
 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2005 Certified)

__

Page 1 of 32

WINTER– 16 EXAMINATION

 Model Answer Subject Code:

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer

scheme.

2) The model answer and the answer written by candidate may vary but the examiner may try to assess the

understanding level of the candidate.

3) The language errors such as grammatical, spelling errors should not be given more Importance (Not

applicable for subject English and Communication Skills.

4) While assessing figures, examiner may give credit for principal components indicated in the figure. The

figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent

figure drawn.

5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may

vary and there may be some difference in the candidate‘s answers and model answer.

6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based

on candidate‘s understanding.

7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q.

No

.

Sub

Q.

N.

Answer Marking

Scheme

1.

a)

(i)

Ans:

Attempt any THREE of the following :

List and describe any four skills of software tester.

Skills of software tester are as follows :

1. Analytical and logical thinking
i). The major objective of testing is to identify the hidden errors, not simply prove that the

software works.

ii). For a tester to be effective in his role, he must be able to analyze the given business

situation and judge all the possible scenarios.

iii). He should have the capacity to identify and tackle unfamiliar problems and should develop

a strategy to validate it.

iv). Creating situations and validating the application under test, before presenting it to

customers, can be done effectively only by a person who has strong analytical skills.

2. The ability to envision business situations

i). A tester should be able to envisage real-time business situations through mental mapping,

abstracting the idea inferred from the specifications.

ii). The real-time business scenarios should crystallize in a tester's mind, and he should think

about what the case is rather than what ought to be the case or what he believes the case is.

iii). A tester should be able to anticipate complex problems, in addition to visualizing and

articulating them.

iv). He should be able to do a complete system simulation rapidly and accurately.

v). In the present software development environments, it is hard to believe that

12

4M

(Any 4

skills of

software

tester: list

and

describin

g:

4marks,

1mark

each)

17624

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2005 Certified)

__

Page 2 of 32

teams/individuals will get enough time to do a series of conventional brainstorming

sessions to finalize the concept mapping.

vi). Therefore, it is vital that a tester develop his conceptualization skills through mental

mapping.

3. A sense of intellectual curiosity and creativity

i). A tester should understand that being an intellectual and being intellectually curious are not

the same.

ii). A tester should arguably be the latter one -- intellectually curious -- which is all about

asking questions and not about having answers.

iii). He should believe in the pursuit of knowledge as a value in and of itself.

iv). He should love asking questions and should not consider it a blow to his ego if he is wrong

about something.

v). It is intellectual curiosity that motivates and prompts a tester to identify interesting

questions about the software being tested.

vi). Thus, a tester should develop the skill to see what everyone else hasn't seen, to think what

no one else has thought of and to do what no one else has dared.

4. A "global" approach

i). Software systems have become extremely complex.

ii). Most of the time, the system designed involves multiple stakeholders, and dealing with

such systems is not always easy.

iii). A tester should be able to deal effectively with business situations marked by complexity

and the number of interactions with third-party systems.

iv). He should be able to identify how the system under test interacts with other constituents of

the system.

v). He should also be able to isolate the minutest units of the application under test and do the

validation, keeping in mind the behavior of the system as a whole.

5. Critical thought and rational enquiry

i). The quality of life of an individual and the quality of what he produces/delivers depends

largely on the quality of his thought process.

ii). The thought process of a tester should be undistorted, impartial and without any prejudices.

iii). A tester should be able to take charge of the inherent structures and impose intellectual

standards upon the software under test.

iv). He should be able to raise vital questions precisely and clearly, gather and assess relevant

information, interpret it effectively in order to come to well-reasoned conclusions and

solutions, and test those conclusions against the given criteria and standards.

6. The ability to apply basic and fundamental knowledge

i). Knowledge in the context of testing can be attributed as the fluid mix of experience,

values, contextual information and expert insight.

ii). Those things provide a framework for evaluating the system under test. One can attain

knowledge by so many means, but that knowledge is worthwhile only when it adds value

to situations encountered.

iii). A smart tester should be able to apply the knowledge attained over years of experience

with the domain, process, product, customers, mistakes and successes in his testing.

iv). He should be able to make use of fundamental communication, mathematical and software

application skills.

v). He should also be able to effectively apply the skills he has attained to practical situations.

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2005 Certified)

__

Page 3 of 32

7. Continue to learn

i). Organizations and business environments change rapidly, which means the approaches and

processes that work well today will be outdated tomorrow.

ii). Therefore, it is imperative that a tester place priority on noticing, adapting and learning

from change that is happening around him.

iii). That doesn't mean a tester should continually undergo training or certification, rather he

should be open to learning from everything in life that comes he across.

iv). If he has gained basic and fundamental knowledge, then the rest can be achieved through

self-directed learning.

v). Learning should be a lifelong habit.

8. Respect for truth and intellectual integrity

i). A tester should be able to examine the piece of software under test and the resulting

processes, with focus on the given specification, and understand the behavior of the

software.

ii). Being human, a tester may have severe biases, prejudices and intolerances that prevent him

from performing well.

iii). He should possess the intellectual integrity to correct those barriers in order to efficiently

understand the nature of the software under test.

iv). He should also be willing to shrug off the set of practices and character traits that

undermine his intellectual integrity.

9. Planning, time management skills

i). Planning is nothing but writing the story of the future.

ii). A tester needs to have a thorough plan and must develop a well-thought test

strategy/approach.

iii). And that plan must be in place before work begins on any software testing assignment.

iv). It should describe the items and features to be tested, the test strategy and levels of testing

pass/fail criteria, suspension/resumption criteria, schedule, etc.

v). The plan developed should be monitored continually, and validations should be done

through organized system feedback.

vi). Sticking to the plan and monitoring the progress in order to ensure timely delivery is key to

any software testing assignment's success.

10. Effective communication skills

i). A tester must be able to communicate his thoughts and ideas effectively, using a variety of

tools and media.

ii). He needs to develop and use this skill throughout his career and should learn to

communicate effectively to the stakeholders so as to avoid ambiguities and inconsistencies.

iii). For example, printed presentations should be concise and to the point and should follow

logically.

iv). The language should be pragmatic rather than philosophical, and arguments should be

supported by facts.

v). In the case of oral presentations, the voice, body language and appearance of the presenter

are as important as the content and visual aids.

vi). A tester should develop his skills to overcome shyness and any fear of speaking. He should

also have good listening skills.

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2005 Certified)

__

Page 4 of 32

(ii)

Ans:

Explain decision table with suitable example.

A decision table is a good way to deal with combinations of things (e.g. inputs). This

technique is sometimes also referred to as a cause-effect‘ table. The first task is to identify a

suitable function or subsystem which reacts according to a combination of inputs or events.

The system should not contain too many inputs otherwise the number of combinations will

become unmanageable. It is better to deal with large numbers of conditions by dividing them

into subsets and dealing with the subsets one at a time. Once you have identified the aspects

that need to be combined, then you put them into a table listing all the combinations of True

and False for each of the aspects.

