to su	bject the crude		
	oil to temperature above 3	70 to 380°C because t	he high molecu	ılar weight	2	
	components will undergo	hermal cracking and	form petroleun	n coke at		
	temperature above that. In	vacuum distillation u	nit, distillation	is carried out at		
	an absolute pressure of 10	to 40 mm of Hg so as	to limit the op	erating		
	temperature to less than 37	0 to 380°C. Vacuum	distillation help	os to maximize		
	the recovery of valuable di	stillates.				
	Explanation with diagram	n.				
	The residue from the atmo	spheric distillation co	lumn is send to	vacuum	2	
	distillation unit where abso	olute pressure is main	tained at 10 to	40mm of Hg	2	
	using multiple stages of ste	eam jet ejectors. Vacu	um columns h	ave large		

WINTER-15 EXAMINATION Model Answer

diameters. They use distillation trays only when products have to be withdrawn		
from sides. Often packing materials like structured sheet metal or randomly packed Raschig rings are used because packings has low pressure drop than distillation trays. The bottoms of vacuum distillation column is known as Goudron or residuum.		
Residue trom atmospheric distillation Unit	2	
 Factors affecting the prices of crude oil (any four to be written) 1. Production of crude oil: OPEC nations are the major producers of worldscrude oil. Any decision by them to increase or decrease production affects the prices of crude oil. 2. Natural causes (weather) : Extreme weather conditions(hurricanes, thunderstorms) affects production and increases the prices of oil. 3. Supply and demand: Since OPEC has sufficient reserves, they can directly influence market pricing especially when supply of oil produced by non OPEC nation decreases. 4. Restrictive legislation: Energy policies and taxes of oil rich countries affectthe prices of oil. 	1 mark each	
	distillation trays. The bottoms of vacuum distillation column is known as Goudron or residuum. To vacuum System Vacuum System Vacuum gas oil System Vacuum gas oil System Vacuum gas oil System Aubricanth Aubricanth	distillation trays. The bottoms of vacuum distillation column is known as Goudron or residuum.

WINTER-15 EXAMINATION Model Answer

ect coc	le :(17651)	Page	e 7 of 26
	the highest bidder.		
	6. Production: Location of reserves, amount and properties of oil found ,		
	geological formation in which oil is found, cost of extraction etc affects the		
	cost of oil supplied from a particular reserve.		
	7. Exchange value of dollar: Dollar depreciation tends to increase oil demand		
	and increases the prices of oil.		
2-b	Flow sheet for the manufacture of ethylene oxide	4	
	Havy ends.		
2-c	Reactions involved in the manufacture of methanol:	2	
	Methanol is produced by catalytic hydrogenation of CO	2	
	Main reaction: $CO + 2H_2 \rightarrow CH_3OH$		
	Side reactions: $CO + 3H_2 \rightarrow CH_4 + H_2O$		
	$2\text{CO} + 2\text{H}_2 \rightarrow \text{CH}_4 + \text{CO}_2$		
	$xCO + y H_2 \rightarrow$ high molecular weight alcohols and hydro carbon		
	Reactions involved in the manufacture of propylene oxide:		
	It is produced via chlorohydrin route.		

