

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER-18 EXAMINATION Model Answer

Subject Title: Mass Transfer Operation

Subject code

17648

Page **1** of **23**

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.

2) The model answer and the answer written by candidate may vary but the examiner may try

to assess the understanding level of the candidate.

3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.

4) While assessing figures, examiner may give credit for principal components indicated in the

figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.

5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.

6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.

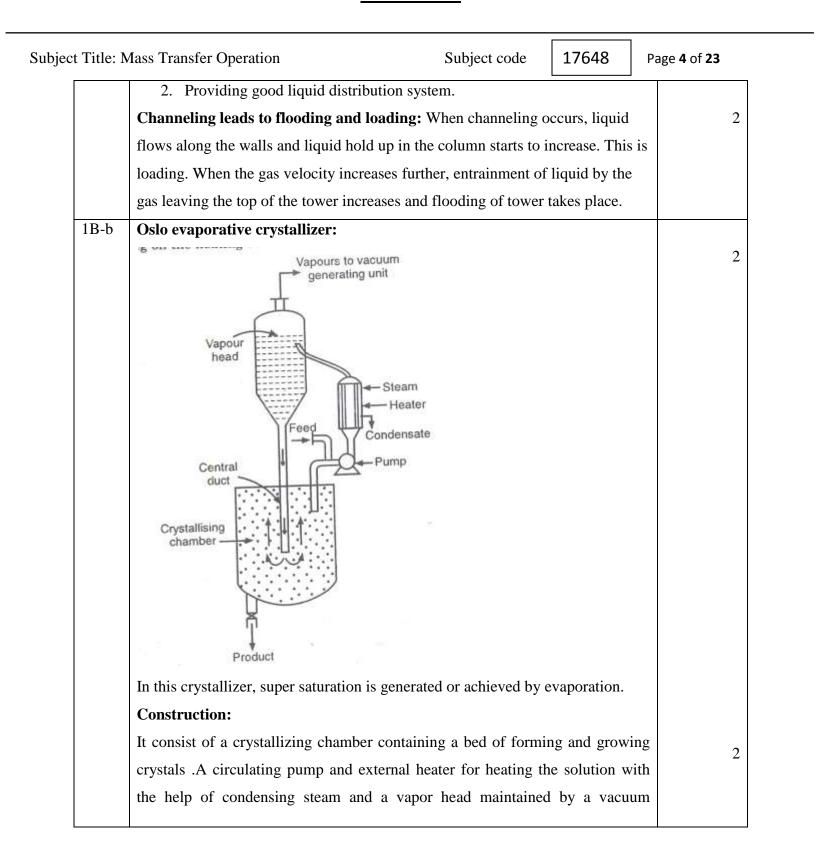
7) For programming language papers, credit may be given to any other program based on equivalent concept.