Following decision table shows the sample example of a credit card black box testing

Conditio

n

Rule1 Rule2 Rule 3 Rule 4

Pin Number T T T F

Payment Detail T F F T

Overdue details F T T F

OR

i). Decision table testing is black box test design technique to determine the test scenarios

for complex business logic.

ii). Decision tables provide a systematic way of stating complex business rules, which is

useful for developers as well as for testers.

iii). Decision tables can be used in test design whether or not they are used in specifications,

as they help testers explore the effects of combinations of different inputs and other

software states that must correctly implement business rules.

iv). It helps the developers to do a better job can also lead to better relationships with them.

v). Testing combinations can be a challenge, as the number of combinations can often be

huge.

vi). Testing all combinations may be impractical if not impossible.

vii). We have to be satisfied with testing just a small subset of combinations but making the

choice of which combinations to test and which to leave out is also important.

viii). If you do not have a systematic way of selecting combinations, an arbitrary subset will be

used and this may well result in an ineffective test effort.

Example of decision table :

In each column of two conditions mention ―Yes‖ or ―No‖, user will get here four combinations

(two to the power of the number of things to be combined). Because of this, it‘s always good to

take small sets of combinations at once. To keep track on combinations, give alternate ―Yes‖

and ―No‖ on the bottom row, put two ―Yes‖ and then two ―No‖ on the row above the bottom

row, etc., so the top row will have all ―Yes‖ and then all ―No‖ (Apply the same principle to all

such tables).

4M

(Decision

table:

descriptio

n:

2marks,

example:

2 marks)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2005 Certified)

__

Page 5 of 32

(iii)

Ans:

TABLE 1: Decision table – Input combination

Conditions Step 1 Step 2 Step 3 Step 4

Repayment money has

been mentioned
Y Y N N

Terms of loan has been

mentioned
Y N Y N

Describe how drivers and stubs can be used in unit testing with neat diagrams.

1. Drivers
1. Drivers are tools used to control and operate the software being tested.

2. One of the simplest examples of a driver is a batch file, a simple list of programs or

commands that are executed sequentially. In the days of MS-DOS, this was a popular

means for testers to execute their test programs.

3. They‘d create a batch file containing the names of their test programs, start the batch

running, and go home.

4. With today‘s operating systems and programming languages, there are much more

sophisticated methods for executing test programs.

5. For example, a complex Perl script can take the place of an old MS-DOS batch file, and

the Windows Task Scheduler can execute various test programs at certain times

throughout the day as shown in Figure below :

4M

(stubs:2

marks

and

drivers:

2marks)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2005 Certified)

__

Page 6 of 32

(iv)

Ans:

2. Stubs
1. Stubs, like drivers, are white-box testing techniques.

2. Stubs are essentially the opposite of drivers in that they don‘t control or operate the

software being tested; they instead receive or respond to data that the software.

3. The Figure shows the general view of stub configuration.

Describe two types of test reports.

Test reporting is a means of achieving communication through the testing cycle. There are

 3 types of test reporting.

1. Test incident report:

 A test incident report is communication that happens through the testing cycle as and when

Defects are encountered .A test incident report is an entry made in the defect repository each

defect has a unique id to identify incident .The high impact test incident are Highlighted in the

test summary report.

2. Test cycle report:

 A test cycle entails planning and running certain test in cycle, each cycle using a different

build of the product .As the product progresses through the various cycles it is expected to

stabilize.

Test cycle report gives

1. A summary of the activities carried out during that cycle.

2. Defects that are uncovered during that cycle based on severity and impact

3. Progress from the previous cycle to the current cycle in terms of defect fixed

4. Outstanding defects that not yet to be fixed in cycle

5. Any variation observed in effort or schedule

3. Test summary report:

 The final step in a test cycle is to recommend the suitability of a product for release. A report

that summarizes the result of a test cycle is the test summary report.

There are two types of test summary report:

1. Phase wise test summary ,which is produced at the end of every phase

2. Final test summary report.

4M

(Any two

types of

test

report

with

explanati

on:

4marks,

2marks

each)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2005 Certified)

__

Page 7 of 32

b)

(i)

Ans:

(ii)

Ans:

A Summary report should present

1. Test Summary report Identifier

2. Description : Identify the test items being reported in this report with test id

3. Variances: Mention any deviation from test plans, test procedures, if any.

4. Summary of results: All the results are mentioned here with the resolved incidents and

their solutions.

5. Comprehensive assessment and recommendation for release should include Fit for release

assessment and recommendation of release.

Attempt any ONE of the following :

What are sanity testing and smoke testing. Describe.

Smoke Testing is a testing technique that is inspired from hardware testing, which checks for

the smoke from the hardware components once the hardware's power is switched on.

i) In Software testing context, smoke testing refers to testing the basic functionality of the

build.

ii) If the Test fails, build is declared as unstable and it is NOT tested anymore until the smoke

test of the build passes.

Features of smoke testing are :

i) Identifying the business critical functionalities that a product must satisfy.

ii) Designing and executing the basic functionalities of the application.

iii) Ensuring that the smoke test passes each and every build in order to proceed with the

testing.

iv) Smoke Tests enables uncovering obvious errors which saves time and effort of test team.

v) Smoke Tests can be manual or automated.

Sanity testing, a software testing technique performed by the test team for some basic tests.

The aim of basic test is to be conducted whenever a new build is received for testing. The

terminologies such as Smoke Test or Build Verification Test or Basic Acceptance Test or

Sanity Test are interchangeably used; however, each one of them is used under a slightly

different scenario.

vi) Sanity test is usually unscripted, helps to identify the dependent missing functionalities. It

is used to determine if the section of the application is still working after a minor change.

vii) Sanity testing can be narrow and deep. Sanity test is a narrow regression test that focuses

on one or a few areas of functionality.

Describe the requirement defects and coding defects in details.

Requirements defects: A valid requirement which is mandatory and supposed to code (or

implement) is missed. The root cause of this defect is due to not capturing this requirement in

the specification document. These types of observations are categorized as ‗Missed

requirements defects‘ since the requirements are missed from requirement specification

document.

These types of defects are usually caused by business analyst‘s oversight.

Example:

Tester observation while testing the Website: Tester found that ‗Disclaimer‘ link is missing in

6

6M

(Sanity

testing: 3

marks

and

Smoke

testing:

3marks)

6M

(Require

ment

defects : 3

marks

and

coding

defects: 3

marks)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2005 Certified)

__

Page 8 of 32

2.

a)

Ans:

the website. According to organization/webmaster guidelines it is mandatory to show

‗Disclaimer‘ link in the website so tester expressed his/her concern that the ‗Disclaimer‘ link is

missing and to fix this developer expects the business analyst to document in requirement

specification document.

Coding defects: The requirements have been coded incorrectly due to which behavior of an

implemented software function is not in accordance with the requirement specification

documents.

The other frequently occurred defects made by developers are due to

 Missed to code for the requirements which listed in requirement specification document

 Coding the requirements which are not specified in the requirement specification document

These types of defects are usually caused by developer‘s oversight.

Example:

Requirement as per specification document: If user clicks on ‗Home‘ link in a website then

‗Home‘ page should be presented to the user.

Tester observation while testing the ‗Home‘ link: Tester found that ‗About Me‘ page is

displayed each time the ‗Home‘ link is clicked which is a deviation in the behavior from the

requirement specification document. This is an example of coding defect.

Attempt any FOUR of the following :

What factors shall be considered while selecting resource requirements?