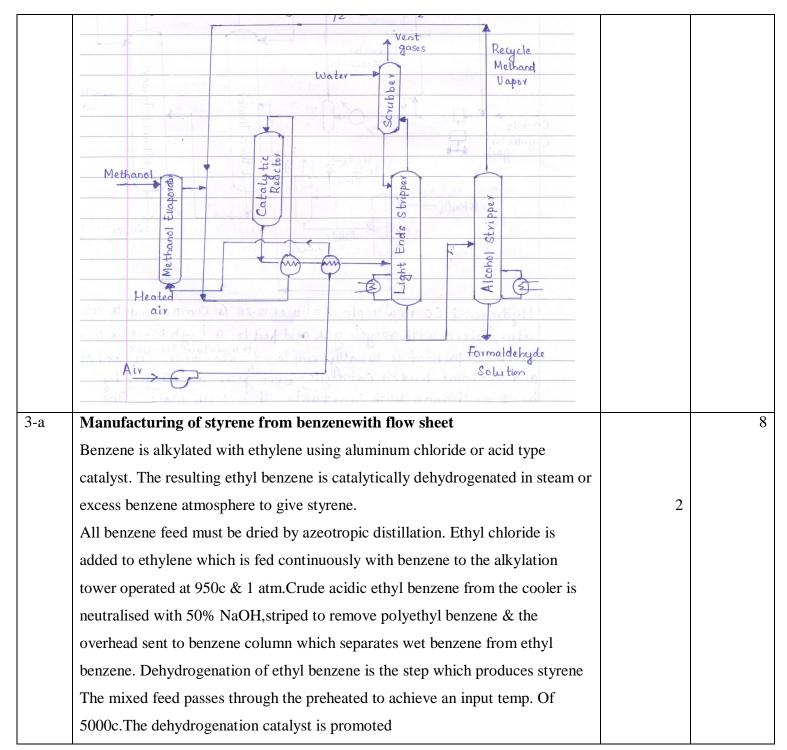
bject co	de :(17651)	Pa	ge 8 of 26
	Chlorohydrination:	2	
	$CH_{3}CH=CH_{2} + HOCl \rightarrow CH_{3}-CHCl-CH_{2}OH$		
	Dehydrochlorination:		
	$2CH_3\text{-}CHCl\text{-}CH_2OH + Ca(OH)_2 \rightarrow 2C_3H_6O + CaCl_2 + 2H_2O$		
2-d	Any one biological method for treatment of waste water	4	4
	Biological treatment aims at the removal of all oxidizable and organic matter		
	from the waste water.		
	Activated sludge process. It consists of an aeration tank followed by a		
	sedimentation tank. In this process high concentrations of newly grown and		
	recycled microbial biomass are suspended uniformly throughout the holding		
	tank to which raw waste water is added. Oxygen is introduced by mechanical		
	aerators. Organic materials in the waste water are removed from the aqueous		
	phase by the microbial biomass .The flocculent microbial growths removed in		
	the sedimentation tank are recycled to the aeration tank to maintain a high		
	concentration of active micro organisms.		
	Dryer Solid waste (Due consideration should be given for any other biological method)		
2-е	Composition of crude oil:	4	4
	Crude oil is made up of the following elements		
	1. carbon-84% 2. hydrogen -14%		

WINTER-15 EXAMINATION Model Answer

Subject code :(17651)

Page **9** of **26**

2-f	Flow sheet for the manufacture	of formaldehyde from methanol:	4	4
	C. Metallic compounds.			
	iii)N ₂ compounds			
	ii)O ₂ compounds			
	i) S compounds			
	B. Non hydrocarbon			
	iv) dienes			
	iii) Napthenes			
	ii)Aromatics			
	i)Paraffins			
	A. hydrcarbon			
	The major compounds presen	t in crude oil are:		
	3. sulphur-1-3%	4. nitrogen, oxygen, metals, salts- <1%		

