
 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

__

_

Page 1 of 36

 WINTER– 17 EXAMINATION
 Subject Name: Software Testing Model Answer Subject Code:

Important Instructions to examiners:
1) The answers should be examined by key words and not as word-to-word as given in the model answer

scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess

the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more Importance (Not

applicable for subject English and Communication Skills.
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The

figures drawn by candidate and model answer may vary. The examiner may give credit for any
equivalent figure drawn.

5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values
may vary and there may be some difference in the candidate’s answers and model answer.

6) In case of some questions credit may be given by judgement on part of examiner of relevant answer
based on candidate’s understanding.

7) For programming language papers, credit may be given to any other program based on equivalent
concept.

Q.

No.
Sub

Q. N.

Answer Marking

Scheme

1. (a) Attempt any THREE of the following: 12 Marks

 (i) What is Software testing? State objectives of Software testing. 4M

 Ans: Software testing: Software testing: software testing is defined as performing

Verification and Validation of the Software Product for its correctness and accuracy of

working. Software Testing is the process of executing a program with the intent of finding

errors. A successful test is one that uncovers an as-yet-undiscovered error. Testing can

show the presence of bugs but never their absence. Testing is a support function that

helps developers look good by finding their mistakes before anyone else does.

Execution of a work product with intent to find a defect.

Objectives of software testing are as follows:

1. Finding defects which may get created by the programmer while developing the

software.

2. Gaining confidence in and providing information about the level of quality.

3. To prevent defects.

4. To make sure that the end result meets the business and user requirements.

5. To ensure that it satisfies the BRS that is Business Requirement Specification and SRS

that is System Requirement Specifications.

6. To gain the confidence of the customers by providing them a quality product.

(Definition
:1 mark,
any three
objectives
:3 marks)

17624

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

__

_

Page 2 of 36

 (ii) What is Black Box testing? List any four techniques of Black Box testing. 4M

 Ans: Black Box testing involves looking at the specifications and does not require

examining the code of the program. It is done from customer’s point of view. The

testers know the input and expected output. They will check whether with given input

they are getting expected output or not.
Different techniques of Black Box test are:

1. Requirement base testing

2. Positive negative testing

3. Boundary value analysis

4. Decision tables

5. Equivalence partitioning

6. State based testing

7. Compatibility testing

8. User documentation testing

9. Domain testing

(Black

box

testing:2

marks,Lis

ting any

four

technique

s:2

marks)

 (iii) Explain the Regression testing. State when the Regression testing shall be done. 4M

 Ans: Regression testing a black box testing technique that consists of re-executing those tests

that are impacted by the code changes. These tests should be executed as often as possible

throughout the software development life cycle. It is performed to validate the build that

hasn't changed for a period of time. This build is deployed or shipped to customers. A

normal regression testing is performed to verify if the build has not broken any other parts

of the application by the recent code changes for defect fixing or for enhancement. It finds

other related bugs. It tests to check the effect on other parts of the program. Regression

testing produces Quality software. Validate the parts of software where changes occur. It

validates parts of software which may be affected by some changes but otherwise

unrelated. It ensures proper functioning of the software, as it was before changes

occurred. It enhances quality of software, as it reduces the high risk bugs. Regression

testing is useful when there are updates expected in product. It is helpful to check overall

functionality in changing situations.

(Regressio

n Testing:

2 marks,

two Reason

why

regression

testing is

done:2

marks)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

__

_

Page 3 of 36

 (iv) Write any four test cases to test login form. 4M

 Ans: {**Note: any other relevant test cases shall also be considered**}

Test cases for login page are as given below:

Step Test step Test data Expected

output

Actual

output

Status

1 Navigate to

login page of

website

--- --- --- Pass

2 Provide

valid

username

Username

abc@yahoo.co.in

Shall accept the

username

Accepted

user name

Pass

3 Provide

password

Password

co6g1234

Shall accept the

password

Accepted

the

password

Pass

4 Click on

submit

Press submit

button

User should be

able to login

successfully

User

successfully

logged in

Pass

5 Go to the

home page

Click on home

button

Should display

home page

Home page

of the user

displayed

Pass

6 Write the

status

Type in the status

in the area

provided and

press post

Should post the

message typed

in and the status

of user should

change

Status

changed

successfully

Pass

(Any valid

Four test

cases for

Login

form: 1

mark

each)

 (b) Attempt any ONE of the following: 6 Marks

 (i) Describe use of load testing and stress testing to online result display facility of

MSBTE website.

6M

 Ans: Stress Testing: In stress testing of MSBTE online result display, the resources used

will be less than the requirement. For e.g. Provide less RAM for the server, or

decrease the bandwidth of the internet connection, or provide less hits for page. If the

system has limited resources available, the response of the online result system may

deteriorate due to non-availability of the resources. It tries to break the page, site or

connection under test by overwhelming its resources in order to find the circumstances

under which it will crash. It is also a type of load testing. It is designed to determine

the behavior of the software under abnormal situations. In stress testing test cases are

designed to execute the system in such a way that abnormal conditions.

Load Testing: When a MSBTE online result display facility is tested with a load that

causes it to allocate its resources in maximum amounts. The idea is to create an

environment more demanding than the application would experience under normal

workloads. Eg. Apply more number of hits on the result section, try displaying

multiple results in multiple browsers, etc. Load is varied from minimum to the

maximum level the system can sustain without running out of resources. Load is being

increased transactions may suffer excessive delays. Load testing involves simulating

real-life user load for the target application. It helps to determine how application

behaves when multiple students hits it simultaneously to check the results. Load

(Use of

load testing

with

example :3

marks, use

of stress

testing of

MSBTE

online

result

display: 3

marks)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

__

_

Page 4 of 36

testing can be done under controlled lab conditions to compare the capabilities of

different systems or to accurately measure the capabilities of a single system.

 (ii) What are the points considered while estimating impact of a defect? Also explain

techniques to find defect.

6M

 Ans: Estimate Expected Impact of a Defect, Techniques for Finding Defects, Reporting a

Defect. Once the critical risks are identified, the financial impact of each risk should be

estimated. This can be done by assessing the impact, in dollars, if the risk does become a

problem combined with the probability that the risk will become a problem. The product

of these two numbers is the expected impact of the risk. The expected impact of a risk (E)

is calculated as E = P * I, where: P= probability of the risk becoming a problem and I=

Impact in dollars if the risk becomes a problem. Once the expected impact of each risk is

identified, the risks should be prioritized by the expected impact and the degree to which

the expected impact can be reduced. While guess work will constitute a major role in

producing these numbers, precision is not important. What will be important is to identify

the risk, and determine the risk's order of magnitude. Large, complex systems will have

many critical risks. Whatever can be done to reduce the probability of each individual

critical risk becoming a problem to a very small number should be done. Doing this

increases the probability of a successful project by increasing the probability that none of

the critical risks will become a problem.

Example:

 An organization with a project of 2,500 function points and was about medium at defect

discovery and removal would have 1,650 defects remaining after all defect removal and

discovery activities.

 The calculation is 2,500 x 1.2 = 3,000 potential defects.

 The organization would be able to remove about 45% of the defects or 1,350 defects.

 The total potential defects (3,000) less the removed defects (1,350) equals the remaining

defects of 1,650.

Estimate Expected Impact of a Defect :

i. There is a strong relationship between the number of test cases and the number of

function points.

ii. There is a strong relationship between the number of defects and the number of test

cases and number of function points.

iii. The number of acceptance test cases can be estimated by multiplying the number

of function points by 1.2.

iv. Acceptance test cases should be independent of technology and implementation

techniques.

v. If a software project was 100 function points the estimated number of test cases

would be 120.

vi. To estimate the number of potential defects is more involved.