SUMMER-18 EXAMINATION Model Answer

Subject Title: Mass Transfer Operation

Subject code

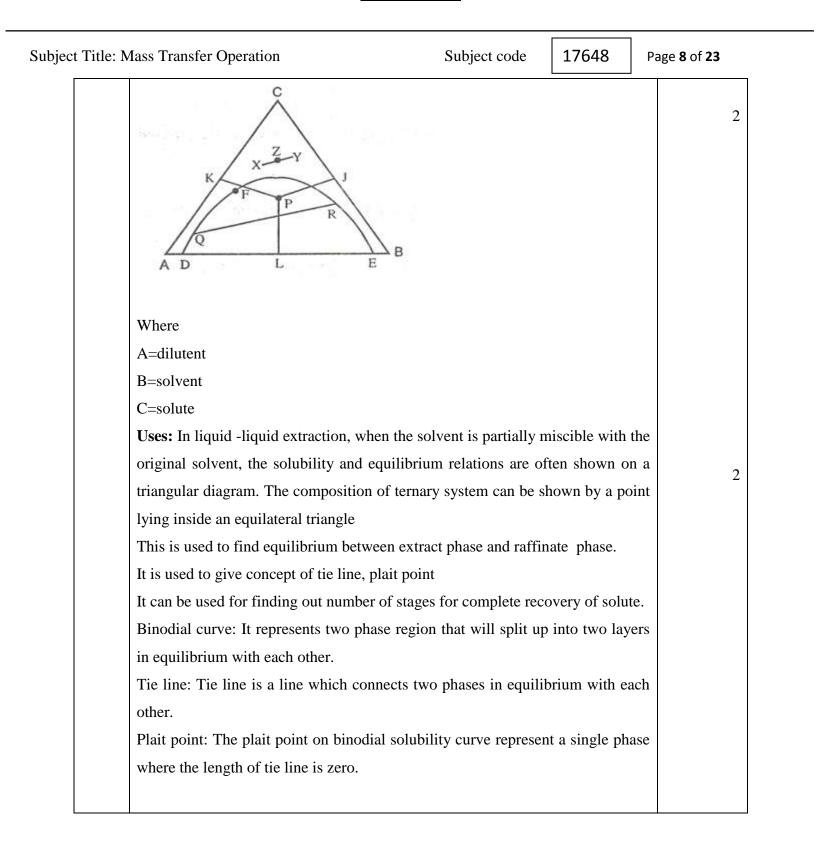
17648


Page **2** of **23**

Q No.	Answer	Marking
		scheme
1 a	Attempt any 3	12
1A-a	Different terms involved in two film theory:	
	K _y – Overall mass transfer coefficient	4
	$m = slope = (y_{Ai} - y_{A}^{*}) / (x_{Ai} - x_{A})$	
	y _{Ai} - concentration of solute at vapour interface	
	y_A^* - composition of solute in gas phase which is in equilibrium with x_A	
	x_{Ai} - concentration of solute at the liquid interface	
	x _A – concentration of solute in bulk liquid	
	k_y – mass transfer coefficient in vapour phase	
	k_x - mass transfer coefficient in liquid phase	
1A-b	Raoult's law:	
	It states that at a given temperature, the partial pressure of a component A is	1
	equal to the product of mol fraction of the component A in the liquid phase and	
	the vapour pressure of the pure component A	
	$p_A = p_A^0 x_A$	1
	where,	
	p _A - partial pressure of A	
	p^0_A - vapour pressure of the pure component A	
	x _A - mol fraction of the component A in liquid phase	
	i) Daltons law : It states that the total pressure exerted by gas/vapour mixture is	
	equal to the sum of the partial pressures of components present in it, thus it	1
	expresses the additive nature of the partial pressure.	
	Mathematically, for binary system	
	$P = p_A + p_B$	1

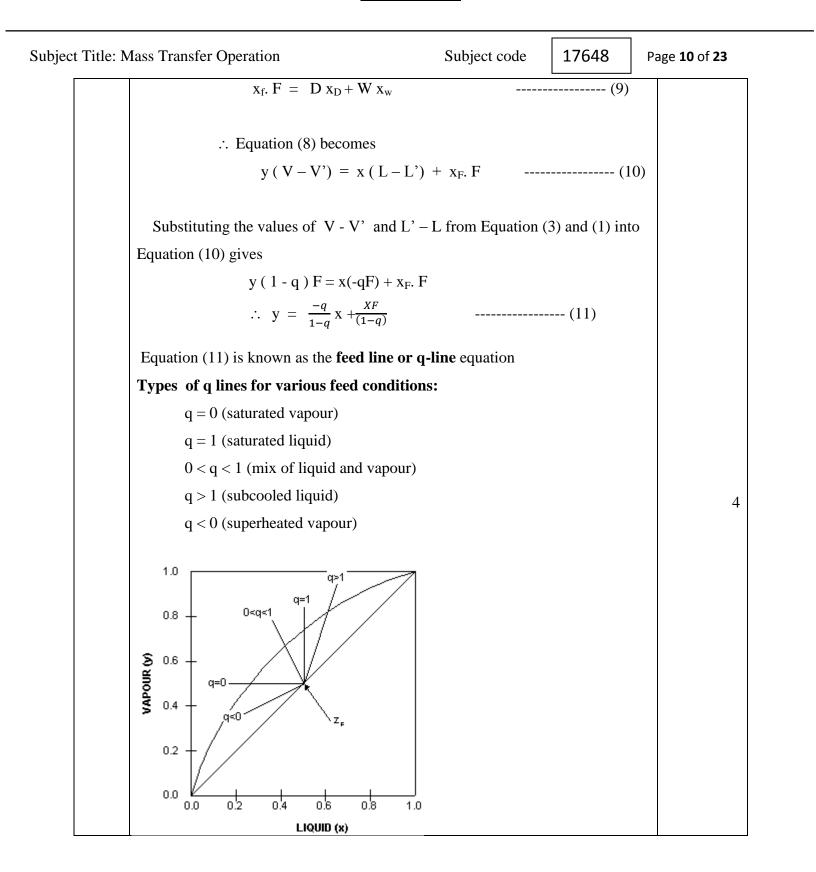
t Title: N	Mass Transfer Operation Subject code 17648 Pa	age 3 of 23		
	Where, P is the total pressure of gas mixture, p_A , p_B are partial pressures			
1A-c	1. Solubility:	1 mark		
	It is the concentration of a solute in a saturated solution at a given temperature.	each		
	2. Distibution Coefficient =			
	concentration of solute in extract phase			
	concentration of solute in raffinate phase			
	3. Critical Moisture content: The moisture content of a material at which			
	the constant rate period ends and the falling rate period starts is called			
	critical moisture content.			
	4. Selectivity : The ratio of concentration ratio of solute to feed solvent in			
	extract phase to that in raffinate phase.			
1A-d	Different methods of obtaining super saturation(any 4)	1 mark		
	i) By cooling a concentrated, hot solution trough indirect heat exchange.	each		
	ii) By evaporating a part of solvent/ by evaporating a solution.			
	iii) By adiabatic evaporation and cooling.			
	iv) By adding a new substance which reduces the solubility of the original			
	solute, i.e. by salting.			
	v)By chemical reaction with a third substance			
1 B	Attempt any 1	(
1B-a	Channeling: The tendency of liquid to segregate towards the walls and to flow			
	along to walls (region of greatest void space) is termed as channeling which			
	lead to low mass transfer efficiencies.			
	It can be prevented by:			
	1. Providing tower diameter to packing size ratio greater than 8			