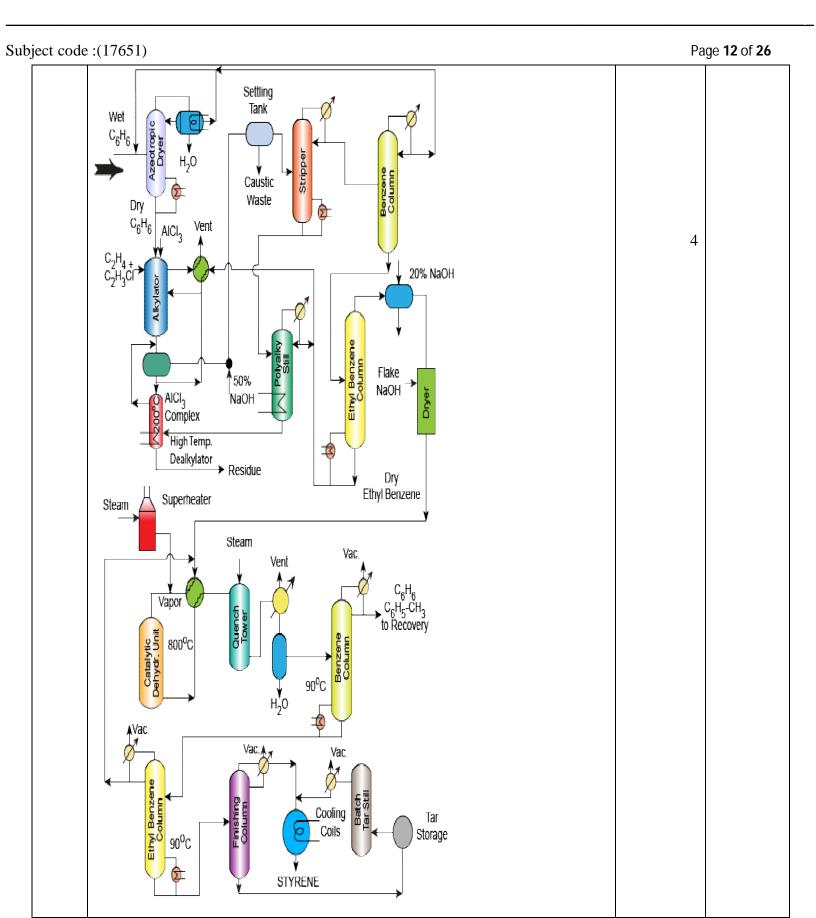

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER-15 EXAMINATION Model Answer

Subject code :(17651)

Page 10 of 26


Subject code :(17651)	Page 11 of 26
Subject code :(17651) zinc,chromium,iron.Reactionproduct is cooled in the feed preheated ,then by steam quenching. Hydrocarbon mixture is passed into a series of vacuum distillation column to allow the separation of impurities at low temp to avoid polymerization of styrene. The second column at 35mm & 900c reboiler temp separate styrene from ethyl benzene. Reaction-	2

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER-15 EXAMINATION Model Answer

WINTER-15 EXAMINATION Model Answer

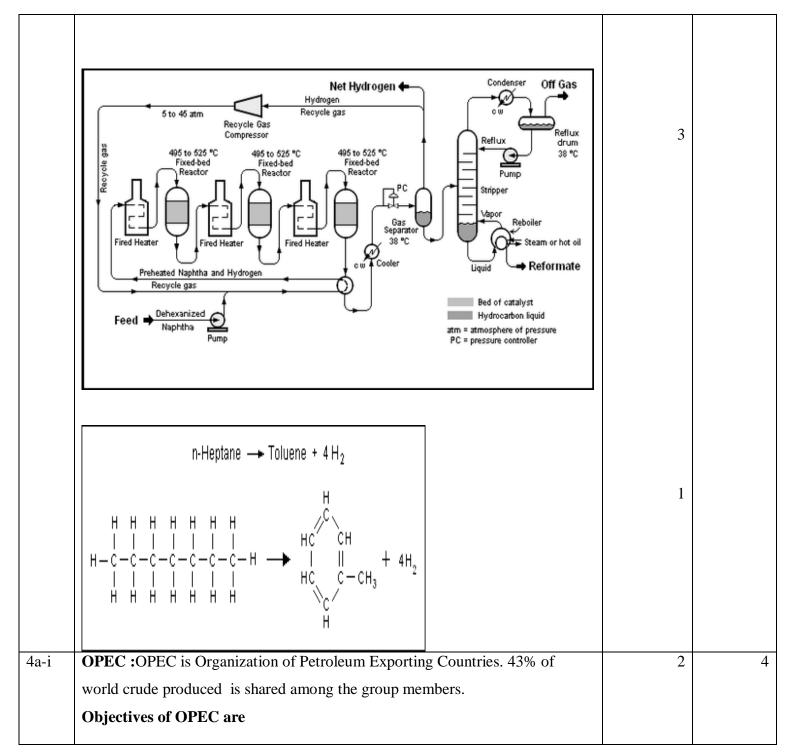
ect cod	le :(17651)	Page 13 of 26
3-b	Delayed coking : Heated charge residue from atmospheric distillation is	2
	transferred to large coke drums which provides the long residence time needed	
	to allow the cracking reaction. Initially heavy feed stock is fed to a furnace for	
	heating the mixture is passed from the heater to one or more coke drums where	
	the material is held approximately 24 hours until it cracks into lighter products.	
	Vapours from the drums are return to fractionators where gas, naphtha and gas	
	oils are separated out. After the coke reaches a pre determined level in one	
	drum, the flow is diverted to another drum to maintain continuous operation	
	and decoking is done.	
	Gas + gasoline Gas oil Gas oil Gas oil Feed Heavy distillate	2
	Continuous coking: continuous coking is a moving bed process that operates	
	at temp higher than delayed coking. In continuous coking thermal cracking	
	occurs by using heat transferred from hot, recycle coke particles to feedstock in	2
	a radial mixer, called a reactor. Gases & vapours are taken from the reactor,	
	quenched to stop any further reaction & fractionated. Coking occurs both in the	
	reactor & the surge drum. The process is automatic in that there is a continuous	
	flow of coke & feedstock.	1