1. Machine configuration (RAM, processor, disk, and so on) needed to run the product under

test.

2. Overheads required by the test automation tool, if any

3. Supporting tools such as compilers , test data generators configuration management tools,

and so on

4. The different configurations of the supporting software (for example, OS) that must be

present

5. Special requirements for running machine- intensive tests such as load tests and

performance tests

6. Appropriate number of license of all the software

OR

Factors to be considered while selecting the resource requirements are :

 People: How many people are required?

 How much experience they should posses?

 What kind of experience is needed?

 What should they be expertise in?

 Should they be full-time, part-time, contract, students?

 Equipment: How many Computers are required?

 What configuration computers will be required?

 What kind of test hardware is needed?

 Any other devices like printers, tools etc.

 Office and lab space: Where will they be located?

16

4M

(Any four

Factors: 1

mark

each)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2005 Certified)

__

Page 9 of 32

b)

Ans:

 How big will they be?

 How will they be arranged?

 Software: Word processors, databases, custom tools. What will be purchased, what

needs to be written?

 Outsource companies: Will they be used? What criteria will be used for choosing them?

How much will they cost?

 Miscellaneous supplies: Disks, phones, reference books, training material. What else

might be necessary over the course of the project? The specific resource requirements are

very project-, team-, and company-dependent, so the test plan effort will need to

carefully evaluate what will be needed to test the software.

What are the advantages and disadvantages of using automated tools for testing? List

any two each.

Advantages of using automated tools for testing are as follows :

1. Automated Software Testing Saves Time and Money

i) Software tests have to be repeated often during development cycles to ensure quality.

Every time source code is modified software tests should be repeated.

ii) For each release of the software it may be tested on all supported operating systems and

hardware configurations.

iii) Manually repeating these tests is costly and time consuming. Once created, automated tests

can be run over and over again at no additional cost and they are much faster than manual

tests.

iv) Automated software testing can reduce the time to run repetitive tests from days to hours.

v) A time savings that translates directly into cost savings.

2. Testing Improves Accuracy

i) Even the most conscientious tester will make mistakes during monotonous manual testing.

ii) Automated tests perform the same steps precisely every time they are executed and never

forget to record detailed results.

3. Increase Test Coverage

i) Automated software testing can increase the depth and scope of tests to help improve

software quality.

ii) Lengthy tests that are often avoided during manual testing can be run unattended.

iii) They can even be run on multiple computers with different configurations.

iv) Automated software testing can look inside an application and see memory contents, data

tables, file contents, and internal program states to determine if the product is behaving as

expected.

v) Automated software tests can easily execute thousands of different complex test cases

during every test run providing coverage that is impossible with manual tests.

vi) Testers freed from repetitive manual tests have more time to create new automated

software tests and deal with complex features.

4. Automation Does What Manual Testing Cannot

i) Even the largest software departments cannot perform a controlled web application test

with thousands of users.

4M

(Two

advantag

es: 2

marks, 2

disadvant

ages: 2

marks)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2005 Certified)

__

Page 10 of 32

c)

Ans:

d)

Ans:

ii) Automated testing can simulate tens, hundreds or thousands of virtual users interacting

with network or web software and applications.

Disadvantages of using automated tools for testing are as follows:

1. High investments required in package purchasing and training.

2. High package development investment costs.

3. High manpower requirements for test preparation.

4. Considerable testing areas left uncovered.

What is load testing and stress testing? Describe with respect to system testing.

Stress testing is testing the software under less than ideal conditions. So subject your software

to low memory, low disk space, slow cpus, and slow modems and so on. Look at your

software and determine what external resources and dependencies it has. Stress testing is

simply limiting them to bare minimum. With stress testing you starve the software.

 For e.g. Word processor software running on your computer with all available memory and

disk space, it works fine. But if the system runs low on resources you had a greater potential

to expect a bug. Setting the values to zero or near zero will make the software execute

different path as it attempt to handle the tight constraint. Ideally the software would run

without crashing or losing data.

Load testing is testing the software under customer expected load. In order to perform load

testing on the software you feed it all that it can handle. Operate the software with largest

possible data files. If the software operates on peripherals such as printer, or communication

ports, connect as many as you can. If you are testing an internet server that can handle

thousands of simultaneous connections, do it. With most software it is important for it to run

over long periods. Some software‘s should be able to run forever without being restarted. So

Time acts as a important variable.

 Stress testing and load testing can be best applied with the help of automation tools.

 Stress testing and load testing are the types of performance testing.

The Microsoft stress utility program allows you to individually set the amounts of memory,

disk space, files and other resources available to the software running on the machine.

Example: Open many number of browsers in the windows simultaneously.

 Connect more than the specifies clients to the server.

 Connect more than one printer to the system.

List what are the different guidelines to be followed while selecting dynamic test tools.

i) Assessment of the organization‘s maturity (e.g. readiness for change);

ii) Identification of the areas within the organization where tool support will help to improve

testing processes;

iii) Evaluation of tools against clear requirements and objective criteria;

iv) Proof-of-concept to see whether the product works as desired and meets the requirements

and objectives defined for it;

v) Evaluation of the vendor (training, support and other commercial aspects) or open-source

network of support;

vi) Identifying and planning internal implementation (including coaching and mentoring for

those new to the use of the tool).

4M

(load

testing : 2

marks,

stress

testing : 2

marks)

4M

(Guidelin

es:

4marks)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2005 Certified)

__

Page 11 of 32

e)

Ans:

f)

Ans:

Draw labeled diagram of defect management process. List any two characteristics of defect

management process.

 Defect Management Process diagram :

Characteristics of defect management process are :

1. The primary goal is to prevent defects. Where this is not possible or practical, the goals

are to both find the defect as quickly as possible and minimize the impact of the defect.

2. The defect management process should be risk driven-- i.e., strategies, priorities, and

resources should be based on the extent to which risk can be reduced.

3. Defect measurement should be integrated into the software development process and be

used by the project team to improve the process. In other words, the project staff, by

doing their job, should capture information on defects at the source. It should not be done

after-the-fact by people unrelated to the project or system

4. As much as possible, the capture and analysis of the information should be automated.

5. Defect information should be used to improve the process. This, in fact, is the primary

reason for gathering defect information.

6. Most defects are caused by imperfect or flawed processes. Thus to prevent defects, the

process must be altered.

Why boundary value analysis is required? Give example.

i) Boundary conditions are special because programming, by its nature, is susceptible to

problems at its edges.

ii) The boundary conditions are defined as the initial and the final data ranges of the variables

declared.

iii) If an operation is performed on a range of numbers, odds are the programmer got it right

for the vast majority of the numbers in the middle, but maybe made a mistake at the edges.

iv) The edges are the minimum and the maximum values for that identifier.

1. #include<stdio.h>

2. void main()

3. {

4. int i , fact=1, n;

5. printf(―enter the number ―);

6. scanf(―%d‖,&n);

7. for(i =1 ;i <=n;i++)

4M

(Defect

manage

ment

process

Diagram

:2 marks

, any two

characte

ristics of

defect

manage

ment

process :

2 marks)

4M

(Need for

BVA : 2

marks,

example :

2 marks)

http://www.defectmanagement.com/defectmanagement/risk.htm

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2005 Certified)

__

Page 12 of 32

3.

a)

Ans:

b)

Ans:

8. fact = fact * i;

9. printf (―the factorial of a number is ‖%d‖, fact);

10. }

The boundary condition in the above example is for the integer variable.

