(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-15 EXAMINATION Model Answer

Subject code :(17646) Page **1** of **35**

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constantvalues may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-15 EXAMINATION Model Answer

Subject code :(17646) Page **2** of **35**

Q No.	Answer	Marks	Total
			marks
1 a	Attempt any three		12
1 A i)	Air Pollution: Air pollution is the introduction of particulates, biological	2	4
	molecules, or other harmful materials into Earth's atmosphere, causing		
	disease, death to humans, damage to other living organisms such as food		
	crops, or the natural or built environment.		
	Classification of Air Pollutant:	2	
	Gaseous pollutants :- SOx, NOx, CO		
	Particulate matter :- Cement dust, metal dust		
	Fumes :-Acid fumes, Welding fumes		
	Smoke : Smoke after burning fuel, Smoke after burning waste		
ii)	Chemical Characteristics Physical Characteristics and of waste water:	1/2	4
	i)Chemical oxygen demand(COD) ii) pH iii)Acidity or alkalinity iv) hardness	mark	
	v) Total carbon vi) Chlorine demand vii) Total dissolved solids	each	
	vii) Temperature viii) Turbidity ix) Odor x) Color	for any	
	Biological Characteristics of waste water: i) Biological oxygen demand	8	
	(BOD) ii) presence of pathogenic bacteria iii) toxicity to man iv) aquatic		
	organisms		
iii)	Pollutants from urea plant	1 mark	4
	Oil and grease	each	
	Ammonia	for any	
	• Fluorides	four	
	Phosphate		

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-15 EXAMINATION Model Answer

Subject code :(17646) Page **3** of **35**

_	• NaOH			
	• Arsenic			
)	Solid waste: Solid waste me	ans any garbage, refuse, sludge from a wastewater	1	4
	treatment plant, water suppl	y treatment plant, or air pollution control facility		
	and other discarded material	s including solid, liquid, semi-solid, or contained		
	gaseous material, resultin	g from industrial, commercial, mining and		
	agricultural operations, and	from community activities, but does not include		
	solid or dissolved materials i	n domestic sewage, or solid or dissolved materials	3	
	in irrigation return flows or i	ndustrial discharges that are point sources.		
	Classification of solid waste			
	Types	Example of sources		
	Food wastes	Animal, fruits and vegetable residues resulting		
		from the handling and preparation, cooking and		
		eating of foods		
	Rubbish	1.cobustible papers, plastics, leather, cardboard,		
		wood, rubber etc. 2. Non-combustible glass,		
		aluminium cans ,crockery, tin cans , dirt,		
		construction wastes.		
	Ashes and residue	Material remaining from the burning of wood,		
		coal, and coke and other combustible wastes in		
		homes, stores, industrial and municipal		
		facilities for the purpose of heating and		
		cooking		
	Demolition and	Wastes from construction, remoulding,		
	construction waste	repairing of residential, commercial and		

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-15 EXAMINATION Model Answer

Subject code :(17646) Page **4** of **35**

		1.1	1	
		industrial buildings		
	Special waste	1.street sweepings. 2.road side litter from		
		municipal litter containers. 3. Dead animals		
	Treatment plant waste	From water, wastes water and industrial waste		
		treatment plants		
	Hazardous wastes	Chemical		
		Biological		
		Flammable		
		explosive		
	Agricultural wastes	Planting		
		Harvesting of crops, fields etc.		
1b	Attempt any one			6
1 B i)	Cyclone separator		2	6
	Construction			
	It consists of rectangular i	inlet for dust laden gas. Inlet is attached to the		
	cylinder having inverted con	ne at the bottom to collect dust particles. Out let is		
	provided to discharge dust	particles. Out let for clean gas is provided at the		
	top. Outlet pipe is extended	well below inlet of gas to avoid short circuiting of		
	gas flows. Cyclone is not ha	ving any moving part.		
	Working			
	A dust laden gas enters in a	cyclone separator takes spiral motion. It utilizes a		
	centrifugal force generated	by spinning gas stream to separate particle matter		
	from the gas. The centrifug	gal force on a particles in spinning gas stream is		
	much greater than gravity, t	here for it is effective in removing small particles.	2	
	The gas spirals downwards	to the bottom of the cone and at, and at the bottom		
	the gas flow reverses to for	m an inner vortex which leaves through the outlet		
L	l			

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-15 EXAMINATION Model Answer

Subject code :(17646) Page **5** of **35**

pipe. Cyclone separator is used to separate gas-solid,	gas-liquid in Cement	
industry, Oil refinery, Petrochemical Plant, Power plan	nts, and Metallurgical	
Industry etc.		
Dust! Dist	2	
ii) 3R principle		6
Reuse: In today's world use and through materials is	increasing and hence 2	
solid waste. Instead of throwing that material or item if it	t is used again, energy	
and environment can be saved. Solid waste generation a	lso will be reduced. In	
industry various boxes, cans, pallets etc are used for ma	aterial handling. These	
can be used again for same purpose.		
e.g. Catalyst drums can be used again to fill catalyst.		
e.g. Catalyst drums can be used again to fill catalyst. Recycle: Recycling is a process to change materials (wa	aste) into new products	
Recycle : Recycling is a process to change materials (wa	e the consumption of 2	
Recycle: Recycling is a process to change materials (was to prevent waste of potentially useful materials, reduc	e the consumption of 2 air pollution (from	

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-15 EXAMINATION Model Answer