(Explanati

on of

Impact of

a defect : 4

marks,

Technique

s : 2

marks)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

__

_

Page 5 of 36

Techniques to find defects:

a) Quick Attacks:

b) Equivalence and Boundary Conditions

c) Common Failure Modes

d) State-Transition Diagrams

e) Use Cases

f) Code-Based Coverage Models

g) Regression and High-Volume Test Techniques

{**Note: Following explanation is optional**}

a) Quick Attacks:

 The quick-attacks technique allows you to perform a cursory analysis of a system in

a very compressed timeframe.

 Even without a specification, you know a little bit about the software, so the time

spent is also time invested in developing expertise.

.

b) Equivalence and Boundary Conditions:

 Boundaries and equivalence classes give us a technique to reduce an infinite test set

into something manageable.

 They also provide a mechanism for us to show that the requirements are "covered".

c) Common Failure Modes:

 The heart of this method is to figure out what failures are common for the platform,

the project, or the team; then try that test again on this build.

 If your team is new, or you haven't previously tracked bugs, you can still write down

defects that "feel" recurring as they occur—and start checking for them.

 The more your team stretches itself (using a new database, new programming

language, new team members, etc.), riskier the project will be—and, at the same

time, the less valuable this technique will be.

d) State-Transition Diagrams:

 Mapping out the application provides a list of immediate, powerful test ideas.

 Model can be improved by collaborating with the whole team to find "hidden"

states—transitions that might be known only by the original programmer or

specification author.

 Once you have the map, you can have other people draw their own diagrams, and

then compare theirs to yours.

 The differences in those maps can indicate gaps in the requirements, defects in the

software, or at least different expectations among team members.

 The map you draw doesn't actually reflect how the software will operate; in other

words, "the map is not the territory."

 Drawing a diagram won't find these differences,

 Like just about every other technique on this list, a state-transition diagram can be

helpful, but it's not sufficient by itself to test an entire application.

e) Use Cases:
Use cases and scenarios focus on software in its role to enable a human being to do

something. Use cases and scenarios tend to resonate with business customers, and if

done as part of the requirement process, they sort of magically generate test cases

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

__

_

Page 6 of 36

from the requirements.

f) Code-Based Coverage Models:
Imagine that you have a black-box recorder that writes down every single line of code

as it executes. Programmers prefer code coverage. It allows them to attach a

number— an actual, hard, real number, such as 75%—to the performance of their unit

tests, and they can challenge themselves to improve the score.

 Customer-level coverage tools are expensive, programmer-level tools that tend to

assume the team is doing automated unit testing and has a continuous-integration

server and a fair bit of discipline.

 After installing the tool, most people tend to focus on statement coverage—the least

powerful of the measures.

g) Regression and High-Volume Test Techniques:

 People spend a lot of money on regression testing, taking the old test ideas

described above and rerunning them over and over.

 This is generally done with either expensive users or very expensive programmers

spending a lot of time writing and later maintaining those automated tests.

 ii. Weaknesses

 Building a record/playback/capture rig for a GUI can be extremely expensive, and

it might be difficult to tell whether the application hasn't broken, but has changed in

a minor way.

2. Attempt any FOUR of the following: 16Marks

 (i) What is White Box testing? Explain any one technique of static White Box

testing.

4M

 Ans: White Box Testing: Classification of Whit e Box.

1. This is also known as glass box, clear box, and open box testing.

2. In white box testing, test cases are created by looking at the code to detect any

 Potential failure scenarios.

3. The suitable input data for testing various APIs and the special code paths that

 Need to be tested by analyzing the source code for the application block.

4. Therefore, the test plans need to be updated before starting white box testing and

 only after a stable build of the code is available.

5. White box testing assumes that the tester can take a look at the code for the

 application block and create test cases that look for any potential failure scenarios.

6. During white box testing, analyze the code of the application block and prepare

 test cases for testing the functionality to ensure that the class is behaving in

 accordance with the specifications and testing for robustness.

7. A failure of a white box test may result in a change that requires all black box

 testing to be repeated and white box testing paths to be reviewed and possibly

 changed.

i. Static Testing- Inspections, Structured Walkthroughs, Technical Review:

1. Inspection

i. Inspections are the most formal type of reviews.

ii. They are highly structured and require training for each participant.

iii. Inspections are different from peer reviews and walkthroughs in that the person

who presents the code, the presenter or reader, isn’t the original programmer.

iv. These forces someone else to learn and understand the material being presented,

(Explanat
ion of
white box
testing: 2
marks,
Any one
technique
: 2
marks)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

__

_

Page 7 of 36

potentially giving a different slant and interpretation at the inspection meeting.

v. The other participants are called inspectors.

vi. Each is tasked with reviewing the code from a different perspective, such as a

 User, a tester, or a product support person.

vii. This helps bring different views of the product under review and very often

 Identifies different bugs.

viii. One inspector is even tasked with reviewing the code backward—that is, from

 the end to the beginning—to make sure that the material is covered evenly

 And completely.

2. Walkthrough:

i. Walkthroughs are the next step up in formality from peer reviews.

ii. In a walkthrough, the programmer who wrote the code formally presents

(Walks through) it to a small group of five or so other programmers and testers.

iii. The reviewers should receive copies of the software in advance of the review so

they can examine it and write comments and questions that they want to ask at the

review.

iv. Having at least one senior programmer as a reviewer is very important.

 3. Technical Review:

i. Formal Review:

 A formal review is the process under which static white-box testing is performed.

 A formal review can range from a simple meeting between two programmers to a

detailed, rigorous inspection of the code.

There are four essential elements to a formal review

1. Identify Problems:

2. Follow Rules:

3. Prepare: -

4. Write a Report: -

ii. Peer Reviews:

 The easiest way to get team members together and doing their first formal reviews

of the software is through peer reviews, the least formal method.

 Sometimes called buddy reviews, this method is really more of a discussion.

 Peer reviews are often held with just the programmer who wrote the code and one or

two other programmers or testers acting as reviewers.

 Small group simply reviews the code together and looks for problems and

oversights.

 To assure that the review is highly effective all the participants need to make sure

that the four key elements of a formal review are in place: Look for problems, follow

rules, prepare for the review, and write a report.

 As peer reviews are informal, these elements are often scaled back. Still, just getting

together to discuss the code can find bugs.

ii. Structural Testing-Code Functional Testing, Code Coverage Testing, Code

Complexity Testing.

1. Data Flow (Code Functional Testing)

i. Data flow coverage involves tracking a piece of data completely through the

software.

ii. At the unit test level this would just be through an individual module or function.

iii. The same tracking could be done through several integrated modules or even

through the entire software product—although it would be more time consuming to do

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

__

_

Page 8 of 36

so.

iv. During data flow, the check is made for the proper declaration of variables

declared and the loops used are declared and used properly.

For example

1. #include<stdio.h>

2. void main()

3. {

4. int i , fact= 1, n;

5. printf(“enter the number “);

6. scanf(“%d”,&n);

7. for(i =1 ;i <=n;i++)

8. fact = fact * i;

9. printf (“the factorial of a number is ”%d”, fact);

10. }

2. Data Coverage (Code Coverage Testing)

i. The logical approach is to divide the code just as you did in black-box testing

 into its data and its states (or program flow).

ii. By looking at the software from the same perspective, you can more easily map the

white-box information you gain to the black-box cases you’ve already written.

iii. Consider the data first. Data includes all the variables, constants, arrays, data

structures, keyboard and mouse input, files and screen input and output, and

I/O to other devices such as modems, networks, and so on.