Attempt any Four of the following:

Describe graph based testing with appropriate diagram.

{**Note: Any other relevant diagram also shall be considered**}

State or graph based testing is useful in situations where

1. The product under test is a language processor wherein the syntax of the language

automatically lends itself to a state machine or context free grammar represented by a

railroad diagram.

2. Workflow modeling where, depending on the current state and appropriate combinations

of input variables, specific workflows are carried out resulting in new output and new

state Dataflow modeling, where the system is modeled as a set of dataflow, leading from

one state to another.

In the above case, each of the states (represented by circles) is an event or a decision point

while the arrows or lines between the states represent data inputs. This can be applicable when

1. The application can be characterized by a set of states.

2. The data values (screen, mouse clicks) that cause the transition from one state to another

is well understood.

3. The methods of processing within each state to process the input received is also well

understood.

Describe bidirectional/sandwich integration testing with neat diagram.

Bi- directional integration is a combination of the top-down & bottom-up integration approaches

used together to derive integration steps.

16

4M

(Diagram

:2 marks,

Explanati

on:2

marks)

4M

(Diagram

: 2 marks,

Explanati

on:2

marks)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2005 Certified)

__

Page 13 of 32

c)

Ans:

As shown in fig, assume that the software components become available in the order mentioned

by the component numbers. The individual components 1, 2, 3, 4 and 5 are tested separately and

bi-directional integration performed initially with the use of stubs and drivers. Drivers are used

to provide upstream connectivity while stubs provide downstream connectivity .A driver is a

function which redirects the requests to some other components and stubs simulate the behavior

of missing components. After the functionality of these integrated components is tested, the

drivers and stubs are discarded. Once components 6, 7 and 8 become available, the integration

methodology then focus only on those components, as there are the components which need

focus and are new. This approach is also called “Sandwich Integration”.

Advantages:

1. Sandwich approach is useful for very large projects having several subprojects.

2. Both Top-down and Bottom-up approach starts at a time as per development schedule.

2. 3. Units are tested and brought together to make a system Integration is done

downwards.

Disadvantages:

1. It require very high cost for testing because one part has Top-down approach while

another part has bottom-up approach.

2. It cannot be used for smaller system with huge interdependence between different

modules. It makes sense when the individual subsystem is as good as complete system.

Write four test cases to test sign-in form of gmail account.

{**Note: Any other relevant test cases shall be considered**}

Test Case

 Id

Description Input Data Expected

Result

Actual

Result

Status

TC1 Login(email

id) Field of

Sign-in form

of Gmail

Enter ―abc123‖

and click on

―Next‖ button

It shall prompt

to enter

Password

It prompts to

enter

password

Pass

TC2 Password

field of Sign-

in form of

Gmail

Enter ―xyz‖

(valid id)and

click on ―Sign

in‖ button

It shall open

Gmail account

It opens

Gmail

account

Pass

TC3 Login(email

id) Field of

Sign-in form

Without

entering login

id, click on

It shall give

message as

―Please enter

It gives

message as

―Please enter

Pass

4M

(Any 4

test

cases: 1

mark

each)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2005 Certified)

__

Page 14 of 32

d)

Ans:

e)

Ans:

of Gmail ―Next‖ button your email‖ your email‖

TC4 Password

field of Sign-

in form of

Gmail

Without

entering

password, click

on ―Sign in‖

button

It shall give

message as

―Please enter

your

password‖

It gives

message as

―Please enter

your

password‖

Pass

TC5 Login(email

id) Field of

Sign-in form

of Gmail

Enter ―pqr‖

(invalid id)and

click on ―Next

button‖

It shall give

message as

―Sorry, Google

doesn‘t

recognize that

email‖

It give

message as‖

Sorry, Google

doesn‘t

recognize that

email‖

Pass

TC6 Password

field of Sign-

in form of

Gmail

Enter ―abc123‖

(invalid

password) at

password field

after entering

valid login id.

It shall give

message as

―Wrong

password. Try

again‖

It gives

message

―Wrong

password.

Try again‖

Pass

Compare alpha testing and beta testing.(Any four differences)

Alpha Testing Beta Testing

1. Performed at Developer‗s site. 1. Performed at End user‗s site.

2. Performed in controlled

Environment as developer is

present.

2. Performed in uncontrolled

Environment as developer is not

present.

3. Less probability of finding of errors

as it is driven by developer.

3. High probability of finding errors as

end user can use it the way he wants.

4. It is done during implementation

phase of software

4. It is done as pre-release of software.

5. It is not considered as live

application

5. It is considered as live application.

6. Less time consuming as developer

can make necessary changes in given

time.

6. More time consuming. As user has to

report bugs if any via appropriate

channel

Explain three types of product metrics.

Product Metrics is classified as :

1. Project Metrics: A set of metrics that indicates how the project is planned and executed.

2. Progress Metrics: A set of metrics that tracks how the different activities of the project

are progressing. It includes both development activities and testing activities. Progress

Metrics is classified as a. Test defect metrics b. Development defect metrics

a. Test defect metrics: help the testing team in analysis of product quality and testing

b. Development defect metrics: help the development team in analysis of development

4M

(Any4

points: 1

mark

each)

4M

(Listing

types : 1

mark

,Explanat

ion : 3

marks)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2005 Certified)

__

Page 15 of 32

4.

a.

(i)

Ans:

(ii)

Ans:

activities.

3. Productivity Metrics: A set of metrics that takes into account various productivity

numbers that can be collected and used for planning and tracking testing activities. These

metrics help in planning and estimating of testing activities.

Attempt any THREE of the following.

Describe structural walk through under static testing.

One of the static testing methods is structural walkthrough.

In walkthroughs, a set of people look at the program code and raise questions for the author.

The author explains the logic of the code and answers the questions. If the author is unable to

answer some questions, he or she then takes those questions and finds their answers.

(i) Walkthroughs are the next step up in formality from peer reviews.

(ii) In a walkthrough, the programmer who wrote the code formally presents (walks through)

it to a small group of five or so other programmers and testers.

(iii)The reviewers should receive copies of the software in advance of the review so they can

examine it and write comments and questions that they want to ask at the review.

(iv) Having at least one senior programmer as a reviewer is very important.

Describe any four limitations of manual testing.

 Limitations of Manual Testing are as given below :

 Manual testing is slow and costly

 It is very labor intensive, it takes a long time to complete tests.

 Manual tests don‘t scale well. As the complexity of the software increases the complexity

of the testing problem grows exponentially. This leads to an increase in total time devoted

to testing as well as total cost of testing.

 Manual testing is not consistent or repeatable. Variations in how the tests are performed as

inevitable, for various reasons. One tester may approach and perform a certain test

differently from another, resulting in different results on the same test, because the tests are

not being performed identically.

 Lack of training is the common problem, although not unique to manual software testing.

 GUI objects size difference and color combinations are not easy to find in manual testing.

 Not suitable for large scale projects and time bound projects.

 Batch testing is not possible, for each and every test execution Human user interaction is

mandatory.

 Comparing large amount of data is impractical.