ect Title:	Mass Transfer Operation	Subject code	17648	Page 5 of 23
	generating equipment.			
	Working: The solution from crystallizing	g chamber is pump	by a circulation	ng 2
	pump on the suction side of which the feed	d solution forming a s	small part of the	he
	total circulating liquid is introduced into a	heater. Where it is h	leated by mea	ns
	of condensing steam and then fed to a va	ap head where some	of the solution	on
	flashes into vap resulting into some	degree of super	saturation. T	he
	supersaturated solution is returned to the	bottom of the crysta	llizing chamb	er
	through a central duct into a crystallizing cl	hamber.		
	Nucleation takes place in the crystal blade	e which is maintaine	d In a fluidiz	ed
	state by means of upward flowing steam.	Then the nuclei conv	verted to cryst	al
	of required size and withdrawn as product f	from the bottom.		
2	Attempt any 4			16
2-a	Factors on which the rate of drying depe	ends:		1 mark
	1) Gas Velocity: When the velocity	of the gas or air is	high the rate	of each
	drying will also be high.			
	2) Humidity of gas : Lesser the rel	ative humidity, the r	nore will be the	he
	rate of drying.			
	3) Area of drying surface: If the an	rea of the wet surface	e exposed to the	he
	gas or air is more, the rate of drying	g will also be more.		
	4) Temperature : If the temperature	e of the gas is increase	sed' it's relativ	ve
	humidity decreases (i.e gas beco	omes more unsatura	ted) and th	us
	increase a driving force (i.e the c	concentration differen	nce of moistu	re
	between the solid and gas) and so the	ne rate of drying incre	eases.	
2-b	Working of fluidized bed dryer: A flu	idized bed system i	n addition to	a
	fluidizing chamber also needs an air bl	lower, a hot air ge	nerator, a fe	ed 4
	conveyor, a cyclone separator and a produc	ct conveyor.		
	In this drier, hot air is used to keep the wet	t food in a fluidized a	toto. In the dri	o.m.



ubject Title: I	Mass Transfer Operation	Subject code	17648	Page 6 of 23
	the wet material is dried and cooled in	the same bed. Wet	feed material	is
	admitted to the top of the bed through a ho	opper via a rotary val	ve and hot air	is
	distributed at the bottom of the bed throug	gh a diffuser plate an	d dry product	tis
	taken out from the side or near the bottom	n. Heat and mass trai	nsfer coefficie	ent
	are high because of the turbulence created	l in the bed. The mat	erial to be dri	ied
	and hot air are in cross-flow with respect t	to the direction of flo	w of each oth	er.
	The residence time can be controlled from	n seconds to hour. The	e moist air fro	om
	the drier containing fines is admitted to a	cyclone separator for	the recovery	of
	fines.			
2-c	Reflux ratio is the ratio of amount of disti	llate fed back to the c	olumn to the	
	amount of liquid taken out as distillate or t	op product.		2
	It is represented by 'R'			
	R = L/D			
	Reflux improves purity: By allowing r	eflux, liquid and vap	pour phases	are
	coming into contact with each other on	every plate and mas	s transfer tal	xes 2
	place every time. This will make the vapo	our richer in more vol	atile compone	ent
	and liquid in less volatile component. The	us the composition of	of more volat	tile
	component in the final distillate will be mo	ore, hence the purity.		
2-d	Expression for operating line of rectifyi	ng section:		