For example

1. #include<stdio.h>

2. void main()

3. {

4. int i , fact= 1, n;

5. printf(“enter the number “);

6. scanf(“%d”,&n);

7. for(i =1 ;i <=n;i++)

8. fact = fact * i;

9. printf (“the factorial of a number is %d”, fact);

10. }

The declaration of data is complete with the assignment statement and the variable

declaration statements. All the variable declared are properly utilized.

3. Program Statements and Line Coverage (Code Complexity Testing)
i. The most straightforward form of code coverage is called statement coverage

or line coverage.

ii. If you’re monitoring statement coverage while you test your software, your

goal is to make sure that you execute every statement in the program at least

once.

iii. With line coverage the tester tests the code line by line giving the relevant

output.

For example

1. #include<stdio.h>

2. void main()

3. {

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

__

_

Page 9 of 36

4. int i , fact= 1, n;

5. printf(“enter the number “);

6. scanf(“%d”, &n);

7. for(i =1 ;i <=n; i++)

8. fact = fact * i;

9. printf (“the factorial of a number is %d”, fact);

10. }

4. Branch Coverage (Code Complexity Testing)

i. Attempting to cover all the paths in the software is called path testing.

ii. The simplest form of path testing is called branch coverage testing.

iii. To check all the possibilities of the boundary and the sub boundary conditions

 and it’s branching on those values.

iv. Test coverage criteria requires enough test cases such that each condition in a

decision takes on all possible outcomes at least once, and each point of entry

to a program or subroutine is invoked at least once.

v. Every branch (decision) taken each way, true and false.

vi. It helps in validating all the branches in the code making sure that no branch

leads to abnormal behavior of the application.

5. Condition Coverage (Code Complexity Testing)
i. Just when you thought you had it all figured out, there’s yet another

Complication to path testing.

ii. Condition coverage testing takes the extra conditions on the branch statements into

account.

 (ii) How to select testing tool? Explain in detail. 4M

 Ans: Selecting a Testing Tool.

i. While introducing the tool in the organization it must match a need within the

organization, and solve that need in a way that is both effective and efficient.

ii. The tool should help in building the strengths of the organization and should also

address its weaknesses.

iii. The organization needs to be ready for the changes that will come along with the

new tool.

iv. If the current testing practices are not good enough and the organization is not

mature, then it is always recommended to improve testing practices first rather than to

try to find tools to support poor practices. Certainly, we can sometimes improve our

own processes in parallel with introducing a tool to support those practices and we can

always pick up some good ideas for improvement from the ways that the tools work.

v. Do not depend on the tool for everything, but it should provide support to your

organization as expected.

The following factors are important during tool selection:
i. Assessment of the organization’s maturity (e.g. readiness for change);

ii. Identification of the areas within the organization where tool support will help

to improve testing processes;

iii. Evaluation of tools against clear requirements and objective criteria;

iv. Proof-of-concept to see whether the product works as desired and meets the

requirements and objectives defined for it;

v. Evaluation of the vendor (training, support and other commercial aspects) or open-

source network of support;

vi. Identifying and planning internal implementation (including coaching and

(Tool
selection
paramete
rs: 2
marks,
factors :
2 marks)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

__

_

Page 10 of 36

mentoring for those new to the use of the tool).

 (iii) Enlist components of usability testing. Which features of Software are tested in

usability testing?

4M

 Ans: Usability Testing: Usability testing, a non-functional testing technique that is a

measure of how easily the system can be used by end users. Usability Testing is

a black box testing technique. Usability testing also reveals whether users feel

comfortable with your application or Web site according to different parameters – the

flow, navigation and layout, speed and content – especially in comparison to prior or

similar applications.

Usability testing includes the following five components:

1. Learnability: How easy is it for users to accomplish basic tasks the first time they

encounter the design?

2. Efficiency: How fast can experienced users accomplish tasks?

3. Memorability: When users return to the design after a period of not using it, does

the user remember enough to use it effectively the next time, or does the user have

to start over again learning everything?

4. Errors: How many errors do users make, how severe are these errors and how

easily can they recover from the errors?

5. Satisfaction: How much does the user like using the system?

Usability Testing tests the following features of the software:

How easy it is to use the software.

How easy it is to learn the software.

How convenient is the software to end user.

 Usability Testing Process: (OPTIONAL) continued..

(compone
nts: 2
marks,
features:
2 marks)

 (iv) Define Metrics and Measurements. Explain need of Software measurement. 4M

 Ans.: A Metric is a measurement of the degree that any attribute belongs to a system, product or

process. For example the number of errors per person hours would be a metric. Thus,

software measurement gives rise to software metrics. A measurement is an indication of

the size, quantity, amount or dimension of a particular attribute of a product or process. For

example the number of errors in a system is a measurement.

(Definitio
n: 1 mark
and
Needs: 3
marks)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

__

_

Page 11 of 36

Software measurement is required to:

 Establish the quality of the current product or process.

 To predict future qualities of the product or process.

 To improve the quality of a product or process.

 To determine the state of the project in relation to budget and schedule.

 (v) Explain Defect Management Process. 4M

 Ans.: Defect Management Process:

Figure 1: Defect management Process

(Explanatio

n with

diagram:4

marks)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

__

_

Page 12 of 36

Defect Management process must include the appraisal of a defect finding process,

software development process and the actions initiated to close the defects and

strengthen the product/process associated with development, so that defects are not

repeated again and again. It typically includes correction, corrective action and

preventive action. It includes, Defect Naming Defect Resolution Once the developer

have acknowledged a valid defect , the resolution process starts:

 To report on the status of individual defects

 To provide tactical information and metrics to help project management, redesign of

error prone modules.

 To provide strategic information and metrics to senior management, defect trends,

problem systems. Process to be improved to either prevents defects or minimizing

their impact.

 To provide insight into the likelihood that target dates and cost estimates will be

i. Defect Prevention-- Implementation of techniques, methodology and standard

processes to reduce the risk of defects.

ii. Deliverable Baseline-- Establishment of milestones where deliverables will be

considered complete and ready for further development work. When a deliverable is

base lined, any further changes are controlled. Errors in a deliverable are not

considered defects until after the deliverable is base lined.

iii. Defect Discovery-- Identification and reporting of defects for development team

acknowledgment. A defect is only termed discovered when it has been documented

and acknowledged as a valid defect by the development team

Member responsible for the component(s) in error.

iv. Defect Resolution-- Work by the development team to prioritize, schedule and fix

a defect, and document the resolution. This also includes notification back to the

tester to ensure that the resolution is verified.
 (vi) State any four objectives of user documentation testing. How these are useful in

planning user documentation test?

4M

 Ans.: User Documentation covers all the manuals, user guides, installation guides, setup

guides, read me files, software release notes, and online help that are provided along

with the software to help the end user to understand the software system. User

Documentation Testing should have two objectives:-

 To check if what is stated in the document is available in the software

 To check if what is there in the product is explained correctly in the document

 This testing is plays a vital role as the users will refer this document when they start

using the software at their location. a badly written document can put off a user and

bias them against the product even the product offers rich functionality.

Defects found in the user documentation need to be tracked to closure like any

regular software defect. Because these documents are the first interactions the users

have with the product. A good User Documentation aids in reducing customer

(Objective
s:2 marks,
usefulness:
2 marks)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

__

_

Page 13 of 36

support calls. The effort and money spend on this effort would form a valuable

investment in the long run for the organization. A good observation is that projects

that have all the documents in place have a high level of maturity as compared to the

un-documented project. This is a trend in today’s testing process. Yet there are a few

companies that pay little or no attention to documentation and are only attentive

towards the software development process. Documentation for an organization saves

time, cost and makes testing easy and systematic. It is equally important for the

client’s acceptance because documentation defines a software product’s

effectiveness. If the documentation is poor, deficient, or defective, it may affect the

quality of software or application. QA practices should be documented such that they

are repeatable, and are not dependent on any individuals. During manual software

testing, documentation will include specifications, test designs, test plan, prevalent

business rules, reports, configurations details, changes in code, test cases, bug reports,

user manuals, etc. As a part of documentation, there needs to be a system for easily

finding and obtaining documents and determining what documentation will have a

particular piece of information. Once the details are documented, they should be

placed at a common databank where easy search and timely availability of the records

is feasible. These documents come handy in times of any dispute or comparing the

requirement specification with the delivered product.