WINTER-15 EXAMINATION Model Answer

Subject code :(17651)

Reactor Product Feed C4 & Lighter Vapor Pump Scrubber Flue Gas Reflux Drum 2 Burner Naphtha Coke Gas Oil Purge Reactor Stripper Sk. Steam Gas Oil ractionator Bottoms Recycle Combustion Air Blower / Motor 2 3-c **Reforming** is an important process used to convert low octane naphtha into 8 high octane gasoline blending components called reformates. Reforming represents the total effect of numerous reactions such as cracking, polymerization, dehydrogenation, isomerization taking place simultaneously. **Catalytic reforming:** Naphtha feed is prepared in a prefractionator. It is pretreated by mild hydrogenation to remove S,N₂, and metals which lowers Pt catalyst activity . 2 The treated feed is mixed with recycle H_2 , preheated and charged to 3 or more cylindrical fluidized bed reactors in series. Reheat interstages are required since the overall reaction is endothermic. The catalyst can be regenerated every 2-3 months by burning off the C deposited by a mixture of steam, air and flue gases.

Page 14 of 26



MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

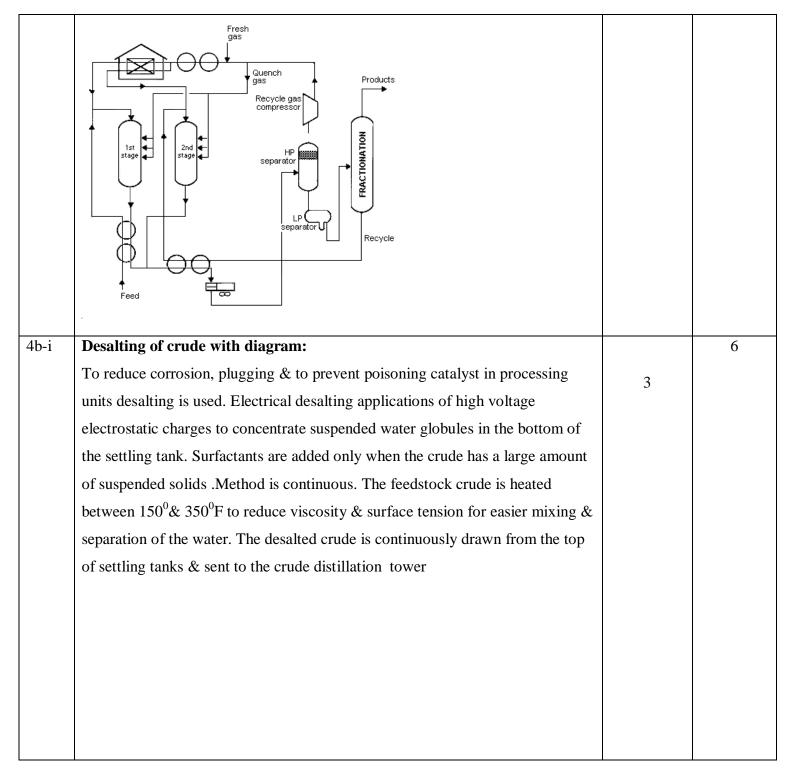
(ISO/IEC - 27001 - 2005 Certified)