Title:	Mass Transfer Operation	Subject code	17648	Page 7 of 23
	V Condens Condens D, x_D Plate n L_n V_{n+1} x_n y_{n+1}]
	Material balance around condenser is			
	V = L + D			
	Or L = V - D ; D = V - L			
	Overall balance is]
	$V_{n+1} = Ln + D$			
	Component balance for A			
	$V_{n+1} y_{n+1=} L_n x_n + D x_D$]
	$y_{n+1} = \ L_n \ x_n \ / \ V_{n+1} + D \ x_D \ / \ \ V_{n+1}$			
	But $V_{n+1} = L_n + D$			
	$y_{n+1} = L_n x_n / L_{n+}D + D x_D / L_{n+}D$			1
	This is Expression for operating line of rectify	ying section.		
2-е	Triangular diagram:			



t Title:	: Mass Transfer Operation Su	bject code	17648	Page 9 of 23
3	Attempt any 2			16
3-a	q-line: The 'q' is a measure of the thermal condition	on of the feed	and is define	ed
	as the number of moles of saturated liquid resulting	g in the stripp	ing section fo	or
	each mole of feed introduced. Thus for a feed we g	get,		
	L' = L + qf			
	$\mathbf{V} = \mathbf{V}' + (1 - q)\mathbf{F}$			
	Derivation of q-line :			
	The liquid flow in the stripping section is			
	L' = L + qf			4
	\therefore L'-L = qf		(1)	
	Similarly, the vapour flow in the rectifying section	is		
	V = V' + (1 - q) F		(2)	
	$\therefore \mathbf{V} - \mathbf{V}' = (1 - \mathbf{q}) \mathbf{F}$		(3)	,
	Overall material balance in the upper section of col	loumn :		
	V = L + D			
	Material balance of A in the upper section :			
	$V_y = Lx + D x_D$)
	Overall material balance in the lower section :			
	$\mathbf{V}' = \mathbf{L}' - \mathbf{W}$			
	Material balance of A in the lower section :			
	$V'y = L'x - Wx_w$)
	Subtracting Equation (7) from Equation (5)			
	y(V - V') = x(L - L') + Dx	$x_D + W x_w$	(8	
	Overall material balance of A over the coloum as a	a whole :		

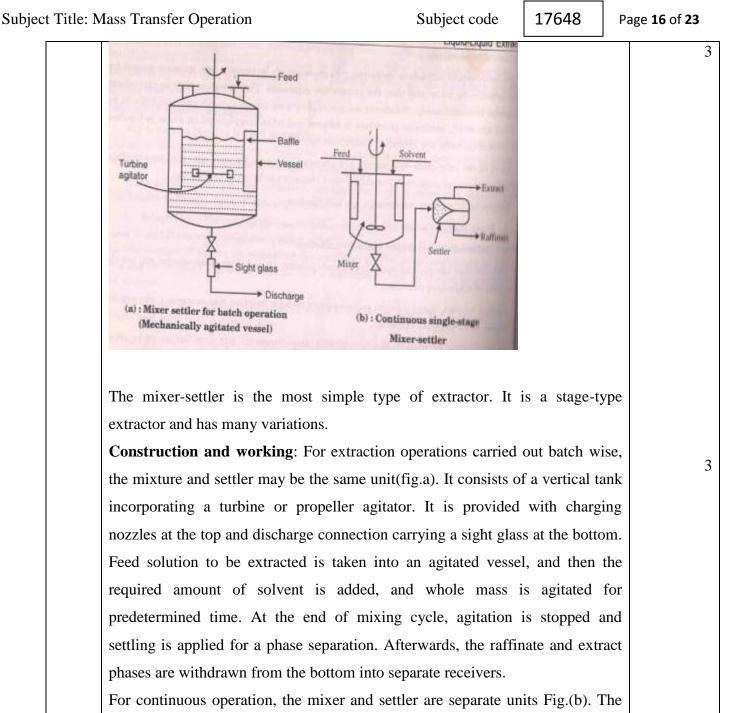
MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