 Processing change requests during software maintenance takes more time.

OR

Limitations of manual testing:

 Time consuming process: manual testing consumes much time because most pf test

operations or test case are repeated again and again.

 Limited support for regression testing: when one portion of software is changed then

regression testing is performed to ensure that other portions are not infected by the recent

12

4M

(Walk

through

explanati

on : 4

marks)

4M

(Any 4

points: 1

mark

each)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2005 Certified)

__

Page 16 of 32

iii)

Ans:

change .in this process entire testing is repeated which take more time.

 Error Prone Testing: as test process is repeated several times test engineers become bored

which may result in missing some important test case and leads to release defective

software.

 Impractical performance testing: In doing performance testing of any client server

application resources like people and computers are required. client applications has to be

installed on several machines and it is supposed to be tested by one person to see the

performance of whole software which is very tedious and time consuming task

 Non consistent: Manual testing process is not consistent as testing methods and approaches

applied by every person are not remaining same. This produces different result on same

test so variation in test process in unavoidable. There is no standardization

 Limited scope: not suitable for the time bounded and large scale projects as scope of

manual testing is very limited as compared to automated testing. As the size of software

 Explain the defect template with its attribute.

DEFECT TEMPLATE: In most companies, a defect reporting tool is used and the elements of

a report can vary. However, in general, a defect report can consist of the following elements.

i). Reporting a bug/defect properly is as important as finding a defect.

ii). If the defect found is not logged/reported correctly and clearly in bug tracking tools (like

Bugzilla, Clear Quest etc.) then it won‘t be addressed properly by the developers, so it is

very important to fill as much information as possible in the defect template so that it is

very easy to understand the actual issue with the software.

Sample defect template

Abstract :

Platform :

Test case Name :

Release :

Build Level :

Client Machine IP/Hostname :

Client OS :

Server Machine IP/Hostname :

Server OS :

Defect Type :

Priority :

Severity :

Developer Contacted :

Test Contact Person :

Attachments :

Any Workaround :

Steps to Reproduce 1. 2. 3.

Expected Result:

Actual Result:

OR

4M

(Templat

e with

attributes

:4 marks)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2005 Certified)

__

Page 17 of 32

iv)

Ans:

ID
Unique identifier given to the defect. (Usually

Automated)

Project Project name.

Product Product name.

Release Version Release version of the product. (e.g. 1.2.3)

Module
Specific module of the product where the defect was

detected.

Detected Build Version
Build version of the product where the defect was

detected (e.g. 1.2.3.5)

Summary Summary of the defect. Keep this clear and concise.

Description

Detailed description of the defect. Describe as much as

possible but without repeating anything or using complex

words. Keep it simple but comprehensive.

Steps to Replicate
Step by step description of the way to reproduce the

defect. Number the steps.

Actual Result
The actual result you received when you followed the

steps.

Expected Results The expected results.

Attachments
Attach any additional information like screenshots and

logs.

Remarks Any additional comments on the defect.

Defect Severity Severity of the Defect.

Defect Priority Priority of the Defect.

Reported By The name of the person who reported the defect.

Assigned To
The name of the person that is assigned to analyze/fix the

defect.

Status The status of the defect.

Fixed Build Version
Build version of the product where the defect was fixed

(e.g. 1.2.3.9)

Explain any two internal standards in test management.

 Internal standards are:

1. Naming and storage conventions for test artifacts.

2. Document standards

3. Test coding standards

4. Test reporting standards.

1. Naming and storage conventions for test artifacts: Every test artifacts(test specification,

test case, test results and so on)have to be named appropriately and meaningfully. It

enables

a) Easy identification of the product functionality.

b) Reverse mapping to identify the functionality corresponding to a given set of tests.

e.g. modules shall be M01,M02. Files types can be .sh, .SQL.

2. Documentation standards:

a) Appropriate header level comments at the beginning of a file that outlines the functions

to be served by the test.

b) Sufficient inline comments, spread throughout the file

c) Up-to-Date change history information, reading all the changes made to the test file.

4M

(Any 2

standards

explanati

on: 2

marks

each)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2005 Certified)

__

Page 18 of 32

b.

(i)

Ans:

3. Test coding standards:

a) Enforce right type of initialization

b) Stipulate ways of naming variables.

c) Encourage reusability of test artifacts

d) Provide standard interfaces to external entities like operating system, hardware and so

on.

4. Test reporting standard: All the stakeholders must get a consistent and timely view of the

progress of tests. It provides guidelines on the level of details that should be present in the

test report, their standard formats and contents.

 Attempt any ONE of the following:

Explain V model with diagram.

V model means verification and validation model. It is sequential path of execution of

processes. Each phase must be completed before the next phase begins.

 Under V-model, the corresponding testing phase of the development phase is planned in

parallel. So there is verification on one side of V & validation phase on the other side of V.

Verification Phase:

1. Overall Business Requirement: In this first phase of the development cycle, the product

requirements are understood from customer perspective. This phase involves detailed

communication with the customer to understand his expectations and exact requirements.

The acceptance test design planning is done at this stage as business requirements can be

used as an input for acceptance testing.

2. Software Requirement: Once the product requirements are clearly known, the system can

be designed. The system design comprises of understanding & detailing the complete

hardware, software & communication set up for the product under development. System

test plan is designed based on system design. Doing this at earlier stage leaves more time

for actual test execution later.

3. High level design: High level specification are understood & designed in this phase.

Usually more than one technical approach is proposed & based on the technical &

financial feasibility, the final decision is taken. System design is broken down further into

modules taking up different functionality.

4. Low level design: In this phase the detailed integral design for all the system modules is

specified. It is important that the design is compatible with the other modules in the

system & other external system. Components tests can be designed at this stage based on

the internal module design,

5. Coding: The actual coding of the system modules designed in the design phase is taken

up in the coding phase. The base suitable programming language is decided base on

requirements. Coding is done based on the coding guidelines & standards.

Validation:

1. Unit Testing: Unit testing designed in coding are executed on the code during this

validation phase. This helps to eliminate bugs at an early stage.

2. Components testing: This is associated with module design helps to eliminate defects in

individual modules.

3. Integration Testing: It is associated with high level design phase & it is performed to test

the coexistence & communication of the internal modules within the system

6

6M

(Diagram

: 2 marks,

verificatio

n

Explanati

on: 2

marks,

validation

Explanati

on: 2

marks)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2005 Certified)

__

Page 19 of 32

4. System Testing: It is associated with system design phase. It checks the entire system

functionality & the communication of the system under development with external

systems. Most of the software & hardware compatibility issues can be uncovered using

system test execution.

5. Acceptance Testing: It is associated with overall & involves testing the product in user

environment. These tests uncover the compatibility issues with the other systems available

in the user environment. It also uncovers the non-functional issues such as load &

performance defects in the actual user environment.

OR

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2005 Certified)

__

Page 20 of 32

(ii)

Ans:

Advantages of V-model:

 Simple and easy to use.

 Testing activities like planning, test designing happens well before coding. This saves a lot

of time. Hence higher chance of success over the waterfall model.

 Proactive defect tracking – that is defects are found at early stage.

 Avoids the downward flow of the defects.

 Works well for small projects where requirements are easily understood.

Disadvantages of V-model:

 Very rigid and least flexible.