WINTER-15 EXAMINATION Model Answer

Subject code :(17651)

Page 15 of 26

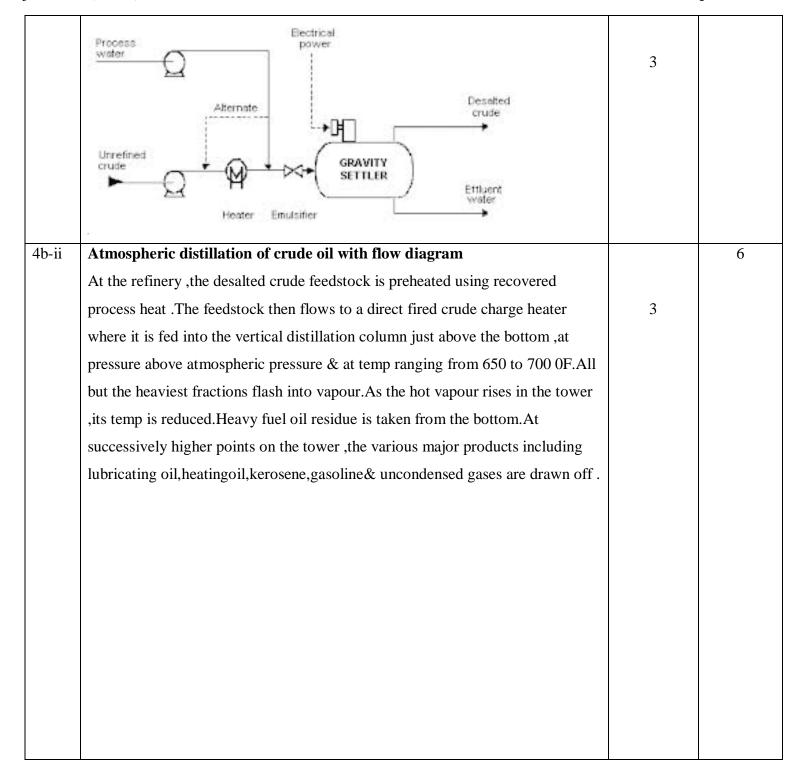
ect code	e :(17651)	Pa	age 16 of 26
	1. To avoid useless fluctuation in prices in international market.		
	2. To provide an efficient economic and regular supply of	2	
	petroleum to consuming and a fair return of capital to those investing in		
	petroleum industries.		
4-a-ii	Manufacture of acetaldehyde from ethylene:	2	
	Reaction: The process operates in the presence of an aq.liquid copper salt		
	catalyst,promoted by a metal such as palladium.Thus,these are really two		
	reactions, a hydration reaction		
	$C_2H_4 + 2CuCl_2 + H_2O \rightarrow CH_3CHO + 2CuCl + 2HCl$		
	& a catalyst regeneration reaction		
	$2CuCl + 2HCl + 1/2 O_2 \rightarrow 2CuCl_2 + H_2O$		
	Which add up to give the net overall reaction		
	$C_2H_4+1/2O_2 \rightarrow CH_3CHO$		
	Description : The process is operated at pressure below 50 atm& temp of 50 to		
	100 [°] C.Typical reaction times range from 6 to 40 min. Air and ethylene is	2	
	passed through a tower reactor along with catalyst solution. Catalyst solution		
	containing acetaldehyde is separated in a stripper. The crude acetaldehyde is		
	distilled twice. In the first stage, low boiling substances like chloromethane,		
	chloromethaneetcare separated. In the second stage, water and high boiling		
	biproducts like acetic acid are removed and acetaldehyde is obtained in pure		
	form from overhead.		
4a-iii	Sulfuric acid alkylation process		4
	In cascade type sulfuric acid alkylation units, the feedstock enters the reactor &		
	contacts the conc.sulfuric acid catalyst. The reactor is divided into zones	2	
	,witholefins fed through distributors to each zone,& the sulfuric acid		
	&isobutanes flowing over baffles from zone to zone. The reactor effluent is		
	separated into hydrocarbon & acid phases in asettler,& the acid is return to the		