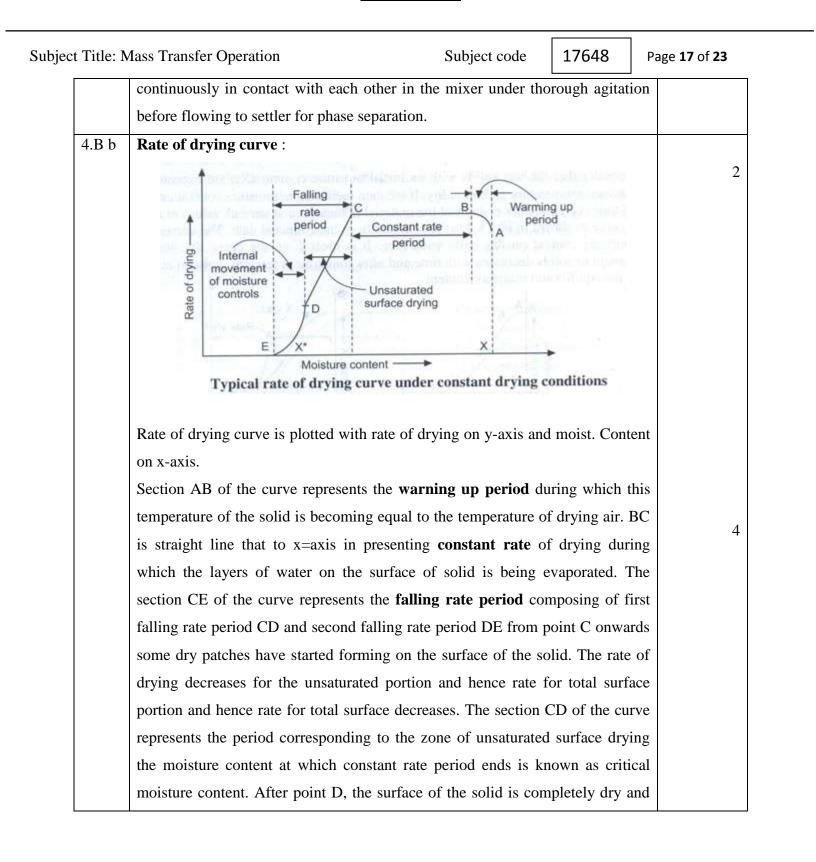
ubject Title:	Mass Transfer Operation Sul	oject code	17648	Pa	ge 11 of 23
3-b	Basis: Feed containing 40% benzene and 60% tolu	ene			
	Molecular weight of benzene=78				
	Molecular weight of toluene= 92				1
	Xf= mole fraction of benzene in the feed				
	=(40/78)/(40/78+60/92)				
	=0.44				
	Similarly xd= (96/78)/(96/78+4/92)=0.966				1
	Xw=(5/78)/(5/78+95/92)=0.058				
	Relative volatility = α = 2.5				
	With the help of relative volatility, generate x-y d	ata and plot	the equilibri	um	
	diagram.				
	For generating x-y data assume				
	$X=0,0.1,0.2,\ldots,1$ and find the corresponding value	ies of y from	the relation		1
	$Y = \alpha x/(1 + (\alpha - 1)x)$				
	Procedure for finding out the minimum reflux ratio				
	q=1/3				
	slope of feed line=- $(q/1-q)$ = -0.5				
	Intercept on y axis= $xf/(1-q) = 0.66$				1
	Draw the feed line through the point (0.44,0.44) of	on the diagor	nal with a slo	ope	
	equal to -0.5 or intercept equal to 0.66 which will	cut the equil	ibrium curve	e at	
	point P. Through the point A(0.966,0.966) on the	diagonal ,dra	w the operat	ing	
	line A-P of the rectification section (dotted line) a	ind read y' a	nd x' on y a	axis	
	and x axis respectively.				
	Minimum reflux ratio $Rm = (x_D-y') / (y'-x')$				
	From graph y'=0.515, x'=0.3				1
	Rm= 2.1				
	R=1.5Rm=1.5x 2.1=3.14				1