Few essential software testing documents that need to be used and maintained on a

day to day basis:

 Test design document

 Test case specification

 Test Strategy

 Test summary reports

 Document of Weekly Status Report

 User Documents

 Document of User Acceptance Report

 Report of Risk Assessment

 Test Log document

 Test plan document

 Bug reports document

 Test data document

 Test analysis

There should be standard templates for all the kinds of documentation starting from

Test strategy, test Plan, Test cases, and Test data to Bug report. It is imperative for the

testers to synchronize the quality process with documentation standards and other

process in an organization. Documentation is also very effective when automated

testing or software performance testing is planned to be executed.

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

__

_

Page 14 of 36

3. Attempt any FOUR of the following: 16 Marks

 (i) With the help of suitable example explain decision table. Why decision table is

important?

4M

 Ans: Decision Tables.

i. Decision table testing is black box test design technique to determine the test

scenarios for complex business logic.

ii. Decision tables provide a systematic way of stating complex business rules, which

is useful for developers as well as for testers.

iii. Decision tables can be used in test design whether or not they are used in

specifications, as they help testers explore the effects of combinations of different

inputs and other software states that must correctly implement business rules.

iv. It helps the developers to do a better job can also lead to better relationships with

them.

v. Testing combinations can be a challenge, as the number of combinations can often

be huge.

vi. Testing all combinations may be impractical if not impossible.

vii. We have to be satisfied with testing just a small subset of combinations but

making the choice of which combinations to test and which to leave out is also

important.

viii. If you do not have a systematic way of selecting combinations, an arbitrary subset

will be used and this may well result in an ineffective test effort.

Importance of Decision Table:

Essentially it is a structured exercise to formulate requirements when dealing with

complex business rules. Decision tables are used to model complicated logic. They

can make it easy to see that all possible combinations of conditions have been

considered and when conditions are missed, it is easy to see.

(Explanati

on with

Diagram:

3 marks ,

Importanc

e: 1 mark)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

__

_

Page 15 of 36

 (ii) Explain GUI testing with suitable example. 4M

 Ans: {**Note: Another tools may be considered**}

 GUI Testing:

i. GUI testing is a testing technique in which the application's user interface is tested

whether the application performs as expected with respect to user interface behavior.

ii. GUI Testing includes the application behavior towards keyboard and mouse

movements and how different GUI objects such as toolbars, buttons, menu bars,

dialog boxes, edit fields, lists, behaviour to the user input. GUI Testing Guidelines

i. Check Screen Validations

ii. Verify All Navigations

iii. Check usability Conditions

iv. Verify Data Integrity

v. Verify the object states

vi. Verify the date Field and Numeric Field Formats

GUI Automation Tools

Following are some of the open source GUI automation tools in the market:

(Explanati

on of GUI

Testing: 4

marks

)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

__

_

Page 16 of 36

 (iii) Explain the ‘Test infrastructure’ components with diagram. 4M

 Ans: Testing requires a robust infrastructure to be planned upfront. This infrastructure is

made up of three essential elements.

1. A test case database (TCDB) (additional): A test case database captures all the

relevant information about the test cases in an organization. Some of the entities and

the attributes are given in following table

Sr.

No.

Test Case Purpose Attributes

1 Test case

Records all static

information about

tests.

 Test case Id

 Test case name

(File name)

 Test case owner

 Associated files

for test case.

2

Test case

product

cross

reference

Provide mapping

between the tests and

the corresponding

product features,

enables identification

of test cases for

given feature.

 Test case Id

 Module Id

(Listing of

component

: 2 marks,

Explanatio

n: 2

marks)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

__

_

Page 17 of 36

3
Test case

run history

Gives the history of

when the test case

was run and what

was result , provided

inputs on selection of

test for regression

runs

 Test case Id

 Run date

 Time taken

 Run

status(Success/

Failure)

4

Test case-

defect

cross-

reference

Gives details of test

cases introduced to

test certain specific

defects detected in

the product, provides

inputs on the

selection of test for

regression runs.

 Test case Id

 Defect

reference

Test Infrastructure

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

__

_

Page 18 of 36

 (iv) Give comparison between Alpha testing and Beta Testing (any four points) 4M

 Ans: 1. Alpha Testing is conducted by a team of highly skilled testers at development site

whereas Beta Testing is always conducted in Real Time environment by

customers or end users at their own site.

2. Alpha testing requires lab environment or testing environment, whereas Beta

testing doesn’t require any lab environment or testing environment.

3. Since Alpha Testing is done onsite therefore developers as well as business analyst

are involved with the testing team whereas in Beta Testing developers and

business analysts are not at all involved.

4. Beta testers can be naive or proficient end users of software product but alpha

testers are always high skilled professional testers.

5. Alpha Testing involves both black box testing as well as white box testing. Beta

Testing is always a black box testing or functional testing.

6. Alpha Testing is done before the launch of software product into the market

whereas Beta Testing is done at the time of software product marketing.

7. Alpha Testing is conducted in the presence of developers and in the absence of

end users whereas for Beta Testing this is exactly reversed.

8. Alpha testing is to ensure the quality of the product before moving to Beta testing

Beta testing also concentrates on quality of the product, but gathers users input on

the product and ensures that the product is ready for real time users.

9. Reliability and security testing are not performed in-depth Alpha Testing

Reliability, Security, Robustness are checked during Beta Testing

(Comparis

on of

Alpha

testing and

Beta

testing: 1

mark for

each point

minimum

4 points)

 (v) Write down any four limitations of manual testing. 4M

 Ans: Manual Testing: Testing Computer Software manually without using any

Automation Tools

Limitations of Manual Testing:

• Manual Testing requires more time or more resources, sometimes both

• Performance testing is impractical in manual testing.

• Less Accuracy

• Executing same tests again and again time taking process as well as Tedious.

• GUI Objects Size difference and Color combinations etc..

Are not easy to find in Manual Testing.

• Not Suitable for Large scale projects and time bounded projects.

• Batch Testing is not possible, for each and every test execution Human user

interaction is mandatory.

• Manual Test Case scope is very limited, if it is Automated test, scope is unlimited.

• Comparing large amount of data is impractical

• Checking relevance of search of operation is difficult

• Processing change requests during software maintenance takes more time.

(Any 4

limitations

:1 mark

each)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

__

_

Page 19 of 36

4. (a) Attempt any THREE of the following: 12 Marks

 (i) What is test case? Which parameters are to be considered while documenting test

cases?

4M

 Ans:

Test Case Specification:

Test case is a well-documented procedure designed to test the functionality of the

feature in the system.

For designing the test case, it needs to provide set of inputs and its corresponding

expected outputs.

Parameters:

1. Test case ID: is the identification number given to each test case.

2. Purpose: defines why the case is being designed.

3. Precondition: for running in the system can be defined, if required, in the test

case.

4. Input: should not hypothetical. Actual inputs must be provided, instead of

general inputs.

Using the test plan as the basis, the testing team designs test case specification,

which then becomes the basis for preparing individual test cases. Hence, a test

case specification should clearly identify,

1. The purpose of the test: This lists what features or part the test is

intended for.