ject code :(17651)	Ра	ige 17 of 26
reactor. The hydrocarbon phase is hot water washed with caustic for pH control before being successivelydepropanised ,deisobutanised&debutanised. The alkylate obtained from the deisobutanier can then go directly to motor fuel, blending or to produce aviation –grade blending stock. The isobutene is recycle to the feed. $Feedstock \rightarrow Feedstock \rightarrow Feedsto$	2	
4a-ivFlow sheet for two stage hydrocracking process.	4	4

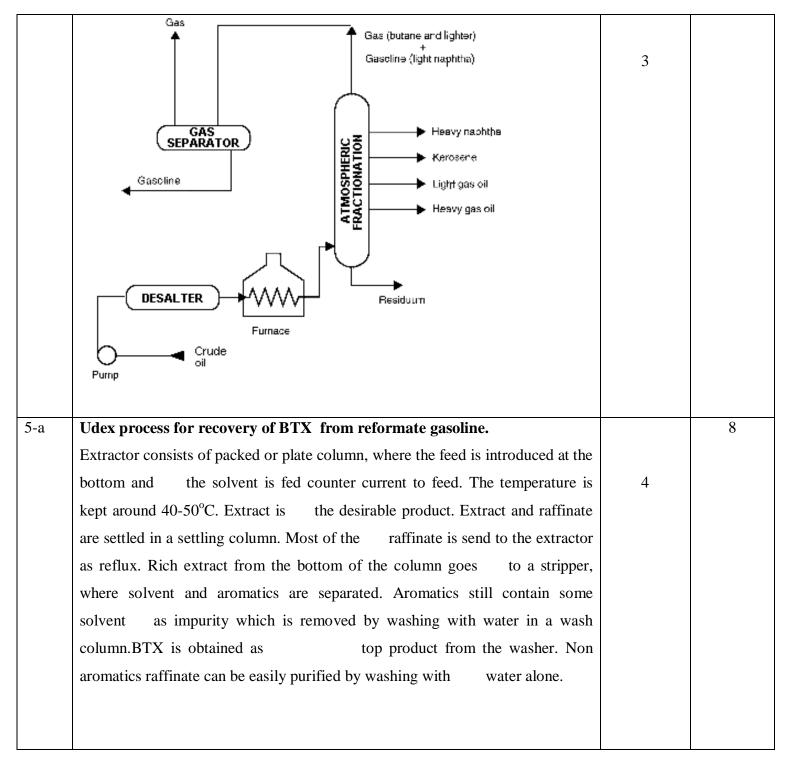
WINTER-15 EXAMINATION Model Answer

Page 18 of 26

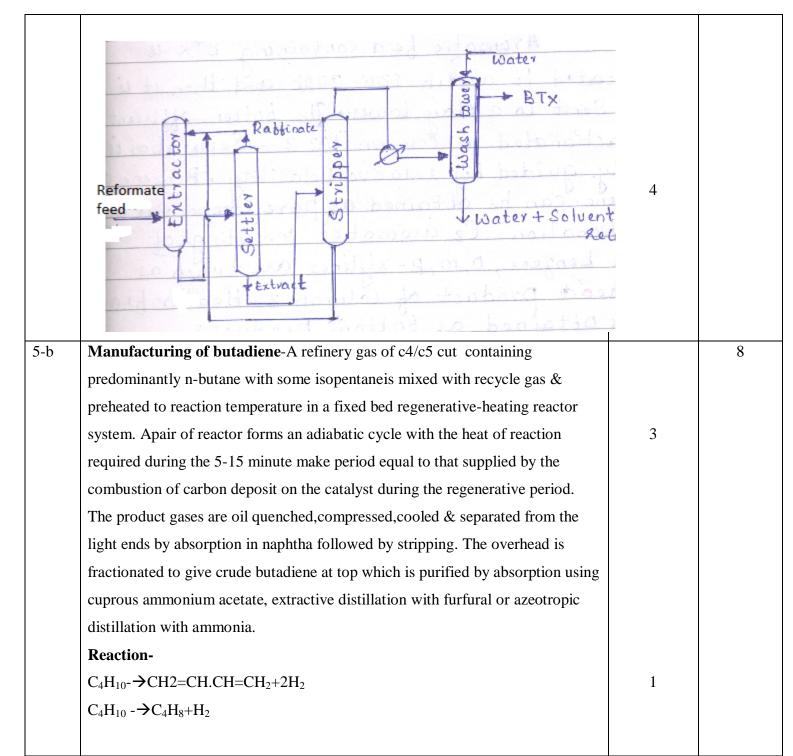


WINTER-15 EXAMINATION Model Answer

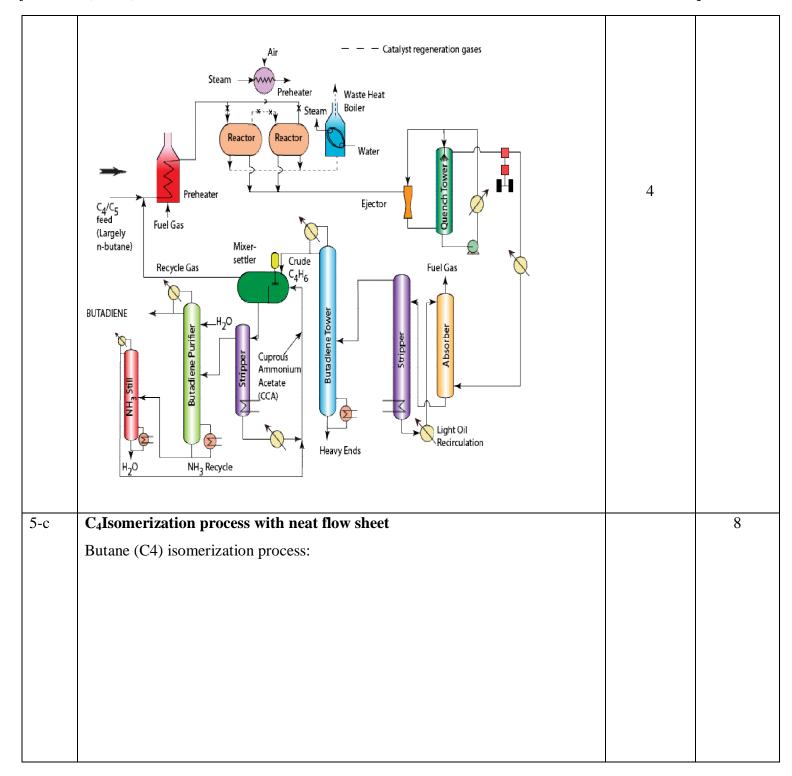
Subject code :(17651)