Subject code :(17646) Page **6** of **35**

t code :(17	040)						гау	e o oi 35
	comp	ared to plastic produ	iction. Recycl	ling is a key	component	of modern		
	waste	reduction and is th	ne third comp	ponent of th	e "Reduce,	Reuse, and		
	Recy	cle" waste hierarchy.	Recyclable m	aterials inclu	ıde many kir	nds of glass,		
	paper	, metal, plastic, textile	es, and electro	onics. In the	strictest sens	se, recycling		
	of a r	naterial would produc	e a fresh supp	oly of the sar	ne material-f	for example,		
	used	office paper would be	e converted in	nto new offic	e paper, or ι	ised foamed		
	polys	tyrene into new polyst	yrene.					
	e.g. P	lastic water bottles car	n be recycled	to get plastic	again.			
	Redu	ce: When you avoid	making garbag	ge in the first	place, you	lon't have to		
	worry	about disposing of v	vaste or recyc	cling it later.	Changing yo	our habits is	2	
	the k	ey - think about ways	you can redu	ice your was	te when you	shop, work		
	and p	play. There's a ton of	ways for you	to reduce w	aste, save yo	ourself some		
	time	and money, and be go	ood to the Ear	rth at the san	ne time. Buy	products in		
		Larger, economy-size			•	-		
	packa	iging and usually cost	less per ounce	e.				
	1	Jnnecessary use of pla	-		led in packing	g.		
2	Atter	npt any four						16
2 a)		B air quality standar	ds:				1 mark	4
	Sr.	Pollutant	Total	Concentrati			each	
	No		Weighted	Ambient A	1			
			Average	Industrial,	Ecologica			
				Residenti al, Rural	sensitive			
				and other	area			
				area				
	1	Sulphur dioxide	Annual*	50	20			
		$(SO2) \mu g/m^3$	24 hours**	80	80			
	2	Nitrogen	Annual*	40	30			
		dioxide(NO2)	24 hours**	80	80			
		$\mu g/m^3$						

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-15 EXAMINATION Model Answer

Subject code :(17646) Page **7** of **35**

	3	Particulate matte	er Annual*	60		60			
		(size <10µm		100)	100			
		$\mu g/m^3$	2 i nodis	100	,	100			
	4	Particulate matte	er Annual*	40		40			
		(size <2.5µm		60		60			
		$\mu g/m^3$							
	7	Carbon monoxid	e 8 hours**	02		02			
		mg/m^3	1 hour**	04		04			
b)	Drink	king water quality	standards speci	ified					4
	Sr.	constituent	Recommended	l		ermissible			
	No.		max.		concen	tration in 1	mg/l	1 mark	
			concentration i	in				each	
			mg/l					for	
		Physical:						any	
	1	Turbidity(units)	5		25			four	
	2	Color(units)	5		50			points	
		Chemical							
	3	pH, units	7-8.5		6.5 or	9.2			
	4	Total solids	500		1500				
	5	Calcium	75		200				
	6	Magnesium	50		150				
	7	Iron	0.3		1.0				
	8	Copper	1.0		1.5				
	9	Sulphate	200		400				
	10	Phenols	0.001		0.002				
		Toxic							
	11	Arsenic	-		0.2				
	12	Chromium	-		0.05				
	13	Cyanide	-		0.01				
	14	Lead	-		0.1				
c)	Sludg	ge thickening							4
	Thic	kening is often the	first sten in a s	ludo	e treatm	ent nroces	s Sludge from		
		<u> </u>	•	Ū		•	· ·		
	prima	ry or secondary	clarifiers may	be s	stirred (often afte	er addition of	2	
	clarify	ying agents) to form	m larger, more	rapio	dly settli	ing aggreg	ates. Primary		
	sludge	e may be thickened	d to about 8 or	r 10	percent	solids, w	hile secondary		
		e may be thickened			-		·		
			F						

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-15 EXAMINATION Model Answer

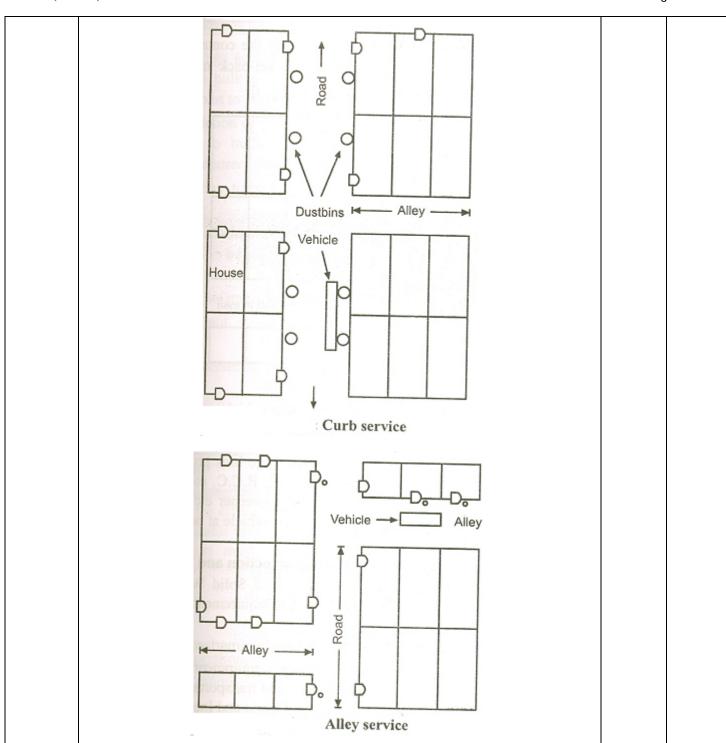
Subject code :(17646) Page **8** of **35**