Subject Title: Mass Transfer Operation		Subject code	17648	Pag	e 12 of 23
Operating line of rectification s	section:				
Point A(0.966,0.966) on the dia	agonal.				
The intercept of the rectifying s	section of opera	ating line is $= x_D / F$	R+1		
		=0.966/3	3.14+1=0.232	2	1
From the graph the theoretical	stages required	l including reboile	r = n = 10.		
Number of stages required in c	olumn=n-1=10	-1=9			1
3-c Lewis Sorel method of determ	nination of nu	mber of theoretic	al plates:		8
Equation of operating line of	rectifying				
L _n	D.X _D				
$y_n+1 = x_n +$		eq.1			
$L_n + D$	$L_n + D$				
Operating line of stripp	ing section				
L _m	$W.X_W$				
$y_m + 1 = $ $ x_m -$		eq.2			
L_m - W	L _m - W				
1. From the data cited in a	given problem,	evaluate the terms	– D,W,L,etc	с.	
2. From the x-y data provid	led (or can be g	generated knowing	the relative		
volatility) draw an equili	brium diagram				
3. Substistute the values of	$L_n(L)$, x_D , D in	equation(1), in ord	er to get a		
relationship between y _n +	-1 and x _{n.}				
4. Similarly ,substitute the	values L _m ,W,x _v	w in equation(2), t	o get a		
relationship between y _m -	+1 and x_{m} . Lm i	is to be evaluated b	by taking into)	
consideration the conditi	on of feed. For	example, if it is a	liquid at its		
bubble point $L_m = L_n + F$.					
5. The distillate composition	on (x _D) given in	the problem state	ment represe	nts	

ect Title: M	lass Transfer Operation	Subj	ect code	17648	Page 13 of 23
	 l;eaving the colum 6. From the vapour p composition x_n+1 x_n+1 in the equation y₂ 7. Find x_n+2 value f 8. Find y_n+3 and prowing when the liquid ph 9. Then make use of the section and proceed in 	f vapour (y_n) as it is obtained in. bhase composition : $y_n = x_D$, from the x-y curve drawn an on of the operating line of the from the equilibrium diagram beceed with the same equation hase composition equal to or material balance equation or in the same way as described ual to or below x_W , suppose v	find the lique ad substitute e rectifying a correspond till we reac less than x _F c operating l above till w	id phase the value of section to ge ling to y_n+2 h the point ine of strippi re get the liqu	ng
4 A	means that there will Attempt any 3	be 10 plates in the column.			12
4A-a		listillation and extraction			1 mark
	points	Distillation	Extraction	1	each
	Thermal energy	Requires thermal energy	Requires energy for separation	mechanic or mixing an	
	Operating cost	Cost is Low.	Cost is high	gh.	
	Equipment	Needsheatingandcooling provisions		need heating provisions	<u> </u>
	Quality of product	Gives almost pure product	Doesn't product	give pu	re
4A-b	Equation for steady sta $N_A = D_{AB} / RTZ (P_{A1} - P_{A2})$	nte equimolar counter diffu P _{A2})	sion for ga	ses:	2


Subject Title: I	Mass Transfer Operation	Subject code	17648	Page 14 of 23
	Where $N_A = molar$ flux of A			
	$D_{AB} = Diffusivity of A in B$			
	R = Universal gas constant			
	T = absolute temperature			2
	Z = distance through which diffus	sion occurs		
	P_{A1} = partial pressure of A at begin	nning of diffusion		
	P_{A2} = partial pressure of A at end	of diffusion		
4A-c	Application of Steam Distillation:			
	1. For separating high boiling component	from non volatile imp	urities.	¹∕₂ mark
	2. For separating high boiling mixture	into different fractio	ons wherein t	he each for
	decomposition of material might occur if o	lirect distillation were	employed	any 2
	3. Where vaporization temperature cannot	be reached by heat		
	Application of batch Distillation:			
	1. Where small quantities of liquid m	ixture are to be handle	ed.	¹∕₂ mark
	2. When more than one product is to	obtained		each for
	3. When liquid mixture to be separate	ed are high in solid co	ntent.	any 2
	Steam distillation:			
	Steam distillation is adopted in cases	where substance in	nvolved cann	ot
	withstand temp of distillation and decon	pose. Substance of t	his kind can	be
	separated by reducing the partial pressure	e of the volatile comp	onent. This c	an 2
	be done by making use of inert vapou	r that decreases the	temperature	of
	distillation. The inert vapour used sho	ould be practically in	mmiscible wi	ith
	components to be distilled. Steam is used	for this purpose.		
	In steam distillation, steam is directly add	mitted into the liquid	in the still. T	he
	mixed vapour containing desired compor	nent is taken as overh	nead, condens	ed
	and desired component is separated from	n water phase by gra	avity while n	on
	volatile material remains behind in the stil	1.		