2. Items being tested, along with their version/release numbers as

appropriate.

3. Environment that needs to be set up for running the test cases: This

includes the hardware environment setup, supporting software

environment setup, setup of the product under test.

4. Input data to be used for the test case: The choice of input data will be

dependent on the test case itself and the technique followed in the test

case.

5. Steps to be followed to execute the test: If automated testing is used,

then, these steps ate translated to the scripting language of the tool.

6. The expected results that are considered to be “correct result”.

7. A step to compare the actual result produced with the expected result:

This step should do an “intelligent” comparison of the expected and actual

results to highlight any discrepancies.

8. Any relationship between this test and other test: These can be in the

form of dependencies among the tests or the possibilities of reuse across

the tests.

(Explain

test case: 2

marks,

Parameter

s: 2

marks)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

__

_

Page 20 of 36

 (ii) What is automated testing? Write down advantages of using automated testing

tools in software testing.

4M

 Ans: i. An automated testing tool is able to playback pre-recorded and predefined actions,

Compare the results to the expected behavior and report the success or failure of these

manual tests to a test engineer.

ii. Once automated tests are created they can easily be repeated and they can be

extended to perform tasks impossible with manual testing.

iii. Because of this, savvy managers have found that automated software testing is an

essential component of successful development projects.

Benefits of automation testing:

1. Speed: Think about how long it would take you to manually try a few thousand

test cases for the windows Calculator. You might average a test case every five

seconds or so. Automation might be able to run 10, 100 even 1000 times that fast.

2. Efficiency: While you are busy running test cases, you can’t be doing anything

else. If you have a test tool that reduces the time it takes for you to run your tests,

you have more time for test planning and thinking up new tests.

3. Accuracy and Precision: After trying a few hundred cases, your attention may

reduce and you will start to make mistakes .A test tool will perform the same test and

check the result perfectly, each and every time.

4. Resource Reduction: Sometimes it can be physically impossible to perform

a certain test case. The number of people or the amount of equipment required to

create the test condition could be prohibitive. A test tool can used to simulate the real

world and greatly reduce the physical resources necessary to perform the testing.

5. Simulation and Emulation: Test tools are used to replace hardware or software

that would normally interface to your product. This “face” device or application can

then be used to drive or respond to your software in ways that you choose-and ways

that might otherwise be difficult to achieve.

6. Relentlessness: Test tool and automation never tire or give up. It will

continuously test the software.

OR

Benefits of Automation Testing are:
1. Save Time /Speed: Due to advanced computing facilities, automation test tools

prevail in speed of processing the tests. Automation saves time as software can execute

test cases faster than human.

2. Reduces the tester’s involvement in executing tests: It relieves the testers to do

some other work.

3. Repeatability/Consistency: The same tests can be re-run in exactly the same

manner eliminating the risk of human errors such as testers forgetting their exact

actions, intentionally omitting steps from the test scripts, missing out steps from the

test script, all of which can result in either defects not being identified or the reporting

of invalid bugs (which can again, be time consuming for both developers and testers to

reproduce)

4. Simulated Testing: Automated tools can create many concurrent virtual users/data

and effectively test the project in the test environment before releasing the product.

5. Test case design: Automated tools can be used to design test cases also.

Through automation, better coverage can be guaranteed than if done manually.

(Automate

d testing

descriptio

n: 1 mark,

Any

relevant

three

automated

test tools

benefits : 3

marks)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

__

_

Page 21 of 36

6. Reusable: The automated tests can be reused on different versions of the

software, even if the interface changes.

7. Avoids human mistakes: Manually executing the test cases may incorporate errors. But

this can be avoided in automation testing.

8. Internal Testing: Testing may require testing for memory leakage or checking

the coverage of testing. Automation can done this easily.

9. Cost Reduction: If testing time increases cost of the software also increases. Due to

testing tools time and therefore cost is reduced.

 (iii) Explain defect life cycle to identify status of defect with proper labeled diagram. 4M

 Ans:

OR

OR

(Diagram:

2 marks ,

Explanatio

n: 2 marks

minimum

6 states)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

__

_

Page 22 of 36

The different states of bug life cycle are as shown in the above diagram:

 New: When the bug is posted for the first time, its state will be “NEW”. This

means that the bug is not yet approved.

 Open: After a tester has posted a bug, the lead of the tester approves that the

bug is genuine and he changes the state as “OPEN”.

 Assign: Once the lead changes the state as “OPEN”, he assigns the bug to

corresponding developer or developer team. The state of the bug now is changed

to “ASSIGN”.

 Test/Retest: Once the developer fixes the bug, he has to assign the bug to the

testing team for next round of testing. Before he releases the software with bug

fixed, he changes the state of bug to “TEST”. It specifies that the bug has been

fixed and is released to testing team.// At this stage the tester do the

retesting of the changed code which developer has given to him to check

whether the defect got fixed or not.

 Deferred: The bug, changed to deferred state means the bug is expected to be

fixed in next releases. The reasons for changing the bug to this state have many

factors. Some of them are priority of the bug may be low, lack of time for the

release or the bug may not have major effect on the software.

 Rejected: If the developer feels that the bug is not genuine, he rejects the bug.

Then the state of the bug is changed to “REJECTED”.

 Verified: Once the bug is fixed and the status is changed to “TEST”, the tester

tests the bug. If the bug is not present in the software, he approves that the bug is

fixed and changes the status to “VERIFIED”.

 Reopened: If the bug still exists even after the bug is fixed by the developer, the

tester changes the status to “REOPENED”. The bug traverses the life cycle once

again.

 Closed: Once the bug is fixed, it is tested by the tester. If the tester feels that the

bug no longer exists in the software, he changes the status of the bug to

“CLOSED”. This state means that the bug is fixed, tested and approved.

 Fixed: When developer makes necessary code changes and verifies the changes

then he/she can make bug status as „Fixed‟ and the bug is passed to testing team.

 Pending retest: After fixing the defect the developer has given that particular code

for retesting to the tester. Here the testing is pending on the testers end.

Hence its status is pending retest.

Optional

 Duplicate: If the bug is repeated twice or the two bugs mention the same concept

of the bug, then one bug status is changed to “duplicate“.

 Not a bug: The state given as “Not a bug” if there is no change in the

functionality of the application. For an example: If customer asks for some

change in the look and field of the application like change of color of some text

then it is not a bug but just some change in the looks of the application.

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

__

_

Page 23 of 36

 (iv) Explain test deliverables in detail. 4M

 Ans:

TThhee ddeelliivveerraabblleess iinncclluuddee tthhee ffoolllloowwiinngg,,

The test plan Helpful for tester

Test case Specification Details needed for testing

Test design specification

documents

Helpful in designing test

Testing Strategy Approach to follow testing

Testing Scripts/ procedures Need to be followed

Test data Data useful during testing

Test Incident report Details of situation where testing

performed

Test Traceability matrix Metrix to follow testing

Test results /Reports Entire report of testing

Install/Configuration guides Provides guidelines before testing

Test logs produced Useful for future testing

Defect Report/ Release report After completion of test this report is

generated/prepared

(any

eight

points

:1/2

mark

each)

 (b) Attempt any ONE of the following:: 6 Marks

 (i) Describe V-model with labelled diagram. State its any two advantages and

disadvantages. Also write where it is applicable.

6M

 Ans:

V-model means verification and validation model. It is sequential path of
execution of processes. Each phase must be completed before the next phase
begins. Under V-model, the corresponding testing phase of the development
phase is planned in parallel. So there is verification on one side of V &
validation phase on the other side of V.