a clarifier with the addition of a stirring mechanism. Thickened sludge with		
less than ten percent solids may receive additional sludge treatment while		
liquid thickener overflow is returned to the sewage treatment process.		
Sludge dewatering		
Water removal is the primary means of weight and volume reduction, Air-		
drying and composting may be attractive to rural communities, while limited		
land availability may make aerobic digestion and mechanical dewatering	2	
preferable for cities, and economies of scale may encourage energy recovery		
alternatives in metropolitan areas. Sludge dewatering is the separation of a		
liquid and solid phase whereby, generally, the least possible residual moisture		
is required in the solid phase and the lowest possible solid particle residues are		
required in the separated liquid phase.		
Importance of dewatering of sludge in sludge management:		
1. The costs for trucking sludge to the ultimate disposal site become		
substantially lower when the volume is reduced by dewatering		
2. Dewatered sludge is generally easier to handle than thickened or liquid		
sludge.		
3. Dewatering is required normally prior to the incineration of the sludge to		
increase the calorific value by removal of excess moisture.		
4. Dewatering is required before composting to reduce the requirements for		
supplemental bulking agents.		
5. In some cases removal of excess moisture may be required to render sludge		
odorless and non putrescible		
6. Dewatering is required prior to land filling sludge to reduce leachate		
production of the landfill site.		
Solid waste collection from house to house :	4	4

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-15 EXAMINATION Model Answer

Subject code :(17646) Page **9** of **35**


Types:		
• (Curb service	
• A	Alley service	
• \$	Set-out service	
• \$	Set-out set-back service	
• I	Back-yard service	2
i)	Curb service: the refuse containers placed at the curb on the	
	scheduled day by house-owner are collected by workers from	
	refuse vehicle and emptied into vehicle.	
ii)	Alley service: this method is similar to the previous one, except	
	that the containers are placed at the alley line instead of curb.	
iii)	Set-out service: the workers with refuse vehicles collect the	
	containers from individual houses and empty them in refuse	
	vehicles. The empty containers are collected by the house – owners.	
iv)	Set-out set-back service: set-out men collect the containers from	
	individual houses and empty them in refuse vehicle. Set- back men	1
	return the empty containers to house owner.	
v)	Back-yard service: the workers with refuse vehicle carry bin, wheel	
	barrow etc. to the back yard and empty the refuse containers in it.	

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-15 EXAMINATION Model Answer

Subject code :(17646) Page **10** of **35**

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-15 EXAMINATION Model Answer

Subject code :(17646) Page **11** of **35**

t code :(1	010)	. 45	je ii oi s
	Set out men Vehicle → ↑ Set in men Property Set in men Set-back service		
	N. 1. 070044004		
e)	Need of ISO14001:	1 mark	4
	i) Environmental improvements	each	
	ii) Regulatory compliance	for any	
	iii) Improvement of corporate image	four	
	iv) Cost containment & cost saving		
	v) Competitive advantage		
	vi) Opening of international market & partners		
	vii) Improvement in employee awareness about environment		
	viii) An ethical or social commitment		
3	Attempt any four		16
3 a)	Catalytic Incinerator		04
	The catalysts used for effective pollution control are the precious meta-	als, 02	
	primarily platinum and palladium or their alloys. These are arranged in suc	h a	
	way as to provide the maximum possible surface area for contact with the ga	ıs.	

3 b)

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-15 EXAMINATION Model Answer

Subject code :(17646) Page **12** of **35**

The catalyst is coated onto suitable elements such as metal ribbons, ceramic rods or alumina pellets. These elements are then packed into the Catalyst bed. A catalytic combustion unit consists of a reaction vessel or converter in which the catalyst is arranged in single or multiple fixed beds proceeded by a preheat section, if necessary. In the preheat section, only the gas stream is heated to the temperature required to support catalytic combustion. The preheated gas is then passed through the catalyst bed where the combustion occurs. To maintain the catalyst in an active state and to achieve complete combustion 02 about 1% excess oxygen is required. Hot clean gas Catalyst bed Pollutant gas Blower Preheat burner **Sources of air pollution:** 1 mark 04 each i) Natural sources: The natural sources of air pollution are volcanic eruptions for any releasing poisonous gases such as SO2, H2s and CO etc. forest fires, natural four organic and inorganic decays marsh gases, deflation of sand and dust, extraterrestrial bodies, cosmic dust, pollen grains of flowers, soil debris, comets and fungal spores.

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-15 EXAMINATION Model Answer

Subject code :(17646) Page **13** of **35**

	20% of air pollution.		
	iii) Transportation: Automobile exhaust release smoke and to a little extent		
	leads particles. The chief sources from automobiles are a) exhaust system b)		
	fuel tank c) Carburetor, d) crank case.		
	iv) Burning of fossil fuel and fires: The conventional sources of energy are		
	wood, coal and fossil fuels. The byproducts of burning of fossil fuel, wood,		
	and coal are nothing but poisonous gases such as CO, CH ₄ , SO ₂ , NO etc.		
	v) Deforestation: The deforestation by man for his own needs has disturbed		
	the balance of O2 and CO ₂ in atmosphere.		
	v) Increase in population: An increase in population leads to global warming		
	and emission of greenhouse gases.		
	vi) Agricultural activities: Various biocides used for agricultural purposes		
	cause air pollution as it poisonous substances are carried away by wind.		
	vi) Solid waste disposal: Backyard burning and open burning of heaps of		
	solid wastes results in the emission of smoke and pollutants like NO, CO,CO ₂		
	etc		
	vii) Radioactive fallout: Nuclear reactions, nuclear weapon testing, chemical		
	processing plants, hospitals, research laboratories contribute radio nuclides		
	into air.		
	viii) Construction activities: During construction activity various pollutants		
	are emitted into the atmosphere.		
3 c)	Concept of BOD and COD		04
	BOD: - It is the amount of oxygen required to degrade organic waste present	02	

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-15 EXAMINATION Model Answer