 Software is developed during the implementation phase, so no early prototypes of the

software are produced.

 If any changes happen in midway, then the test documents along with requirement

documents has to be updated.

What is equivalence partitioning? Give example.

{**Note: Any other relavant example also shall be considered**}

Equivalence partitioning is a software technique that involves identifying a small set of

representative input values that produce as much different output condition as possible. It is

use to reduce test cases. This reduces the number of permutation & combination of input,

output values used for testing, thereby increasing the coverage and reducing the effort

involved in testing.

The set of input values that generate one single expected output is called a partition. When the

behavior of the software is the same for a set of values, then the set is termed as equivalence

class or partition.

Example: 1.An insurance company that has the following premium rates based on the age

group.

 A life insurance company has base premium of $0.50 for all ages. Based on the age group,

an additional monthly premium has to pay that is as listed in the table below. For example , a

person aged 34 has to pay a premium=$0.50 +$ 1.65=$2.15

 2.Based on the equivalence portioning technique, the equivalence partitions that are based on

marks are given below:

Marks result

Under 40 fail

40-100 pass

Equivalence partitioning:

Above 40 marks in subject (valid input)

Between 40 and 100 marks (valid input)

Below 40 marks (invalid input)

Below Negative marks (Invalid Input)

6M

(Explanat

ion:

4marks,

Example:

2 marks)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2005 Certified)

__

Page 21 of 32

5.

a)

Ans:

Attempt any TWO of the following :

Write the entity, purpose and attributes of the following elements of test infrastructure

management.

i) A test case database(TCDB)

ii) A defect repository

i). Test case database(TCDB)

Entity Purpose Attributes

Test case Records all the ―static‖

information about the tests
 Test case ID

 Test case name

(filename)

 Test case owner

 Associated files for the

test case

Test case- product cross-

reference

Provides a mapping between

the tests and the

corresponding product

features ; enables

identification of tests for a

given feature

 Test case ID

 Modulate ID

Test case run history Gives the history of when a

test was run and what was

the result; provides inputs on

selection of tests for

regression runs (see chapter

8)

 Test case ID

 Run date

 Time taken

 Run status

(success/failure)

Test case – Defect cross-

reference

Gives details of test cases

introduced to test certain

specific defects detected in

the product ;provides inputs

on the selection of tests for

regression runs

 Test case ID

 Defect reference#

(points to a record in the

defect repository)

16

8M

(Test

case

database(

TCDB) :

4 marks,

Defect

repositor

y: 4

marks)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2005 Certified)

__

Page 22 of 32

ii). Defect Repository:

Entity Purpose Attributes

Defect details Records all the ― static‖

information about the tests
 Defect ID

 Defect priority

/severity

 Defect priority/severity

 Defect description

 Affected product(s)

 Any relevant version

information (for

example, OS version)

 Customers who

encountered the

problem (could be

reported by the

internal testing team

also)

 Date and time of

defect occurrence

Defect test details

Provides details of test cases

for a given defect. Cross-

references the TCDB

 Defect ID

 Test case ID

Fix details

Provides details of fixes for a

given defect; cross-

references the configuration

management repository

 Defect ID

 Fix details (file

changed ,fix release

information)

Communication

Captures all the details of the

communication that

transpired for this defect

among the various

stakeholders these could

include communication

between the testing team and

development team, customer

communication, and so on.

Provides insights into

effectiveness of

communication

 Test case ID

 Defect reference #

 Details of

communication

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2005 Certified)

__

Page 23 of 32

b)

Ans:

What is code coverage testing? Explain the following types of coverage:

i) Path coverage

ii) Condition coverage

Code Coverage Testing

(1) The logical approach is to divide the code just as you did in black-box testing into its

data and its states (or program flow).

(2) By looking at the software from the same perspective, you can more easily map the

white-box information you gain to the black-box cases you‘ve already written.

(3) Consider the data first. Data includes all the variables, constants, arrays, data structures,

keyboard and mouse input, files and screen input and output, and I/O to other devices

such as modems, networks, and so on.

For example

(1) #include<stdio.h>

(2) void main()

(3) {

(4) int i , fact= 1, n;

(5) printf(―enter the number ―);

(6) scanf(―%d‖,&n);

(7) for(i =1 ;i <=n;i++)

(8) fact = fact * i;

(9) printf (―the factorial of a number is ‖%d‖, fact);

(10) }

(11)

 The declaration of data is complete with the assignment statement and the variable declaration

statements. All the variable declared are properly utilized.

i) Path Coverage

1. The most straightforward form of code coverage is called statement coverage or line

coverage.

2. If you‘re monitoring statement coverage while you test your software, your goal is to

make sure that you execute every statement in the program at least once.

3. With line coverage the tester tests the code line by line giving the relevant output.

For example

(1) #include<stdio.h>

(2) void main()

(3) {

(4) int i , fact= 1, n;

(5) printf(―enter the number ―);

(6) scanf(―%d‖, &n);

(7) for(i =1 ;i <=n; i++)

(8) fact = fact * i;

(9) printf (―the factorial of a number is ‖%d‖, fact);

(10) }

8M

(Code

coverage

testing

with

Example:

4 marks,

Path

coverage

and

condition

testing: 2

marks

each.)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2005 Certified)

__

Page 24 of 32

c)

Ans:

ii) Condition Coverage

1. Attempting to cover all the paths in the software is called path testing.

2. The simplest form of path testing is called branch coverage testing.

3. To check all the possibilities of the boundary and the sub boundary conditions and it‘s

branching on those values.

4. Test coverage criteria requires enough test cases such that each condition in a decision

takes on all possible outcomes at least once, and each point of entry to a program

or subroutine is invoked at least once.

5. Every branch (decision) taken each way, true and false.

6. It helps in validating all the branches in the code making sure that no branch leads to

abnormal behavior of the application.

7. Just when you thought you had it all figured out, there‘s yet another complication to path

testing.

8. Condition coverage testing takes the extra conditions on the branch statements into

account.

List any four features of client server application. Explain any four testing approaches of

client – server testing.

i) This type of testing usually done for 2 tier applications (usually developed for LAN)

Here we will be having front-end and backend.

ii) The application launched on front-end will be having forms and reports which will be

monitoring and manipulating data. E.g: applications developed in VB, VC++, Core

Java, C, C++, D2K, Power Builder etc.

iii) The backend for these applications would be MS Access, SQL Server, Oracle, Sybase,

MySQL, Quadbase.

iv) The tests performed on these types of applications would be– User interface testing

Manual support testing– Functionality testing– Compatibility testing & configuration

testing – Intersystem testing.

The approaches used for client server testing are

1. User interface testing: User interface testing, a testing technique used to identify the

presence of defects is a product/software under test by using Graphical user interface

[GUI].GUI Testing - Characteristics:

i) GUI is a hierarchical, graphical front end to the application, contains graphical objects

with a set of properties.

ii) During execution, the values of the properties of each objects of a GUI define the GUI

state.

iii)It has capabilities to exercise GUI events like key press/mouse click.

iv) Able to provide inputs to the GUI Objects.

v) To check the GUI representations to see if they are consistent with the expected ones.

vi) It strongly depends on the used technology.