 Verification Phase:
1. Overall Business Requirement: In this first phase of the development

cycle, the product requirements are understood from customer perspective. This
phase involves detailed communication with the customer to understand his
expectations and exact requirements. The acceptance test design planning is
done at this stage as business requirements can be used as an input for
acceptance testing.

(Explanati

on: 1 mark

and

diagram: 1

mark ,

Advantage

s:2 marks ,

Disadvant

ages: 2

marks

(any two)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

__

_

Page 24 of 36

2. Software Requirement: Once the product requirements are clearly known, the

system can be designed. The system design comprises of understanding &

detailing the complete hardware, software & communication set up for the

product under development. System test plan is designed based on system

design. Doing this at earlier stage leaves more time for actual test execution

later.

3. High level design: High level specification are understood & designed in this

phase.

Usually more than one technical approach is proposed & based on the technical &

financial feasibility, the final decision is taken. System design is broken down

further into modules taking up different functionality.

4. Low level design: In this phase the detailed integral design for all the system

modules is specified. It is important that the design is compatible with the other

modules in the system & other external system. Components tests can be

designed at this stage based on the internal module design,

5. Coding: The actual coding of the system modules designed in the design

phase is taken up in the coding phase. The base suitable programming language

is decided base on requirements. Coding is done based on the coding guidelines

& standards.

Validation:
 Unit Testing: Unit testing designed in coding are executed on the code during

this validation phase. This helps to eliminate bugs at an early stage.

 Components testing: This is associated with module design helps to

eliminate defects in individual modules.

 Integration Testing: It is associated with high level design phase & it

is performed to test the coexistence & communication of the internal modules

within the system

 System Testing: It is associated with system design phase. It checks the

entire system functionality & the communication of the system under

development with external systems. Most of the software & hardware

compatibility issues can be uncovered using system test execution.

 Acceptance Testing: It is associated with overall & involves testing the

product in user environment. These tests uncover the compatibility issues with

the other systems available in the user environment. It also uncovers the non-

functional issues such as load & performance defects in the actual user

environment.

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

__

_

Page 25 of 36

OR

Advantages of V-model: Disadvantages of V-model:

 Simple and easy to use.

 Testing activities like planning,

test designing happens well

before coding.

 Saves a lot of time.

 Higher chance of success over

the waterfall model.

 Proactive defect tracking – that

is defects are found at early

stage.

 Avoids the downward flow of

the defects.

 Works well for small projects

where requirements are easily

understood.

 Very rigid and least flexible.

 Software is developed during the

implementation phase, so no

early prototypes of the software

are produced.

 If any changes happen in

midway, then the test documents

along with requirement

documents has to be updated.

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

__

_

Page 26 of 36

When to use the V-model:

 The V-shaped model should be used for small to medium sized projects where

requirements are clearly defined and fixed.

 The V-Shaped model should be chosen when ample technical resources are

available with needed technical expertise.

 (ii) With the help of example explain Boundary Value Analysis. 6M

 Ans: Most of the defects in software products hover around conditions and boundaries.

By conditions, we mean situations wherein, based on the values of various variables,

certain actions would have to be taken. By boundaries, we mean “limits” of values

of the various variables.

 This is one of the software testing technique in which the test cases are

designed to include values at the boundary. If the input data is used within

the boundary value limits, then it is said to be Positive Testing. If the input

data is picked outside the boundary value limits, then it is said to be Negative

Testing.

 Boundary value analysis is another black box test design technique and it is

used to find the errors at boundaries of input domain rather than finding those

errors in the center of input.

 Each boundary has a valid boundary value and an invalid boundary value.

Test cases are designed based on the both valid and invalid boundary

values. Typically, we choose one test case from each boundary.

 Same examples of Boundary value analysis concept are:

One test case for exact boundary values of input domains each means 1 and 100.

One test case for just below boundary value of input domains each means 0 and

99. One test case for just above boundary values of input domains each means 2

and 101.

For Example: A system can accept the numbers from 1 to 10 numeric values.

All other numbers are invalid values. Under this technique, boundary values 0, 1,2,

9,10,11 can be tested.

Another Example is in exam has a pass boundary at 40 percent, merit at 75

percent and Distinction at 85 percent. The Valid Boundary values for this

scenario will be as follows:

49, 50 - for pass

74, 75 - for merit

84, 85 - for distinction

Boundary values are validated against both the valid boundaries and invalid

boundaries. The Invalid Boundary Cases for the above example can be given

as follows

0 - for lower limit boundary value

101 - for upper limit boundary value

 Boundary value analysis is a black box testing and is also applies to white box

testing. Internal data structures like arrays, stacks and queues need to be checked

for boundary or limit conditions; when there are linked lists used as internal

structures, the behavior of the list at the beginning and end have to be tested

thoroughly.

(Explanati

on: 4

marks and

2 mark for

Example)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

__

_

Page 27 of 36

 Boundary value analysis help identify the test cases that are most likely to

uncover defects.

5. Attempt any TWO of the following : 16 Marks

 (i) Prepare any eight test cases for admission form of college admission. 8M

 Ans: {** Note: Any other relevant test cases also can be considered**}

Consider the college admission form having different fields such as Student’s
Name, Father’s Name, Zip code ,Address, Phone, Caste, admission type
,S.S.C percentage, SC Board, Submit button, Reset button.

Test

Case

Id

Test case

Objectives Input Data

Expected

Result Actual Result Status

TC1 Name field

Any name (
abcd xyz)

It should
accept the
name

The name is

accepted Pass

TC2
Phone
Field

Any number

Having less

than 10

digits(1234)

It should not
Accept.

Should give

error

message

“Please enter

valid phone

number”

Error

message

“Please enter

valid

phone

number”

Pass

TC3
Phone
Field

Any
Alphabets

(abcde)

It should give
error

message as
“Only

Numbers”

Error
message

as
“Only

Numbers”

Pass

TC4
SSC

Percentage
Field

65

It should
accept It accepted

Pass

TC5

SSC
Percentage
Field 30

It should not

accepted

should give

error message
Gives error
message Pass

(8 test

cases:1

mark

each)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

__

_

Page 28 of 36

TC6

Address
field

Any characters

(A-51, Market

road ,Mumbai)

It should

accept It accepted Pass

TC7

Zip code

Any six digit
number(4314
01)

It should
accept the
number

It accepted

Pass

TC8

Required

fields

should be

filled in the

form

Data in the

mandatory

fields.

If it is filled.

Do not display

Error Message

Pass

 (ii) With the suitable example, explain how ‘Basis path Testing’ is used to derive the

code complexity for the testing.
8M

 Ans:

{** Note: any other relevant answer content shall also be considered**}

{** Note: Basis/Basic path Testing shall be considered**}

Basis path testing is the structural testing technique:

 Path testing is based on control structure of the program for which flow graph is

prepared

 Path testing requires complete knowledge of the programs structure.

 Path testing is closer to the developer and used by him to test his module.

 The effectiveness of path testing gets reduced with te increase in size of software

under test.

 Choose enough paths in a program such that maximum logic coverage is

achieved.

Branch Coverage, code coverage, line coverage is also called as basis path testing.

Attempting to cover all the paths in the software is called basis path testing. It‘s the

actual structural testing which is the part of static white box testing. So many times

static white box testing is called basis path testing. The simplest form of path testing is

called branch coverage testing. To check all the possibilities of the boundary and the

sub boundary conditions and it‘s branching on those values. Test coverage criteria

requires enough test cases such that each condition in a decision takes on all possible

(Basis path

testing:2

marks,

descriptio

n of how it

is used to

derive the

code

complexity

for the

testing: 6

marks)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

__

_

Page 29 of 36

outcomes at least once, and each point of entry to a program or subroutine is invoked

at least once.