Subject code :(17646) Page **14** of **35**

	in water by purely biological means.		
	The biological oxygen demand, ie, BOD in wastewater, is a measure of the		
	quantity of bio-organic substances in wastewater. These can be in the form of	0.0	
	fat, oils, carbohydrates and proteins. BOD also helps to determine the quantum	02	
	of organic chemicals contained in wastewater that are synthetic and		
	biodegradable.		
	COD: - It is the amount of oxygen required to degrade organic waste present		
	in water by purely chemical means.		
	COD can help gauge the quantum of both biodegradable and nonbiodegradable		
	organics. It is quick method to determine strength of waste in water.		
3 d)	Electrostatic Precipitator is the equipment that can be used for the control of	01	04
	dust fibers particles from process industries.		
	Working Principle: Electrostatic precipitation is a method of dust collection	03	
	that uses electrostatic forces, and consists of discharge wires and collecting		
	plates. A high voltage is applied to the discharge wires to form an electrical		
	field between the wires and the collecting plates, and also ionizes the gas		
	around the discharge wires to supply ions. When gas that contains an aerosol		
	(dust, mist) flows between the collecting plates and the discharge wires, the		
	aerosol particles in the gas are charged by the ions. The Coulomb force caused		
	by the electric field causes the charged particles to be collected on the		
	collecting plates, and the gas is purified.		
3 e)	Role of pollution control board (MPCB)	1 mark	04
	i)To promote cleanliness of streams and wells in different areas of theStates	each	
	through prevention, control and abatement of water pollution;	for any	
	ii)To improve the quality of air and to prevent, control or abate airpollution in	four	
	the country;		

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-15 EXAMINATION Model Answer

Subject code :(17646) Page **15** of **35**

- iii) Advise the Government on any matter concerning prevention and control of water and air pollution and improvement of the quality of air;
- iv)Plan and cause to be executed a nation-wide programme for the prevention, control or abatement of water and air pollution;
- v)Plan and organize training of persons engaged in programmes for prevention, control or abatement of water and air pollution;
- vi)Organize through mass media, a comprehensive mass awarenessprogramme on prevention, control or abatement of water and airpollution;
- vii)Collect, compile and publish technical and statistical data relating towater and air pollution and the measures devised for their effective prevention, control and abatement;
- viii) Prepare manuals, codes and guidelines relating to treatment and disposal of sewage and trade effluents as well as for stack gas cleaning devises, stacks and ducts;
- ix)Disseminate information in respect of matters relating to water and airpollution and their prevention and control;
- x)Lay down, modify or annul, in consultation with the State Governmentconcerned, the standards for stream or well, and lay down standards forquality of air;
- xi)Establish or recognize laboratories to enable the Board to perform;
- xii)Perform such other functions as and when prescribed by theGovernment of India.
- xiii)To issue directions to any industry, local bodies, or other authority forviolation of the notified general emission and effluent standards, andrules relating to hazardous waste, bio-medical waste, hazardouschemicals, industrial solid waste, municipal solid waste including plastic waste under the

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-15 EXAMINATION Model Answer

Subject code :(17646) Page **16** of **35**

`			3
	Environment (Protection) Rules, 1986		
3 f)	Methods used for water sampling are:		04
	Grab Sampling	1	
	Composite sampling		
	Grab Sampling: It is sampling of waste water is a single sample taken at		
	specific time.	1	
	Advantages: It is useful to determine effects of extreme conditions.		
	Grabsamples do provide an immediate sample, and are thus to be preferred for		
	some tests.	2	
	Disadvantages: It is showing only prevailing conditions at the time of	2	
	sampling. Grab samples are most appropriate to small plants with low flows.		
	Composite sampling: A composite sample, also known as an integrated		
	sample, is a sample which consists of a mixture of several individual grab		
	samples collected at regular and specified time periods, each sample taken in		
	proportion to the amount of flow at that time.		
	Advantages: It takes into account changes in flow and other characteristics of		
	the water over time. Hence provide meaningful data.		
	Disadvantages: Composite samples cannot be used for tests of water		
	Characteristics which change during storage (such as dissolved gases) or of		
	water characteristics which change when samples are mixed together (such as		
	pH.)		
4a	Attempt any three		12
4.a)(i)	Trickling filter	02	04
	A trickling filter is used for treatment of waste water. It consists of a bed of		
	highly permeable media on whose surface a mixed population of		
	microorganisms is developed as a slime layer. Passage of wastewater through		
	the filter causes the development of a gelatinous coating of bacteria, protozoa		

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-15 EXAMINATION Model Answer

Subject code :(17646) Page **17** of **35**

i couc .(17		. 49	C 17 01 33
	and other organisms on the media. With time, the thickness of the slime layer		
	increases preventing oxygen from penetrating the full depth of the slime layer.		
	In the absence of oxygen, anaerobic decomposition becomes active near the		
	surface of the media		
	sprinkler filter feed pipe filter support collection	02	
	Sprinkler: To sprinkle waste water on filter Filter: To hold biological slime		
	Feed pipe: Inlet for waste water		
	Filter support: To hold filter media		
	Effluent channel: to take out treated waste water		
4.a)(ii)	Disposal method of solid waste are i) open dumping ii) Sanitary land filling	1	4
	iii) Incineration iv) Composting		
	Explanation of any one method (Incineration and composting is explained	2	
	else where in the solution. Sanitary Landfill explain as follows)		
	Sanitary landfilling is an engineered operation, designed and operated		
	according to acceptable standards. It may be defined as a method of disposing		
	refuse on land without creating nuisances or hazards to public health or safety.		
	The operation is carried out without environmental damage and in areas		
		1	

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-15 EXAMINATION Model Answer