Subject Title: N	Mass Transfer Operation	Subject code	17648	Page 15 of 23
4A-d	Most common packings are :			¹ / ₂ mark
	1) Raschig rings.			each for
	2) Pall rings.			any 4
	3) Hy-pak.			
	4) Berl saddles.			
	5) Intalox saddles.			
	6) Super intalox saddles			
	7) Lessing ring			
	Characteristics of a tower packing :			1⁄2 mark
	1) It should provide a large interfacia	l area for phase contac	cting	each for
	2) It should possess good wetting cha	racteristics.		any 4
	3) It should have a high corrosive res	istance.		
	4) It should be relatively cheap.			
	5) It should possess enough structura	l strength.		
	6) It should be chemically inert to the fl	uids handled in the to	wer.	
4B	Attempt any 1			6
4B-a	Mixer settler:			



SUMMER-18 EXAMINATION Model Answer

mixer is a small baffled agitated tank provided with inlet-outlet connections and settler is often a continuous gravity decanter. In this extractor, two phases are

Title:	Mass Transfer OperationSubject code17648Pa	age 18 of 23
	now internal movement of moistures starts coming to the surface and this is	
	continued up to the point E, where eqm. Is attained the rate of drying over	
	section DE is governed by the internal moisture movement.	
5	Attempt any4	1
5-a	$y = \alpha x/1 + (\alpha - 1)x$	
	$\alpha = 2.3$	
	calculate y for different values of x=0, 0.1,0.21	
	x 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 y 0 0.20 0.3 0.49 0.60 0.69 0.77 0.84 0.90 0.95 1	
5-b	3 65 6 5 7 5 3 2 4 Azeotrope :	
5-0	An azeotrope is a liquid mixture with an equilibrium vapour of same	
	composition as the liquid. The dew point and bubble point are identical at	
	azeotropic composition and mixture vaporizes at single temperature, so	
	azeotropes are called constant boiling mixture.	
	Azeotrope can not be separated by distillation because the dew point and	
	bubble point are identical.	
	Complete separation of constituents of binary azeotrope can be done by	
	1. Adding third component to the binary mixture and	
	2. Changing the system pressure.	
	The third component added to a binary azeotrope usually forms a low boiling	
	azeotrope with one of the feed constituents and withdrawn as distillate. The	
	third component added is called as entrainer or azeotrope breaker. The process	
	of distillation where the third component is added to the binary azetrope to	
	effect the complete separation is called azeotropic distillation	
5-c	Selection criteria for solvent in gas absorption : (any 4)	

ect Title:	Mass Transfer Operation	Subject code	17648	Page 19 of 23
	While selecting a particular solvent for	absorption operation, th	ne following	1 mark
	properties of the solvent are considered.			each
	1) Gas solubility : the solubility of solute gas in a solvent should be high . the			
	solvent selected should have a high solubility for the solute to be absorbed			
	2) Volatility : As the gas leaving an absorption unit is generally saturated with			
	the solvent, there will be a loss of the solvent with the gas leaving the unit			
	operation, hence to minimize the solvent loss, the solvent should be less			
	volatile.			
	3) Corrosive nature : the solvent should	d not be corrosive towar	ds common	
	materials of construction so that the construction material for an absorption			
	equipment will not be too expensive.			
	4) Viscosity : the solvent should have a low viscosity for rapid absorption			
	rates, low pumping cost and better heat transfer. The solvent should be non			
	viscous.			
	5) Cost and availability : the solvent should be cheap and readily available			
	6) Miscellaneous : the solvent should be non-toxic, non-flammable, non-			
	foaming, and chemically stable from a handling and storage point of view.			
5-d				
		$\longrightarrow \text{Distillate X}$		
		96.5% meth	anol	1
	$100 \text{ kmol/h feed} \rightarrow \text{distillation}$			
	35 mol% methanol	+		
		Bottoms Y k		
		10% methan	ol	
	Basis: 100 kmol/h feed			
	Let X kmoles/hr distillate and Y kmol/h	*		
	Overall balance is $100 = X + Y$	(1)		1