2. Manual testing: Manual testing is a testing process that is carried out manually to find

defects without the usage of tools or automation scripting. A test plan document is

prepared that acts as a guide to the testing process to have the complete test coverage.

Following are the testing techniques that are performed manually during the test life

cycle are Acceptance Testing, White Box Testing, Black Box Testing, Unit Testing,

System Testing, Integration Testing.

8M

(Client

Server

Testing: 4

marks,

Approach

es : 4

marks, 1

mark

each)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2005 Certified)

__

Page 25 of 32

6.

a)

Ans:

3. Functional testing: Functional Testing is a testing technique that is used to test the

features/functionality of the system or Software, should cover all the scenarios including

failure paths and boundary cases.

There are two major Functional Testing techniques as shown below:

4. Compatibility testing: Compatibility testing is a non-functional testing conducted on the

application to evaluate the application's compatibility within different environments. It can

be of two types - forward compatibility testing and backward compatibility testing.

 Operating system Compatibility Testing - Linux , Mac OS, Windows

 Database Compatibility Testing - Oracle SQL Server

 Browser Compatibility Testing - IE , Chrome, Firefox

 Other System Software - Web server, networking/ messaging tool, etc.

Attempt any FOUR of the following:

List the different techniques to detect defects. Describe any two of them.

Static Techniques: Static techniques of quality control define checking the software product

and related artifacts without executing them. It is also termed ‗desk checking/verification

/white box testing‘. It may include reviews, walkthroughs, inspection, and audits Here; the

work product is reviewed by the reviewer with the help of a checklist, standards, any other

artifact, knowledge and experience, in order to locate the defect with respect to the established

criteria. Static technique is so named because it involves no execution of code, product,

documentation, etc. This technique helps in establishing ‗conformance to requirements ‗view.

Dynamic Testing: Dynamic testing is a validation technique which includes dummy or actual

execution of work products to evaluate it with expected behavior. It includes black box testing

methodology such as system testing and unit testing. The testing methods evaluate the product

with respect to requirements defined, designs created and mark it as ‗pass ‗or ‗fail‘. This

technique establishes ‗fitness for use‘ view.

Operational techniques: Operational techniques typically include auditing work products and

projects to understand whether the processes defined for development /testing are being

followed correctly o not, and also whether they are effective or not. It also includes revisiting

the defects before and after fixing and analysis. Operational technique may include smoke

testing and sanity testing of a work product.

16

4M

(List: 1

mark,

Describin

g: 1.5

marks

each)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2005 Certified)

__

Page 26 of 32

OR

The various techniques to detect defects are

a) Quick attacks.

b) Equivalence and Boundary Conditions

c) Common Failure Modes

d) State-Transition Diagrams

e) Use Cases and Soap Opera Tests

a) Quick Attacks:

i. Strengths

 The quick-attacks technique allows you to perform a cursory analysis of a system in a

very compressed timeframe.

 Even without a specification, you know a little bit about the software, so the time spent is

also time invested in developing expertise.

 The skill is relatively easy to learn, and once you've attained some mastery your quick-

attack session will probably produce a few bugs.

 Finally, quick attacks are quick.

 They can help you to make a rapid assessment. You may not know the requirements, but

if your attacks yielded a lot of bugs, the programmers probably aren't thinking about

exceptional conditions, and it's also likely that they made mistakes in the main

functionality.

 If your attacks don't yield any defects, you may have some confidence in the general,

happy-path functionality.

ii. Weaknesses

 Quick attacks are often criticized for finding "bugs that don't matter"— especially for

internal applications.

 While easy mastery of this skill is strength, it creates the risk that quick attacks are "all

there is" to testing; thus, anyone who takes a two-day course can do the work.

b) Equivalence and Boundary Conditions

i. Strengths

 Boundaries and equivalence classes give us a technique to reduce an infinite test set into

something manageable.

 They also provide a mechanism for us to show that the requirements are "covered".

ii. Weaknesses

 The "classes" in the table in Figure 1 are correct only in the mind of the person who chose

them.

 We have no idea whether other, "hidden" classes exist—for example, if a numeric number

that represents time is compared to another time as a set of characters, or a "string," it will

work just fine for most numbers.

c) Common Failure Modes

i. Strengths

 The heart of this method is to figure out what failures are common for the platform, the

project, or the team; then try that test again on this build.

 If your team is new, or you haven't previously tracked bugs, you can still write down

defects that "feel" recurring as they occur—and start checking for them.

ii. Weaknesses

 In addition to losing its potency over time, this technique also entirely fails to find "black

swans"—defects that exist outside the team's recent experience.

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2005 Certified)

__

Page 27 of 32

 The more your team stretches itself (using a new database, new programming language,

new team members, etc.), the riskier the project will be—and, at the same time, the less

valuable this technique will be.

d) State-Transition Diagrams

Figure 4: State Transition Map

i. Strengths

 Mapping out the application provides a list of immediate, powerful test ideas.

 Model can be improved by collaborating with the whole team to find "hidden" states—

transitions that might be known only by the original programmer or specification author.

 Once you have the map, you can have other people draw their own diagrams, and then

compare theirs to yours.

 The differences in those maps can indicate gaps in the requirements, defects in the

software, or at least different expectations among team members.

ii. Weaknesses

 The map you draw doesn't actually reflect how the software will operate; in other words,

"the map is not the territory."

 Drawing a diagram won't find these differences, and it might even give the team the

illusion of certainty.

 Like just about every other technique on this list, a state-transition diagram can be helpful,

but it's not sufficient by itself to test an entire application.

e) Use Cases and Soap Opera Tests

Use cases and scenarios focus on software in its role to enable a human being to do

something.

i. Strengths

 Use cases and scenarios tend to resonate with business customers, and if done as part of

the requirement process, they sort of magically generate test cases from the requirements.

 They make sense and can provide a straightforward set of confirmatory tests. Soap opera

tests offer more power, and they can combine many test types into one execution.

ii. Weaknesses

 Soap opera tests have the opposite problem; they're so complex that if something goes

wrong, it may take a fair bit of troubleshooting to find exactly where the error came from!

f) Code-Based Coverage Models

 Imagine that you have a black-box recorder that writes down every single line of code as

it executes.

i. Strengths

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2005 Certified)

__

Page 28 of 32

 Programmers love code coverage. It allows them to attach a number—an actual, hard, real

number, such as 75%—to the performance of their unit tests, and they can challenge

themselves to improve the score.

 Meanwhile, looking at the code that isn't covered also can yield opportunities for

improvement and bugs!

ii. Weaknesses

 Customer-level coverage tools are expensive, programmer-level tools that tend to assume

the team is doing automated unit testing and has a continuous-integration server and a fair

bit of discipline.

 After installing the tool, most people tend to focus on statement coverage—the least

powerful of the measures.

 Even decision coverage doesn't deal with situations where the decision contains defects, or

when there are other, hidden equivalence classes; say, in the third-party library that isn't

measured in the same way as your compiled source code is.

 Having code-coverage numbers can be helpful, but using them as a form of process

control can actually encourage wrong behaviours. In my experience, it's often best to leave

these measures to the programmers, to measure optionally for personal improvement (and

to find dead spots), not as a proxy for actual quality.

g) Regression and High-Volume Test Techniques

 People spend a lot of money on regression testing, taking the old test ideas described

above and rerunning them over and over.