Subject code :(17646) Page **18** of **35**

already spoiled or in need of restoration. In sanitary landfill operation, refuse is spread and compacted in this layers within a small area. This layered structure is usually referred to as a cell. To allow for proper compaction, the cell depth should not exceed about 2 meters. The cell is then covered with a layer of soil which is spread uniformly and then compacted. To provide as adequate seal the 'cover' should normally be at least 20 cm thick. If the refuse includes large irregular objects it may be necessary to increase the thickness of the cover. On the other hand, a cover thickness of less than 15 cm may be satisfactory if the refuse has been pulverized. When a number of cells reach the final desired elevation, a final cover of about one meters of earth is placed and it is again compacted. This final cover is necessary to prevent rodents from burrowing into the refuse. The following figure is shows the cross-sectional area of a typical sanitary landfill. Final cover Working face Bulldozer 1 Intermediate Original ground cell Daily cover 4.a)(iii) Working of fabric filter 04 Dust-laden gas or air enters the fabric filter through hoppers (large funnelshaped containers used for storing and dispensing particulate) and is directed 02 into the fabric filter compartment. The gas is drawn through the bags, either on

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-15 EXAMINATION Model Answer

Subject code :(17646) Page **19** of **35**

the inside or the outside depending on cleaning method, and a layer of dust accumulates on the filter media surface until air can no longer move through it. When sufficient pressure drop (delta P) occurs, the cleaning process begins. Cleaning can take place while the fabric filter is online (filtering) or is offline (in isolation). When the compartment is clean, normal filtering resumes. Fabric filter are very efficient particulate collectors because of the dust cake formed on the surface of the bags. The fabric provides a surface on which dust collects through the following four mechanisms: Inertial collection - Dust particles strike the fibers placed perpendicular to the 02 gas-flow direction instead of changing direction with the gas stream. Interception - Particles that do not cross the fluid streamlines come in contact with fibers because of the fiber size. Brownian movement- Sub micrometer particles are diffused, increasing the probability of contact between the particles and collecting surfaces. Electrostatic forces - The presence of an electrostatic charge on the particles and the filter can increase dust capture. A combination of these mechanisms results in formation of the dust cake on the filter, which eventually increases the resistance to gas flow. The filter must be cleaned periodically.

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-15 EXAMINATION Model Answer

Subject code :(17646) Page **20** of **35**

	Dusty gas in Larger particle separation by centrifugal action		
4.a)(iv)	Business Benefits of ISO14000:	½ mark	04
	1. Efficiency, discipline and operational integration with ISO 9000	each for any	
	2. Greater employee involvement in business operations with a more	8	
	motivated workforce		
	3. Easier to obtain operational permits and authorizations		
	4. Assists in developing and transferring technology within the company		
	5. Helps reduce pollution		
	6. Fewer operating costs		
	7. Savings from safer workplace conditions		
	8. Reduction of costs associated with emissions, discharges, waste handling,		
	transport & disposal		
	9. Improvements in the product as a result of process changes		
	10. Safer products		
	11. Minimizes hazardous and non-hazardous waste		
	12. Conserves natural resources - electricity, gas, space and water with		

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-15 EXAMINATION Model Answer

Subject code :(17646) Page **21** of **35**

t code :(1	7040)	Pa	ge Z I oi
	resultant cost savings		
	13. Prevents pollution and reduces wastage		
	14. Demonstrates to customers that the firm has met environmental		
	expectations.		
	15. Meets potential national and international government purchasing		
	requirements.		
	16. Delivers profits from marketing "green" products		
	17. Provides a competitive marketing tool		
	18. Improves international competitiveness		
	19. Improves the organization's relationship with insurance companies		
	20. Elimination of costs associated with conformance to conflicting national		
	standards		
	21. Process cost savings by reduction of material and energy input		
	22. Satisfying investor / shareholder criteria		
	23. Helps reduce liability and risk		
	24. Improved access to capital		
4b	Attempt any one		6
4.b)(i)	The necessity of recovery of chemical from black liquor:	02	06
	i) The spent cooking liquor commonly called black liquor is treated to recover	mark each	
	its chemical content for reuse and its organic content as heat.	for	
	ii) The dark color of the effluent is due to the lining compounds which are not	any three	
	easily biodegradable and hence it imparts persistent color to the receiving	tince	
	water streams and inhibits photosynthesis and other natural self-purification		
	process of the water streams.		
	iii) The immediate oxygen demand of the effluent brings about depletion of		
	oxygen of the receiving stream create adverse effects to aquatic life.		
	iv) The chemicals present in the effluent, e.g. sulfites, phenols, free chlorine,		
]	

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-15 EXAMINATION Model Answer

Subject code :(17646) Page **22** of **35**

5 5 a)	Attempt any four Effecty of air pollution on health:		16 4
•	next audit.		17
	plan is evolved. The feedback from the follow up action is provided for the		
	review and comments based on which the final report is prepared, and action		
	Post Audit Activities: In the post audit phase, the draft report is circulated for		
	management.		
	various persons are interviewed and tentative findings are discussed with the		
	sampling and tests are made as necessary, relevant records are reviewed,		
	interact staff interact throughout, a thorough inspection is made in the field,		
	On site Audit Activities: In the on site phase, it is ensured the audit team and		
	preparation of a background note.		
	concerned aware of the objectives and scope of environmental audit and		
	of the audit team, setting out of terms of reference and priorities, making all	02	
	Pre AuditActivities : The activities in the pre audit phase cover the nomination		
	at site and post-audit phases.		
	Environmental Audit procedure involve following activities viz., the pre-audit,	02	
	activities.	02	
	involving interviews with personnel and inspection of facilities and post-visit		
	improvement. These phases cover pre audit preparation, a site visit normally		
	and formulation of conclusions, including identification of aspects needing	02	
	phases, namely collection of information, evaluation of information collected		
	The generalapproach followed for environmental audit overs three main		
4.b)(ii)	Environment Audit Procedure:		06
	aquatic life.		
	v) The settleable materials present may sink to the bottom and interfere with		
	methyl mercaptan are harmful to fauna and flora of the receiving water.		

