MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous)
(ISO/IEC - 27001-2005 Certified)
WINTER- 16 EXAMINATION
Model Answer

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

\begin{tabular}{|c|c|c|c|}
\hline Q. \& \[
\begin{aligned}
\& \hline \text { Sub } \\
\& \text { Q. } \\
\& \mathrm{N} .
\end{aligned}
\] \& Answer \& Marking Scheme \\
\hline 1 \& \begin{tabular}{l}
a \\
(i) ii.
\end{tabular} \& \begin{tabular}{l}
Attempt any TWO \\
Factor of safety: It is defined as ratio of Maximum stress to the working stress (permissible /design stress
\[
\text { Mathematically, } \quad \text { Factor of safety }=\frac{\text { Maximum stress }}{\text { working stress } / \text { Designstress }}
\] \\
For Ductile Material, Factor of safety \(=\frac{\text { Yield stress }}{\text { working stress } / \text { Designstress }}\) \\
For Brittle material, Factor of safety \(=\frac{\text { Ultimate stress }}{\text { working stress } / \text { Designstress }}-\cdots----\) \\
In design analysis, number of parameters which are difficult to evaluate accurately such as \\
a) Variation in the properties of material like yield strength or ultimate strength. \\
b) Uncertainty in magnitude of externals forces acting on the components. \\
c) Variations in the dimensions of the components due to imperfect workmanship. In order to ensure the safety against such circumstances, factor of safety is useful in design. \\
Cotter Joint: A cotter joint is temporary joint and used to connect two coaxial rods or bars which are subjected to axial tensile and or compressive forces. \\
It consist of 1) spigot 2) socket 3) cotter \\
Application:
\end{tabular} \& 03
\(\mathbf{0 3}\)

02

\hline
\end{tabular}

Design of Hollow shaft:
Given Data: $\mathrm{T}=4750 \mathrm{~N}-\mathrm{m}=4750 \times 10^{3} \mathrm{~N}-\mathrm{mm}, \mathrm{T}=50 \mathrm{~N} / \mathrm{mm}^{2}, \mathrm{~K}=\mathrm{Di} / \mathrm{Do}=0.4$
The hollow shaft is designed on the basis of strength from the derived torsion equation.

$$
T=\frac{\pi}{16} \times D o^{3} \times \tau \times\left(1-K^{4}\right)
$$

$4750 \times 10^{3} \mathrm{~N}-\mathrm{mm}=\frac{\pi}{16} \times$ Do $^{3} \times 50 \times\left(1-0.4^{4}\right)---$
Thus $\mathrm{Do}=79.18 \mathrm{~mm} \cong 80 \mathrm{~mm}$ (Say)
$\mathrm{Di}=0.4 \times$ (So $=0.4 \times 80=32 \mathrm{~mm}$.
04 (1 Each)
c) Manufacturing Consideration: the manufacturing play a vital role in selection of material and the material should suitable for required manufacturing process.
d) Physical properties: like colour, density etc.
f) Mechanical properties: such as strength, ductility, Malleability etc.
g) Corrosion resistance: it should be corrosion resistant.
a) Ductility: the property of material which enables it to be drawn into thin wire under the action of tensile load is called as ductility.
b) Toughness: The property which resists the fracture under the action of impact loading is called as toughness. Toughness is energy for failure by fracture.
c) Creep: when a component is subjected to constant stress at a high temperature over a long
period of time ,it will undergo a slow\& permanent deformation called creep
Or it is defined as "slow and progressive deformation of material with time under constant stress at elevated temperature. E.g : Bolts \& pipes in thermal power plants
ii) Bush type flange coupling

Given Data: $\mathrm{P}=40 \mathrm{KW}=40 \times 10^{3} \mathrm{~W}, \mathrm{~N}=1000 \mathrm{rpm}, \mathrm{d}=50 \mathrm{~mm} \mathrm{dp}=45 \mathrm{~mm}, \mathrm{~T}_{\mathrm{ci}}=15$ $\mathrm{N} / \mathrm{mm}^{2}$

$$
\mathrm{P}_{\mathrm{b}}=0.45 \mathrm{~N} / \mathrm{mm}^{2}, \mathrm{~T}=25 \mathrm{~N} / \mathrm{mm}^{2}
$$

1) Power Transmitted $\mathrm{P}=\frac{2 \pi N T}{60}$
$T=\frac{P \times 60}{2 \pi N}=\frac{40 \times 103 ; X 60}{2 \pi \times 1000}=381.97 \mathrm{~N} . \mathrm{m}=381.97 \times 10^{3} \mathrm{~N} . \mathrm{mm}$
Let Number of Pins $=6$
2) Diameter of pin: $d_{1}=0.5 \mathrm{~d} / \sqrt{n}=0.5 \times 50 / \sqrt{6}=10.20$

In order to permit the bending stress induced in the pin due to compressibility of brass bush .let us modify diameter of pin $\mathrm{d} 1=20 \mathrm{~mm}$. This diameter is threaded and secured Right hand half coupling .

Let us take, diameter of the enlarged portion in the left half coupling $\mathrm{d} 1=24 \mathrm{~mm}$. A brass bush of 2 mm is fitted over the enlarged portion of pin. also brass bush carries rubber bush of 6 mm .