ct Title:	Mass Transfer Operation Subj	ject code	17648	Page 20 of 23
	Methanol balance is 0.35*100 = 0.965X+0.1Y	(2)		1
	Solving (1) and (2) $X = 28.9$ kmoles and $Y = 71.1$ km	moles		
	Molal flow rate of distillate = 28.9 kmoles/h			1
	Molal flow rate of bottom product = 71.1 kmoles/h			
5-е	Relative merits of plate and packed columns			¹ /2 mark
	1. Plate columns operate over a wide range of li	iquid flow ra	ates without	each for
	flooding.			any 8
	2. Plate columns by repeated mixing and separa	ation provide	e more positiv	ve
	contact between fluid phases.			
	3. Because of difficulties arising in dispersion of	of liquid in p	acked tower,	
	plate tower is more reliable.			
	4. Side streams are very easily taken out from p	late towers		
	5. For plate towers, design information is gener	ally more re	adily availab	le.
	6. Whenever liquid mixtures containing dispers	ed solids are	e to be handle	ed,
	plate towers should be preferred.			
	7. Whenever inter stage cooling is required, pla	te towers are	e preferred.	
	8. For a given duty, total weight of dry plate to	wer is less th	an the weigh	t
	of packed towers.			
	9. High values of liquid- gas ratio are best hand	lled in packe	d tower.	
	10. For liquids having tendency to foam, packed	towers are p	preferred.	
	11. The liquid hold up is low in packed tower.			
	12. Pressure drop through packed tower is usuall	y low.		
	13. Packed towers are more economical when hi	ghly corrosi	ve fluids are	to
	be handled.			
	14. Plate towers are preferred when large temper	ature change	es are involve	ed.
6	Attempt any 2			16
6-a	Initial moisture content $X_1=0.67/(1-0.67)=2.03$			1

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

ect Title:	Mass Transfer Operation	Subject code	17648	Page 22 of 23
	material is spread in the form of a mist	of fine droplets by spray	nozzles, into	a
	hot gas stream inside the chamber.			
	Working :			
	The feed is pumped to the top of this	nall		
	droplets by atomizes . The large quan	tity of fresh air is taken	in by fan, it	t is 3
	heated in the heater and finally fed be	low the atomizer in dryir	ng chamber.	As
	the surface area of drops is very large,	the liquid portion of thes	e drops rapi	dly
	evaporates and before they touch the	e bottom of drying cha	mber they	are
	completely dried. The dried product is	taken out and conveyed	in the cyclor	nes
	dust collector by stream of air major p	ortion of the air is taken	out through	air
	outlet duct which mostly contains du	ast and is sent to cyclor	nes. The sol	ids
	collected are fed to pneumatic convey	ing duct. The air leaving	the cyclone	to
	may contain some dust and therefore	re it is sent to cyclone	1 for furt	her
	separation by a fan., The air from cycle	one 1 is thrown out to the	atmosphere	by
	blower. The dried product from cy	clone 2 is connected i	n dry prod	uct
	connector.			
6-c	Basis 1000 kg feed solution at 353K			
	F=1000 kg. x_F =64.2/164.2= 0.391			1
	Water in feed = $1000(1-0.391) = 609 \text{ kg}$	g		
	Water evaporated = $0.1*609=60.9$ kg			1
	Mol wt of $MgSO_4=120$, Mol wt of $MgSO_47H_2O = 246$			1
	Solvent balance is			
	$F(1-x_F) = V + C8(126/246) + L$			1
	100 (1-0.391)=60.9+0.5122C+L			
	or L=609-60.9+0.5122C kg.			1
	MgSO ₄ balance			
	$MgSO_4$ in feed = $MgSO_4$ crystals + M	IgSO ₄ in mother liquor.		1

Subject Title: Mass Transfer Operation	Subject code	17648	Ра	ge 23 of 23	
0.391*1000=C(120/246)+[609-60.9+0	0.391*1000=C(120/246)+[609-60.9+0.5122C] * solubility of NaNO ₃				
391 = 0.488C + [609-60.9+0.5122C]*0.	408			1	
Or C=599.7 kg					
Yield of MgSO ₄ crystals (C)=599.7 kg	g.			1	