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-15 EXAMINATION <u>Model Answer</u>

Subject code :(17646) Page **23** of **35**

1) Sulfur dioxide (SO2): SO₂ is an irritant gas which can easily get oxidized to sulfur trioxide 2 and in the presence of water, these can form sulfurous and sulfuric acid. The health problems related to the mucous membrane and respiratory tract are due to sulfate aerosols. Chronic effects of SO₂ include increased probabilities of bronchitis, "colds" of long duration and suppression of immune system. 2) Hydrocarbons: The health effects of hydrocarbons have been noted in occupational tetra methyl lead, benzene, exposures to etc. Hydrocarbon vapors can cause health effects. Inhaling formaldehyde can cause irritation. It is a major contributor to eye and respiratory irritation caused by photochemical smog. 2 3) Carbon monoxide: Carbon monoxide has a great affinity for the hemoglobin in the blood and combines with blood to form carboxyhemoglobin. This reduces the ability of hemoglobin to carry oxygen to the body tissues.

4) Oxide of Nitrogen:

NO reduces the oxygen carrying capacity of blood.

Effecty of air pollution on material:

- 1) Five mechanism of deterioration have been attribbuted to air poliiution
- 2) Solid partical of large enough size that are travelling at a hgh enough speed can cause deterioration by abrasion.
- 3) Small liquid and solid partical that settle on exposed surface do not cause more than aesthetic deterioration.
- 4) In presence of water as a medium the pollutant react with the surface

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-15 EXAMINATION Model Answer

Subject code :(17646) Page **24** of **35**

	by solubilization and oxidation / reduction reaction.		
b)	Incineration	4 marks	4
	• Incineration destroys harmful microorganisms and toxic substances	for any	
	often contained in biomedical waste. It is also the method for	one	
	destroying recognizable human anatomical remains, reports		
	Environmental Health and Safety at the University of California. The		
	disadvantage of this method is that it releases persistent pollutants to		
	the air, including dioxin and toxic metals such as mercury, reports the		
	Center for Environmental Studies at Virginia Commonwealth		
	University. Medical waste incinerators are a major contributor of		
	dioxin pollution to the environment		
	Steam Sterilization		
	Steam sterilization is a process of submitting biomedical waste to high		
	pressure saturated steam at a minimum temperature of 249.8 degrees F		
	for at least 20 minutes before its disposal. This treatment uses a		
	machine called an autoclave. Although most pathogens such as bacteria		
	and viruses are destroyed at high temperatures and pressures, some		
	resistant strains of the microorganism that causes Creutzfeldt-Jakob		
	disease, a brain degenerative disorder, can survive steam sterilization		
	Chemical Decontamination		
	According to Environmental Health and Safety at University of		
	California, chlorine, quaternary ammonium and phenolic compounds		
	can treat liquid or semi-liquid biomedical waste. However, this method		
	brings environmental disadvantages when used in excess to treat bio-		
	contaminated waste water. Quaternary ammonium compounds, or		
	quats, are hazardous to most wildlife, especially fish and other aquatic		

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-15 EXAMINATION Model Answer

Subject code :(17646) Page **25** of **35**

	creatures.		
c)	Activated sludge process	02	4
	Principle a higherical westewater treatment process which speeds up weste		
	Principle - a biological wastewater treatment process which speeds up waste		
	decomposition. Activated sludge is added to wastewater, and the mixture is		
	aerat-ed and agitated. After a certain amount oftime, the activated sludge is		
	allowed to settleout by sedimentation and is disposed of (wasted) or reused		
	(returned to the aeration tank)	02	
	Working		
	A basic activated sludge process consists of several interrelated components:		
	An aeration tank where the biological reactions occur		
	An aeration source that provides oxygen and mixing		
	• A tank, known as the clari-fier, where the solids settle and are separated from		
	treated wastewater		
	• A means of collecting the solids either to return them to the aeration tank,		
	(return activated sludge [RAS]), or to remove them from the process (waste		
	activated sludge [WAS]).		
	Aerobic bacteria thrive as they travel through the aera- tion tank. They		
	multiply rapidly with sufficient food and oxygen. By the time the waste		
	reaches the end of the tank (between four to eight hours), the bacteria has used		
	most of the organic matter to produce new cells. The organisms settle to the		
	bottom of the clarifier tank, separating from the clearer water. This sludge is		
	pumped back to the aeration tank where it is mixed with the incoming		
	wastewater or removed from the system as excess, a process called wasting.		
	The relatively clear liquid above the sludge, the supernatant, is sent on for		
	further treatment as required		

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-15 EXAMINATION Model Answer

Subject code :(17646) Page **26** of **35**

•			
d)	Principle:		4
	Environmental management refers to those activities which enhance beneficial	02	
	links and minimise adverse links among resources systems and their		
	environments, and which seek to attain desirable environmental system states,		
	in response to community perceptions and desires, under prevailing socio-	02	
	economic and technological conditions.		
	Objectives:		
	(1) Reduction of wastes and improvement of recycling rate		
	(2) Promotion of energy and resource conservation		
	(3) Proper control of chemical substances		
	(4) Development of environmentally benign products		
e)	Sewage - Sewage pollutants include domestic and hospital wastes, animal and	1 mark	4
	human excreta etc. The sewage let off causes oxygen depletion, spread of	each	
	diseases/epidemics.	for any	
		four	
	Metals - Metals like mercury are let off into water bodies from industries.		
	Heavy metals like mercury cause poisoning and affect health causing		
	numbness of tongue, lips, limbs, deafness, blurred vision and mental disorders.		
	Lead - Industrial wastes also lead to Lead pollution. If lead enters the human		
	body system in higher quantities it affects RBCs, bone, brain, liver, kidney and		
	the nervous system. Severe lead poisoning can also lead to coma and death.		
	Cadmium - Source for cadmium pollution is industries, fertilizers. Cadmium		
	gets deposited in visceral organs like liver, pancreas, kidney, intestinal		
	, , , , , , , , , , , , , , , , , , , ,		

THE THE PARTY OF T

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-15 EXAMINATION Model Answer

Subject code :(17646) Page **27** of **35**

mucosa etc. Cadmium poisoning causes vomiting, headache, bronchial pneumonia, kidney necrosis, etc.