Every branch (decision) taken each way, true and false. It helps in validating all the
branches in the code making sure that no branch leads to abnormal behavior of the
application.

For example in the following code all the branches in the program are checked
thoroughly. The decisions are evaluated and are tested whether are not these branches
are taken.

1. #include<stdio.h>
2. void main()
3. {
4. int i , fact= 1, n;
5. printf(“enter the number “);
6. scanf(“%d”, &n);
7. for(i =1 ;i <=n; i++)
8. fact = fact * i;
9. printf (“the factorial of a number is %d”, fact);
10. }
Data Flow (Code Functional Testing):Data flow coverage involves tracking a piece

of data completely through the software. At the unit test level this would just be

through an individual module or function. The same tracking could be done through

several integrated modules or even through the entire software product— although it

would be more time consuming. During data flow, the check is made for the proper

declaration of variables declared and the loops used are declared and used properly.

Line coverage or code coverage testing: The most straightforward form of code

coverage is called statement coverage or line coverage. If you‘re monitoring statement

coverage while you test your software, your goal is to make sure that you execute

every statement in the program at least once. With line coverage the tester tests the

code line by line giving the relevant output.

For example :

1. #include<stdio.h>
2. void main()
3. {
4. int i , fact= 1, n;
5. printf(“enter the number “);
6. scanf(“%d”, &n);
7. for(i =1 ;i <=n; i++)
8. fact = fact * i;
9. printf (“the factorial of a number is %d”, fact);
10. }

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

__

_

Page 30 of 36

 (iii) What is integration testing? List types of integration testing and explain any four

types in brief.

8M

 Ans: Testing that occurs at the lowest level is called unit testing or module testing. As the

units are tested and the low-level bugs are found and fixed, they are integrated and

integration testing is performed against groups of modules. This process of

incremental testing continues, putting together more and more pieces of the software

until the entire product or at least a major portion of it is tested at once in a process

called system testing. With this testing strategy, it's much easier to isolate bugs. When

a problem is found at the unit level, the problem must be in that unit. If a bug is found

when multiple units are integrated, it must be related to how the modules interact. Of

course, there are exceptions to this, but by and large, testing and debugging is much

more efficient than testing everything at once.

Types of Integration testing:

1). Top down Testing: In this approach testing is conducted from main module to sub

module. If the sub module is not developed a temporary program called STUB is used

for simulate the sub module.

Advantages:

 Advantageous if major flaws occur toward the top of the program.

 Once the I/O functions are added, representation of test cases is easier.

 Early skeletal Program allows demonstrations and boosts morale.

Disadvantages:

 Stub modules must be produced

 Stub Modules are often more complicated than they first appear to be.

 Before the I/O functions are added, representation of test cases in stubs can be

difficult.

 Test conditions may be impossible, or very difficult, to create.

 Observation of test output is more difficult.

 Allows one to think that design and testing can be overlapped.

 Induces one to defer completion of the testing of certain modules.

2). Bottom up testing: In this approach testing is conducted from sub module to main

module, if the main module is not developed a temporary program called DRIVERS is

used to simulate the main module.

Advantages:

 Advantageous if major flaws occur toward the bottom of the program.

 Test conditions are easier to create.

 Observation of test results is easier.

 Driver Modules must be produced.

 The program as an entity does not exist until the last module is added.

3). Bi-Directional Integration.

(Integratio

n testing: 2

marks;

List any

four types:

2 marks,

explanatio

n with

example of

the steps

of

integration

:4 marks)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

__

_

Page 31 of 36

 Bi-directional Integration is a kind of integration testing process that combines

top-down and bottom-up testing.

 With an experience in delivering Bi-directional testing projects custom software

development services provide the best quality of the deliverables right from the

development of software process.

 Bi-directional Integration testing is a vertical incremental testing strategy that tests

the bottom layers and top layers and tests the integrated system in the computer

software development process.

 Using stubs, it tests the user interface in isolation as well as tests the very lowest

level functions using drivers. Bi-directional Integration testing combines bottom-

up and top-down testing

 Bottom-up testing is a process where lower level modules are integrated and then

tested.

 This process is repeated until the component of the top of the hierarchy

is analysed. It helps custom software development services find bugs

easily without any problems.

 Top down testing is a process where the top integrated modules are

tested and the procedure is continued till the end of the related module.

 Top down testing helps developers find the missing branch link easily.

4). Incremental Integration.

 After unit testing is completed, developer performs integration testing.

 It is the process of verifying the interfaces and interaction between modules.

 While integrating, there are lots of techniques used by developers and

one of them is the incremental approach.

 In Incremental integration testing, the developers integrate the modules

one by one using stubs or drivers to uncover the defects.

 This approach is known as incremental integration testing.

 To the contrary, big bang is one other integration testing technique,

where all the modules are integrated in one shot.

Features:

 Each Module provides a definitive role to play in the project/product structure

 Each Module has clearly defined dependencies some of which can be known only

at the runtime.

 The incremental integration testing's greater advantage is that the defects are found

early in a smaller assembly when it is relatively easy to detect the root cause of the

same.

 A disadvantage is that it can be time-consuming since stubs and drivers

have to be developed for performing these tests

5). Non- Incremental Integration.

 The non-incremental approach is also known as ―Big-Bang‖ Testing.

 Big Bang Integration Testing is an integration testing strategy wherein

all units are linked at once, resulting in a complete system.

 When this type of testing strategy is adopted, it is difficult to isolate any

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

__

_

Page 32 of 36

errors found, because attention is not paid to verifying the interfaces

across individual units.

6. Attempt any FOUR of the following: 16 Marks

 (i) Which parameters are considered while writing good defect report? Also write

contents of defect template.
4M

 Ans: A defect report documents an anomaly discovered during testing. It includes all the

information needed to reproduce the problem, including the author, release/build

number, open/close dates, problem area, problem description, test environment,

defect type, how it was detected, who detected it, priority, severity, status, etc. After

uncovering a defect (bug), testers generate a formal defect report. The purpose of a

defect report is to state the problem as clearly as possible so that developers can

replicate the defect easily and fix it.

DEFECT REPORT TEMPLATE: In most companies, a defect reporting tool is

used and the elements of a report can vary. However, in general, a defect report can

consist of the following elements.

ID Unique identifier given to the defect. (Usually Automated)

Project Project name.

Product Product name.

Release Version Release version of the product. (e.g. 1.2.3)

Module Specific module of the product where the defect was detected.

Detected Build

Version

Build version of the product where the defect was detected

(e.g. 1.2.3.5)

Summary Summary of the defect. Keep this clear and concise.

Description

Detailed description of the defect. Describe as much as

possible but without

Repeating anything or using complex words. Keep it simple

but comprehensive.

Steps to

Replicate

Step by step description of the way to reproduce the defect.

Number the steps.

Actual Result The actual result you received when you followed the steps.

Expected Results The expected results.

Attachments Attach any additional information like screenshots and logs.

Remarks Any additional comments on the defect.

Defect Severity Severity of the Defect.

Defect Priority Priority of the Defect.

Reported By The name of the person who reported the defect.

Assigned To

The name of the person that is assigned to analyze/fix the

defect.

Status The status of the defect.

Fixed Build

Version

Build version of the product where the defect was fixed (e.g.

1.2.3.9)

(Paramete

rs: 2

marks,

contents of

defect

template:2

marks)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

__

_

Page 33 of 36

 (ii) Define the term Error: Defect, Fault and Bug in relation with Software testing. 4M

 Ans: The various terms related to software failure with respect to the area of application are

listed as Defect, Variance, Fault, Failure, Problem, Inconsistency, Error, Feature,

Incident, Bug, and Anomaly.