 This is generally done with either expensive users or very expensive programmers

spending a lot of time writing and later maintaining those automated tests.

i. Strengths

 For the right kind of problem, say an IT shop processing files through a database, this kind

of technique can be extremely powerful.

 Likewise, if the software deliverable is a report written in SQL, you can hand the problem

to other people in plain English, have them write their own SQL statements, and compare

the results.

 Unlike state-transition diagrams, this method shines at finding the hidden state in devices.

For a pacemaker or a missile-launch device, finding those issues can be pretty important.

ii. Weaknesses

 Building a record/playback/capture rig for a GUI can be extremely expensive, and it might

be difficult to tell whether the application hasn't broken, but has changed in a minor way.

 For the most part, these techniques seem to have found a niche in IT/database work, at

large companies like Microsoft and AT&T, which can have programming testers doing

this work in addition to traditional testing, or finding large errors such as crashes without

having to understand the details of the business logic.

 While some software projects seem ready-made for this approach, others...aren't.

 You could waste a fair bit of money and time trying to figure out where your project falls.

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2005 Certified)

__

Page 29 of 32

b)

Ans:

Differentiate between quality assurance and quality control. (Any four points)

OR

Quality Assurance:

i. A part of quality management focused on providing confidence that quality requirements

will be fulfilled.

ii. All the planned and systematic activities implemented within the quality system that can

be demonstrated to provide confidence that a product or service will fulfill requirements

for quality

iii. Quality Assurance is fundamentally focused on planning and documenting those processes

to assure quality including things such as quality plans and inspection and test plans.

iv. Quality Assurance is a system for evaluating performance, service, of the quality of a

product against a system, standard or specified requirement for customers.

v. Quality Assurance is a complete system to assure the quality of products or services. It is

not only a process, but a complete system including also control. It is a way of

management.

Quality Control

i. A part of quality management focused on fulfilling quality requirements.

ii. The operational techniques and activities used to fulfill requirements for quality.

iii. Quality Control on the other hand is the physical verification that the product conforms to

these planned arrangements by inspection, measurement etc.

iv. Quality Control is the process involved within the system to ensure job management,

competence and performance during the manufacturing of the product or service to ensure

it meets the quality plan as designed.

v. Quality Control just measures and determines the quality level of products or services.

4M

(Any four

points :1

mark

each)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2005 Certified)

__

Page 30 of 32

c)

Ans:

d)

Ans:

What are the different points to be noted in reporting defects?

It is essential that you report defects effectively so that time and effort is not unnecessarily

wasted in trying to understand and reproduce the defect. Here are some guidelines:

i. Be specific:

 Specify the exact action: Do not say something like ‗Select Button B‘.

 Do you mean ‗Click Button B‘ or ‗Press ALT+B‘ or ‗Focus on Button B and click

ENTER‘.

 In case of multiple paths, mention the exact path you followed: Do not say something like

―If you do ‗A and X‘ or ‗B and Y‘ or ‗C and Z‘, you get D.‖ Understanding all the paths at

once will be difficult. Instead, say ―Do ‗A and X‘ and you get D.‖ You can, of course,

mention elsewhere in the report that ―D can also be got if you do ‗B and Y‘ or ‗C and Z‘.‖

 Do not use vague pronouns: Do not say something like ―In Application A, open X, Y, and

Z, and then close it.‖ What does the ‗it‘ stand for? ‗Z‘ or, ‗Y‘, or ‗X‘ or ‗Application A‘?‖

ii. Be detailed:

 Provide more information (not less). In other words, do not be lazy.

 Developers may or may not use all the information you provide but they sure do not want

to beg you for any information you have missed.

iii. Be objective:

 Do not make subjective statements like ―This is a lousy application‖ or ―You fixed it real

bad.‖

 Stick to the facts and avoid the emotions.

iv. Reproduce the defect:

 Do not be impatient and file a defect report as soon as you uncover a defect. Replicate it at

least once more to be sure.

v. Review the report:

 Do not hit ‗Submit‘ as soon as you write the report.

 Review it at least once.

 Remove any typing errors.

What are the things that test case specification shall identify?

1. Test cases specify the inputs, predicted results and execution conditions. Each test case

should aim to evaluate the operation of a key element or function of the system.

2. Failure of a test case, depending upon the severity of the failure, would be catalogued as

part of the overall evaluation of the suitability of the system for its intended use.

3. Test cases can start with a specific ‗form‘ that allows operator entry of data into the

system. This needs to be mapped, if the architecture is based upon an n-tier solution,

through the business logic and rules into the server systems with transactions being

evaluated both in a ‗nominal‘ mode where the transaction is a success and for those

occasions when the transaction or ‗thread‘ fails.

4. Test design may also require one or more test cases and one or more test cases may be

executed by a test procedure.

4M

(Any four

points :1

mark

each)

4M

(1 mark

each, or

any

relevant

point)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2005 Certified)

__

Page 31 of 32

e)

Ans:

Describe any four testing approaches of web application.

Web application testing, a software testing technique exclusively adopted to test the

applications that are hosted on web in which the application interfaces and other functionalities

are tested.

Web Application Testing - Techniques:

(1) Functionality Testing - The below are some of the checks that are performed but not

limited to the below list:

 Verify there is no dead page or invalid redirects.

 First check all the validations on each field.

 Wrong inputs to perform negative testing.

 Verify the workflow of the system.

 Verify the data integrity.

(2) Usability testing - To verify how the application is easy to use with.

 Test the navigation and controls.

 Content checking.

 Check for user intuition.

(3) Interface testing - Performed to verify the interface and the dataflow from one system to

other.

(4) Compatibility testing- Compatibility testing is performed based on the context of the

application.

 Browser compatibility

 Operating system compatibility

 Compatible to various devices like notebook, mobile, etc.

(5) Performance testing - Performed to verify the server response time and throughput under

various load conditions.

 Load testing - It is the simplest form of testing conducted to understand the behaviour of

the system under a specific load. Load testing will result in measuring important business

critical transactions and load on the database, application server, etc. are also monitored.

 Stress testing - It is performed to find the upper limit capacity of the system and also to

determine how the system performs if the current load goes well above the expected

maximum.

 Soak testing - Soak Testing also known as endurance testing, is performed to determine

the system parameters under continuous expected load. During soak tests the parameters

such as memory utilization is monitored to detect memory leaks or other performance

issues. The main aim is to discover the system's performance under sustained use.

 Spike testing -Spike testing is performed by increasing the number of users suddenly by a

very large amount and measuring the performance of the system. The main aim is to

determine whether the system will be able to sustain the work load.

(6) Security testing - Performed to verify if the application is secured on web as data theft

and unauthorized access are more common issues and below are some of the techniques

to verify the security level of the system.

 Injection

 Broken Authentication and Session Management

 Cross-Site Scripting (XSS)

 Insecure Direct Object References

 Security Misconfiguration

 Sensitive Data Exposure

4M

(Any four

testing

approach

es:1 mark

each)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2005 Certified)

__

Page 32 of 32

 Missing Function Level Access Control

 Cross-Site Request Forgery (CSRF)

 Using Components with Known Vulnerabilities

 Invalidated Redirects and Forwards