Arsenic - Fertilizers are source for arsenic pollution. Arsenic poisoning causes renal failure and death. It also causes liver and kidney disorders, nervous disorders and muscular atrophy, etc.

Agrochemicals like DDT - It is a pesticide. Accumulation of these pesticides in bodies of fishes, birds, mammals and man affects nervous system, fertility and causes thinning of egg shells in birds.

Bacteria, **Viruses and Parasites** - These are sourced from human and animal excreta, they are infectious agents.

Plastics, Detergents, Oil and Gasoline - They are a waste from industries, household and farms. They trigger organic pollution and is harmful to health.

Inorganic Chemicals - Inorganic chemicals like acids, salts, metals are a result of industrial effluents, household cleansers, and surface run-off and are injurious to health.

Radioactive Materials - Mining and ores processing, power plants, weapons production and natural give rise to radioactive pollution like that of uranium, thorium, cesium, iodine and radon. Radioactive pollution causes serious health diseases to all organisms.

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-15 EXAMINATION Model Answer

Subject code :(17646) Page **28** of **35**

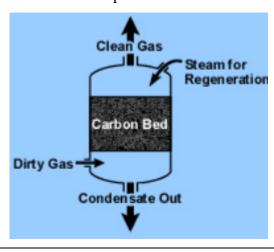
	Sediments - Sedimentation of soil, silt due to land erosion and deposition		
	causes disruption in ecosystem.		
	Plant Nutrients - Nutrients like nitrates, phosphates, and ammonium are let off		
	from agricultural and urban fertilizers, sewage and manure. Excess of nutrients		
	cause eutrophication and affect the ecosystem.		
	Animal Manure and Plant Residues - These substances in water causes		
	increased algal blooms and microorganism population. This increases oxygen		
	demand of water, affecting aquatic ecosystem. This is introduced into water		
	due to sewage, agricultural run-off, paper mills, food processing etc.		
	Thermal Pollution - Temperature changes of water caused due to using water		
	as cooling agent in power plants and industries causes increase in water		
	temperature affecting the aquatic life.		
f)	Characteristics of waste water:		4
	Physical characteristics:	01	
	1.Total Solids (TS): All the matter that remains as residue upon evaporation at		
	103°C to 105°C.		
	2. Settleable solids: Settleable solids are measured as ml/L, which is an		
	approximate measure of the sludge that can be removed by	02	
	primary sedimentation.		
	3. Suspended solids (SS) and Filterable solids (FS).		
	Chemical Characteristics:		
	Points of concern regarding the chemical characteristics of wastewater are:		

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-15 EXAMINATION Model Answer

Subject code :(17646) Page **29** of **35**

	-Organic matter	01	
	-Measurements of organic matter		
	-Inorganic matter		
	-Gases		
	-рН		
	Biological Characteristics:		
	The main microorganisms of concern in wastewater treatment are Bacteria,		
	Fungi, Algae, Protozoa, Viruses, and pathogenic microorganisms groups.		
56	Attempt any four		16
6 a)	Grab Sampling:		4
	Wastewater sampling is generally performed by one of two methods, grab	02	
	sampling or composite sampling. Grab sampling is just what it sounds like; all		
	of the test material is collected at one time. As such, a grab sample reflects		
	performance only at the point in time that the sample was collected, and then		
	only if the sample was properly collected. Composite sampling consists of a		
	collection of numerous individual discrete samples taken at regular intervals		
	over a period of time, usually 24 hours. The material being sampled is		
	collected in a common container over the sampling period. The analysis of this	02	
	material, collected over a period of time, will therefore represent the average		
	performance of a wastewater treatment plant during the collection period.		
	Freez out Sampling:		
	The vapours and gases that condensed at low temprature are removed from		
	sample airstream by passage through a vessel immersed in a refrigeration		
	liquid.		
	Usually forming a sampling train in which two or three coolent liquid		
	progressively lower the air temprature in its passage through the system		
b)	Fixed bed absorber		4


(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-15 EXAMINATION Model Answer

Subject code :(17646) Page **30** of **35**

1. When a gas or vapor is brought into contact with a solid, part of it is taken up by the solid. The molecules that disappear from the gas either enter the inside of the solid, or remain on the outside attached to the surface. The former phenomenon is termed absorption (or dissolution) and the latter adsorption.

- The most common industrial adsorbents are activated carbon, silica gel, and alumina, because they have enormous surface areas per unit weight.
- 3. Activated carbon is the universal standard for purification and removal of trace organic contaminants from liquid and vapor streams. Carbon adsorption systems are either regenerative or non-regenerative.
 - Regenerative system usually contains more than one carbon bed. As one bed actively removes pollutants, another bed is being regenerated for future use.
 - **Non-regenerative systems** have thinner beds of activated carbon. In a non-regenerative adsorber, the spent carbon is disposed of when it becomes saturated with the pollutant.

