11718 3 Hours / 100 Marks

Seat No.

Instructions:

- (1) All Questions are *compulsory*.
- (2) Answer each next main Question on a new page.
- (3) Illustrate your answers with neat sketches wherever necessary.
- (4) Figures to the right indicate full marks.
- (5) Assume suitable data, if necessary.

Marks

1. (A) Attempt any THREE:

- $4 \times 3 = 12$
- (a) State salient features of Higbie's penetration theory (any four).
- (b) Explain Boiling Point diagram in distillation.
- (c) Explain briefly the selection criteria of solvent to be used in gas absorption.
- (d) Describe working of rotating disc contactor with neat diagram.

(B) Attempt any ONE:

 $6 \times 1 = 6$

- (a) Derive the equation for time of drying under constant rate period.
- (b) Explain Mier's super saturation theory of Crystallization.

2. Attempt any FOUR:

 $4 \times 4 = 16$

(a) List the four methods by which supersaturation can be generated.

[1 of 4]

P.T.O.

17648 [2 of 4]

- (b) Wet solids are to be dried from 80% to 5% moisture (on weight basis). Calculate the amount of moisture to be evaporated per 100 kg of the dried product.
- (c) Define:
 - (i) Extract phase
 - (ii) Raffinate phase
 - (iii) Distribution coefficient
 - (iv) Selectivity in Extraction.
- (d) Ammonia from a ammonia-air mixture is to be absorbed in an absorption tower using water as a solvent. Data for the absorption system is as follows Air flow rate -200 kg/h.

$$\label{eq:Liquid phase composition} \begin{array}{ll} -\text{Top} & -0.000013 \text{ kg NH}_3/\text{kg H}_2\text{O} \\ \\ -\text{Bottom} -0.0006 \text{ kg NH}_3/\text{kg H}_2\text{O} \\ \\ \text{Gas-phase composition} & -\text{Top} & -0.0044 \text{ kg NH}_3/\text{kg inert gas} \\ \\ -\text{Bottom} -0.0084 \text{ kg NH}_3/\text{kg inert gas} \end{array}$$

Calculate flow rate of water entering the absorption tower.

- (e) State and explain Fick's law of diffusion.
- (f) Draw the feed line at different feed condition for distillation.

3. Attempt any TWO:

 $8 \times 2 = 16$

(a) The vapour pressures of n-hexane & n-octane are given below. Obtain an empirical relation between y and x for this system at a constant pressure of 101.325 kPa.

T °C	68.7	79.4	93.3	107.2	121.1	125.6
P _A ° kPa	101.3	136.6	197.3	283.9	399.9	455.9
P _B ° kPa	16.1	23.1	37.1	57.8	87.2	101.3

With the help of empirical equation generate VLE data and construct a plot of $x \ v/s \ y$.

17648 [3 of 4]

(b) A liquid mixture containing 40 mole % methanol & 60 mole% water is fed to a differential distillation at atmospheric pressure, with 60 mole% of the liquid is distilled. Find the composition of the composited distillate of the residue. Equilibrium data:

Х	0.05	0.1	0.2	0.3	0.4	0.5
у	0.27	0.42	0.57	0.66	0.73	0.78

(c) A feed containing 50 mole% hexane & 50 mole% octane is fed to a pipe still through a pressure reducing valve and then into a flash separator. The vapour and liquid leaving the separator are assumed to be in equilibrium. If 50 mole% of the feed is vapourised, find the composition of the top & bottom products. The equilibrium data for the system is given below:

Х	1	0.69	0.4	0.192	0.045	0
у	1	0.932	0.78	0.538	0.1775	0

4. (A) Attempt any THREE:

 $4 \times 3 = 12$

- (a) Write down the equations for steady state equimolar counter diffusion for gases.
- (b) Distinguish between Distillation & Extraction.
- (c) Draw 3 stage mixes-settles arrangement in Extraction.
- (d) What are the different factors on which rate of drying depends?

(B) Attempt any ONE:

 $6 \times 1 = 6$

- (a) Explain in brief with neat sketch Swenson Walker Crystallizer.
- (b) Draw rate of drying curve and state significance of each curve segment.

P.T.O.

17648 [4 of 4]

5. Attempt any FOUR:

 $4 \times 4 = 16$

- (a) Draw the Tray Dryer and write its working.
- (b) Draw any four type of packings which are used in packed column.
- (c) Write down the selection criterion of solvent used in Extraction.
- (d) "Optimum Reflux Ratio for distillation is an economic approach". Discuss.
- (e) Compare Bubble cap plate, sieve plate and valve plate.
- (f) Compute x-y data when $\alpha = 2.5$.

6. Attempt any TWO:

 $8 \times 2 = 16$

- (a) Write down steps involved in McCabe-Thiele method for calculating no. of theoretical plates.
- (b) Suggest with reason, suitable dryer of drying.
 - (i) Milk Powder
 - (ii) Wet Lumpy Solids
 - (iii) Free flowing material
 - (iv) Pharmaceutical Products.
- (c) Explain in detail Hydrodynamics of packed column.