 Fault: An incorrect step, process, or data definition in a computer program.
 Error: A human action that produces an incorrect result.
 An error can be a grammatical error in one or more of the code lines, or a logical

error in carrying out one or more of the client‘s requirements.
 Not all software errors become software faults. in some cases, the software error

can cause improper functioning of the software. In many other cases, erroneous code
lines will not affect the functionality of the software as a whole.

 A failure is said to occur whenever the external behavior of a system does not

conform to that prescribed in the system specification. A software fault becomes a
software failure only when it is ―activated‖

 The various terms related to software failure with respect to the area of application

are listed as

Defect, Variance, Fault, Failure, Problem, Inconsistency, Error, Feature,

Incident, Bug, and Anomaly
Problem, error, and bug are probably the most generic terms used.
 Anomaly, incident, and variance don‘t sound quite so negative and infer more

unintended operation than an all-out failure.
 Fault, failure, and defect tend to imply a condition that‘s really severe, maybe even

dangerous. It doesn‘t sound right to call an incorrectly colored icon a fault. These
words also tend to imply blame: ―It‘s his fault that the software failed.

 As all the words sound the same they are distinguished based on the severity and the
area in which the software failure has occurred.

 When we run a program the error that we get during execution is termed on the basis
of runtime error, compile time error, computational error, and assignment error.

 The error can be removed by debugging, if not resolved leads to a problem and if the
problem becomes large leads to software failure.

 A bug can be defined as the initiation of error or a problem due to which fault,
failure, incident or an anomaly occurs.

 The program to find the factorial of a number given below lists few errors problem
and failure in a program.
For example

 #include<stdio.h>

 void main()

 {

 int i , fact, n;

 printf(―enter the number ―);

 scanf(―%d‖,&n);

 for(i =1 ;i <=n;i++)

 fact = fact * i;

 printf (―the factorial of a number is ‖%d‖, fact);

 }

(Descripti

on of

error,

defect,

fault &

bug: 4

marks)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

__

_

Page 34 of 36

As in line number 4 the fact is not initialized to 1, so it takes garbage value and gives a
wrong output, this is an example of a bug. If fact is initialized to zero (fact = 0) than the
output will be zero as anything multiplied by zero will give the output as zero. This is a
bug which can be removed by initializing fact = 1 during initializing. As the fact is
declared as integer, for the number till 7! will work perfectly. When the number entered
is 8, the output is garbage value as the integer limit is from – 32767 to +32768, so in
declaration change the initialization to long int fact.

 (iii) Give the defect classification and its meaning. 4M

 Ans: Defect Classification:

Requirements and specification defect: Requirement related defects arise in a

product when one fails to understand what is required by the customer. These defects

may be due to customer gap, where the customer is unable to define his requirements,

or producer gap, where developing team is not able to make a product as per

requirements. Defects injected in early phases can persist and be very difficult to

remove in later phases. Since any requirements documents are written using natural

language representation, there are very often occurrences of ambiguous, contradictory,

unclear, redundant and imprecise requirements. Specifications are also developed using

natural language representations.

Design Defects: Design defects occur when system components, interactions

between system components, interactions between the outside software/hardware,

or users are incorrectly designed. This covers in the design of algorithms, control,

logic/ data elements, module interface descriptions and external

software/hardware/user interface descriptions. Design defects generally refer to the

way of design creation or its usage while creating a product. The customer may or

may not be in a position to understand these defects, if structures are not correct.

They may be due to problems with design creation and implementation during

software development life cycle.

Coding Defects: Coding defects may arise when designs are implemented

wrongly. If there is absence of development/coding standards or if they are wrong,

it may lead to coding defects. Coding defects are derived from errors in

implementing the code. Coding defect classes are closely related to design defect

classes especially if pseudo code has been used for detailed design. Some coding

defects come from a failure to understand programming language constructs, and

miscommunication with the designers. Others may have transcription or omission

origins. At times it may be difficult to classify a defect as a design or as a coding

detect.
Testing Defect: Testing defect are defects introduced in an application due to
wrong testing, or defects in the test artifact leading to wrong testing. Defects which
cannot be reproduced, or are not supported by requirement or are duplicate may
represent a false call .In this defects includes
1. Test-design defect: test-design defect refers to defects in test artifacts. there can

be defects in test plans, test scenarios, test cases and test data definition which
can lead to defect in software.

2. Test-environment defect: this defect may arise when test environment is not
set properly. Test environment may be comprised of hardware, software,
simulator and people doing testing.

3. Test-tool defects: any defects introduced by a test tool may be very difficult to
find and resolve, as one may have to find the defect using manual test as against
automated tools.

(Any 4

classificat

ion: 1

mark for

each)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

__

_

Page 35 of 36

 OR

Software Defects/ Bugs are normally classified as per:
4.

 Severity / Impact

 Probability / Visibility

 Priority / Urgency

 Related Dimension of Quality

 Related Module/Component

 Phase Detected

 Phase Injected

 (iv) What is test planning and test management? 4M

 Ans: Test Planning: Like any project, the testing also should be driven by a plan. The test
plan acts as the anchor for the execution, tracking and reporting of the entire testing
project. Activities of test plan:
1. Scope Management: Deciding what features to be tested and not to be tested.
2. Deciding Test approach /strategy: Which type of testing shall be done like

configuration, integration, localization etc.
3. Setting up criteria for testing: There must be clear entry and exit criteria for

different phases of testing. The test strategies for the various features and
combinations determined how these features and combinations would be tested.

4. Identifying responsibilities, staffing and training needs

Test Management: It concerned with both test resource and test environment

management. It is the role of test management to ensure that new or modified service

products meet business requirements for which they have been developed or enhanced

(Test

Planning:

2 marks ,

Test

Manageme

nt: 2

marks)

 (v) With the help of diagram describe client-server testing. 4M

 Ans: {**Note: Any other relevant diagram and tests also can be considered**}

(Diagram

:1 mark,

Explanati

on:3

marks)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

__

_

Page 36 of 36

In Client-server testing there are several clients communicating with the server.

1. Multiple users can access the system at a time and they can

communicate with the server.

2. Configuration of client is known to the server with certainty.

3. Client and server are connected by real connection.

4. Testing approaches of client server system:

1. Component Testing: One need to define the approach and test plan for testing

client and server individually. When server is tested there is need of a client

simulator, whereas testing client a server simulator, and to test network both

simulators are used at a time.

2. Integration testing: After successful testing of server, client and network, they are

brought together to form system testing.

3. Performance testing: System performance is tested when number of clients are

communicating with server at a time. Volume testing and stress testing may be

used for testing, to test under maximum load as well as normal load expected.

Various interactions may be used for stress testing.

4. Concurrency Testing: It is very important testing for client-server architecture. It

may be possible that multiple users may be accessing same record at a time, and

concurrency testing is required to understand the behavior of a system in this

situation.

5. Disaster Recovery/ Business continuity testing: When the client server are

communicating with each other , there exit a possibility of breaking of the

communication due to various reasons or failure of either client or server or link

connecting them. The requirement specifications must describe the possible

expectations in case of any failure.

6. Testing for extended periods: In case of client server applications generally

server is never shutdown unless there is some agreed Service Level Agreement

(SLA) where server may be shut down for maintenance. It may be expected that

server is running 24X7 for extended period. One needs to conduct testing over

an extended period to understand if service level of network and server

deteriorates over time due to some reasons like memory leakage.

7. Compatibility Testing: Client server may be put in different environments

when the users are using them in production. Servers may be in different

hardware, software, or operating system environment than the recommended.

Other testing such as security testing and compliance testing may be involved if

needed, as per testing and type of system.