02

02

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-15 EXAMINATION Model Answer

Subject code :(17646) Page **31** of **35**

			_
c)	The objective of primary treatment is the removal of settleable organic and	02	4
	inorganic solids by sedimentation, and the removal of materials that will float		
	(scum) by skimming. Approximately 25 to 50% of the incoming biochemical		
	oxygen demand (BOD ₅), 50 to 70% of the total suspended solids (SS), and		
	65% of the oil and grease are removed during primary treatment. Some		
	organic nitrogen, organic phosphorus, and heavy metals associated with solids		
	are also removed during primary sedimentation but colloidal and dissolved		
	constituents are not affected.		
	The primary method include:		
	1. Screening		
	2. Comminutin		
	3. Grit removal	02	
	4. Sedimentation		
	Sedimentation:		
	Primary sedimentation tanks or clarifiers may be round or rectangular		
	basins, typically 3 to 5 m deep, with hydraulic retention time between 2		
	and 3 hours. Settled solids (primary sludge) are normally removed		
	from the bottom of tanks by sludge rakes that scrape the sludge to a		
	central well from which it is pumped to sludge processing units. Scum		
	is swept across the tank surface by water jets or mechanical means		
	from which it is also pumped to sludge processing units.		
d)	Pollutants from urea plant	2	4
	Oil and grease		
	Ammonia		
	1	1	1

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-15 EXAMINATION Model Answer

Subject code :(17646) Page **32** of **35**

t code :(1	, , , , , , , , , , , , , , , , , , ,		je 32 of
	• Phosphate		
	• NaOH		
	• Urea	2	
	From above pollutants urea and ammonia are causing serious health effects of		
	human.		
	1. Urea can be irritating to skin, eyes, and the respiratory tract. Repeated or		
	prolonged contact with urea in fertilizer form on the skin may cause dermatitis.		
	2. The substance decomposes on heating above melting point, producing toxic		
	gases, and reacts violently with strong oxidants, nitrites, inorganic chlorides,		
	chlorites and perchlorates, causing fire and explosion.		
	3. Ammonia is irritating and corrosive. Exposure to high concentrations of		
	ammonia in air causes immediate burning of the nose, throat and respiratory		
	tract. This can cause bronchiolar and alveolar edema, and airway destruction		
	resulting in respiratory distress or failure.		
e)	Total dissolved solids (TDS)	02	4
	TDS is a measure of the combined content of all inorganic and organic		
	substances contained in a liquid in molecular, ionized or micro-granular		
	(colloidal sol) suspended form. Generally the operational definition is that the		
	solids must be small enough to survive filtration through a filter with two-		
	micrometer (nominal size, or smaller) pores. Total dissolved solids are		
	normally discussed only for freshwater systems, as salinity includes some of		
	the ions constituting the definition of TDS. The principal application of TDS is		
	in the study of water quality for streams, rivers and lakes, although TDS is not		
	generally considered a primary pollutant (e.g. it is not deemed to be associated	02	
	with health effects) it is used as an indication of aesthetic characteristics of	02	
	drinking water and as an aggregate indicator of the presence of a broad array		
	5		

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-15 EXAMINATION Model Answer

Subject code :(17646) Page **33** of **35**

	of chemical contaminants.		
	Total suspended solids (TSS)		
	TSS is a water quality parameter used for example to assess the quality of		
	wastewater after treatment in a wastewater treatment plant. It is listed as a		
	conventional pollutant in the U.S. Clean Water Act.[1] This parameter was at		
	one time called non-filterable residue (NFR), a term that refers to the identical		
	measurement: the dry-weight of particles trapped by a filter, typically of a		
	specified pore size. However, the term "non-filterable" suffered from an odd		
	(for science) condition of usage: in some circles (Oceanography, for example)		
	"filterable" meant the material retained on a filter, so non-filterable would be		
	the water and particulates that passed through the filter. In other disciplines		
	(Chemistry and Microbiology for examples) and dictionary definitions,		
	"filterable" means just the opposite: the material passed by a filter, usually		
	called "Total dissolved solids" or TDS. Thus in chemistry the non-filterable		
	solids are the retained material called the residue .		
f)	Component	1 mark	4
	1- Waste generation.	each	
	Solid wastes include all solid or semisolid material that has no longer	for any	
	considered of sufficient value to be retained.	four	
	2- On-site handling, storage and processing.		
	On-site handling refers to the activities associated with the handling		
	of solid wastes until they are placed in the containers used for their		
	storage before collection. It may also be required to move loaded		
	containers to the collection point and to return the empty containers to		
	the point where they are stored between collections.		
	The factors that mast be considered in the on-site storage of solid		

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-15 EXAMINATION Model Answer

Subject code :(17646) Page **34** of **35**

wastes include 1- Type of containers. 2- The container location. 3-Public health and aesthetics. 4- The collection method.

- 3- Collection.:collection is presented in four parts:
 - 1- The types of collection services.
 - 2- The types of collection systems.
 - 3- An analysis of collection system.
 - 4- The general methodology involved in setting up collection routs.
- 4- Transfer and transport.

It is the collection systems in which the containers used for the storage of wastes remain at the point of waste generation except when moved for collection. There are two types of stationary container systems: 1) self-loading collection vehicles equipped with compactors.

- 2) Manually loaded vehicles.
- 5- Processing and recovery.
 - Separation of solid waste could be at the source or at the final stage before disposal of the solid waste.
 - Chemical and biological transformation processes are used to reduce the volume and weight of waste requiring disposal.
 - It is very important to separate the recyclable materials to reduce the volume of the waste disposal.
- 6- Disposal.
 - **Disposal** on or in the earth mantel is the viable method for the longterm handling solid wastes. Sanitary lanfilling is the method of disposal

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-15 EXAMINATION Model Answer

Subject code :(17646)	Page 35 of 35
used most commonly for municipal wastes.	