Page 19 of 26

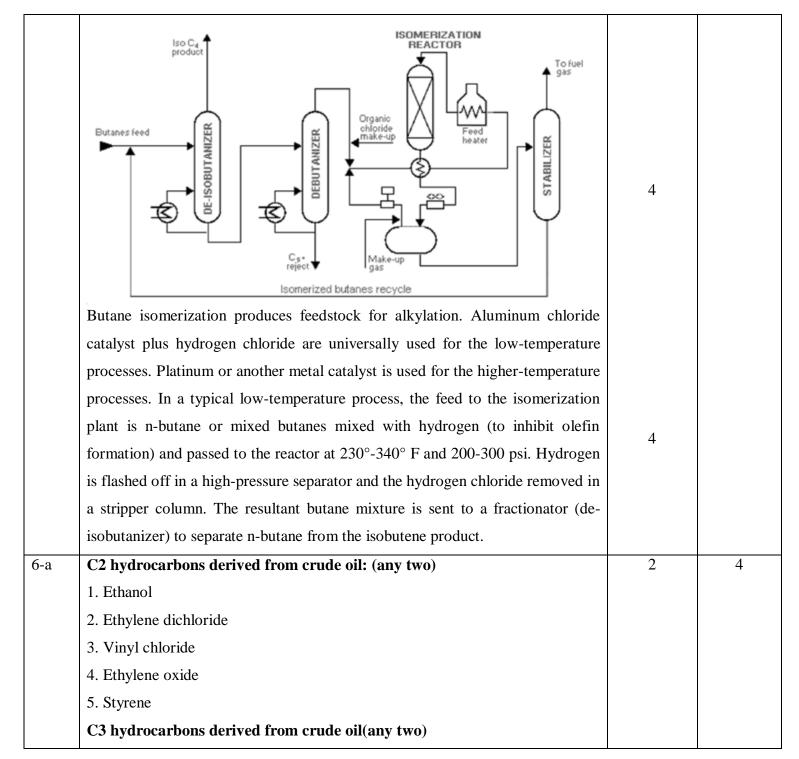
WINTER-15 EXAMINATION Model Answer


Page 20 of 26

WINTER-15 EXAMINATION Model Answer



WINTER-15 EXAMINATION Model Answer



WINTER-15 EXAMINATION Model Answer

Subject code :(17651)

Page 23 of 26

ect cod	le :(17651)	Pa	ge 24 of 26
	1.Propane		
	2. Isopropanol	2	
	3. Acetone		
	4. Cumene		
	5. Propylene oxide		
6-b	Filtering and demineralization of waste water from oil refinery:	4	
	It is used to remove inorganic materials and certain additives from used oil		
6-с	(oil + water)) to produce a cleaner burner fuel or feed for re-refining.		
0-C			
	Crude oil is yellowish black oil that is extracted from under the surface of the	А	
	earth. It is one of the most necessitated worldwide required commodities. Any	4	

ect coo	de :(17651)	Pa	ge 25 of 26
	fluctuation in the crude oil prices can have direct and indirect influence on the		
	economy of the counties.		
6-d	Definition:	1 mark	
	(i) Ignition temperature: The lowest temperature at which a material can catch	each	
	fire and burn continuously without the aid of external firing agencies.		
	(ii) Fire point: Fire point is the minimum temperature at which oil will produce		
	enough vapourswhich will burn continuously for at least 5 seconds when a		
	flame is brought near it.		
	(iii) Cloud point: When oil is cooled slowly, the temperature at which it		
	becomes cloudy is called cloud point.		
	(iv) Calorific value: Calorific value is the quantity of heat released per quantity		
	of fuel when it is burned completely with oxygen and the products of		
	combustion returned to ambient temperature		
б-е	Reasons for considering distillation as a major unit operation in refining	4	
	process:		
	Crude oil is a mixture of hydrocarbons with different boiling temperatures. By		
	distillation it can be separated into different fractions with specified boiling		
	range. Distillation of crude takes place in two stages- First stage(atmospheric		
	distillation) and second stage (vacuum distillation)		
6-f	Reactions involved in hydrogenation:	2	
	It is the addition of hydrogen to unsaturated organic compounds.		
	RCH=CH ₂ +H ₂ \rightarrow RCH ₂ CH ₃ (Where R is alkyl or aryl group).		
	Reactions involved in hydration:		
	Hydration is addition of water.	2	
	Synthetic ethyl alcohol is made by hydration of ethylene.		
	$CH_2=CH_2+H_2O \rightarrow C_2H_5OH$		

WINTER-15 EXAMINATION Model Answer

Subject code :(17651)

Page **26** of **26**