Diameter of rubber bush $=d_{2}=d_{1}+2 \times 2+2 \times 6=24+4+12=40 \mathrm{~mm}$.
Diameter of pitch circle of pin $=\mathrm{D} 1=2 \mathrm{xd}+\mathrm{d} 2+2 \mathrm{x} 6=100+40+12=152 \mathrm{~mm}$.
3)Bearing load acting on each pin $\mathrm{W}=\mathrm{Pb} \times \mathrm{d}_{2} \times \mathrm{l}=0.45 \times 40 \times \mathrm{l}=18 \times \mathrm{l}$

Total bearing load on all pins $=\mathrm{n} \times \mathrm{W}$
Torque transmitted by coupling $=\mathrm{T}=\mathrm{n} \times \mathrm{W} \times \mathrm{D} 1 / 2$
$381.97 \times 10^{3}=6 \times 18 \times 1 \times 152 / 2$
. $1=46.54 \mathrm{~mm}$
$\mathrm{W}=18 \times \mathrm{l}=18 \times 46.54=837.72 \mathrm{~N}$ -
4.Direct shear stress in coupling halves
$\mathrm{T}=\frac{w}{\frac{\pi}{4} d 1^{2}}=\frac{837.72}{\frac{\pi}{4} 20^{2}}=2.67 \mathrm{~N} / \mathrm{mm}^{2}$
$\sigma_{\mathrm{b}}=(\mathrm{M} / \mathrm{Z}), \quad \mathrm{M}=\mathrm{W} X(1 / 2+5)=837.72 \times(46.54 / 2+5) \quad \mathrm{Z}=(\pi / 32) 20^{3}$
$\sigma_{\mathrm{b}}=\left[837.72 \times(46.54 / 2+5) /(\pi / 32) 20^{3}\right]=30.15 \mathrm{~N} / \mathrm{mm}^{2}$
Checking of maximum stress
According to Maximum shear stress theory

$$
d_{1}=d=52 \mathrm{~mm}
$$

Outer diameter of eye, $\quad d_{2}=2 d=2 \times 52=104 \mathrm{~mm}$
Diameter of knuckle pin head and collar,

$$
d_{3}=1.5 d=1.5 \times 52=78 \mathrm{~mm}
$$

Thickness of single eye or rod end,

$$
t=1.25 d=1.25 \times 52=65 \mathrm{~mm}
$$

$$
t_{1}=0.75 d=0.75 \times 52=39 \text { say } 40 \mathrm{~mm}
$$

$$
t_{2}=0.5 d=0.5 \times 52=26 \mathrm{~mm}
$$

2. Failure of the knuckile pin in shear

Since the knuckle pin is in double shear, therefore load (P),

$$
150 \times 10^{3}=2 \times \frac{\pi}{4} \times\left(d_{1}\right)^{2} \tau=2 \times \frac{\pi}{4} \times(52)^{2} \tau=4248 \tau
$$

$$
\boldsymbol{\tau}=150 \times 10^{3} / 4248=35.31 \mathrm{MPa}
$$

The single eye or rod end may fail in tension due to the load. We know that load (F),

$$
\begin{array}{rlrl}
& & 150 \times 10^{3} & =\left(d_{2}-d_{1}\right) t \times \sigma_{1}=(104-52) 65 \times \sigma_{1}=3380 \mathrm{o}_{t} \\
\therefore \quad \sigma_{1} & =150 \times 10^{3} / 33350=44.4 \mathrm{~N} / \mathrm{mm}^{2}=44.4 \mathrm{MPa}
\end{array}
$$

4. Failure of the single gye or rod end in shearing

The single eye or rod end may fail in shearing due to the load. We know that load (P),

$$
\begin{aligned}
& 130 \times 10^{3} & =\left(d_{2}-d_{1}\right) t \times \tau=(104-52) 65 \times \tau=3380 \tau \\
\therefore & \tau & \tau 150 \times 10^{3} / 3380=44.4 \mathrm{~N} / \mathrm{mm}^{2}=44.4 \mathrm{MPa}
\end{aligned}
$$

5. Foilure of ithe single gye or rodend in crushing

The single eye or rod end may fail in crushing due to the load. We know that toad (P),

$$
\begin{array}{rlrl}
& & 150 \times 10^{3} & =d_{1} \times 1 \times \sigma_{c}=52 \times 65 \times \sigma_{c}=3380 \sigma_{c} \\
\therefore & \sigma_{c} & =150 \times 10^{3} / 3380=44.4 \mathrm{~N} / \mathrm{mm}^{2}=44.4 \mathrm{MPa}
\end{array}
$$

6. Failure of the forked end in tension

The forked end may fail in tension due to the load. We know that lond (P),

$$
\begin{array}{ll}
& 150 \times 10^{3}=\left(d_{2}-d_{1}\right) 2 t_{1} \times \sigma_{1}=(104-52) 2 \times 40 \times \sigma_{1}=4160 \sigma_{1} \\
\therefore & \sigma_{1}=150 \times 10^{3} / 4160=36 \mathrm{~N} / \mathrm{mmm}^{2}=36 \mathrm{MPa}
\end{array}
$$

7. Failure of the forked end in shear

The forked end may fail in shearing due to the load. We know that load (P),

$$
\begin{aligned}
& & 150 \times 10^{3} & =\left(d_{2}-d_{1}\right) 2 t_{1} \times \tau=(104-52) 2 \times 40 \times \tau=4160 \tau \\
& \therefore & \tau & =150 \times 10^{3} / 4160=36 \mathrm{~N} / \mathrm{mm}^{2}=36 \mathrm{MPa}
\end{aligned}
$$

8. Failure of the forked end in crushing

The forked end may fail in crushing due to the load. We know that load (P),

$$
\begin{aligned}
& & 150 \times 10^{3} & =d_{1} \times 2 t_{1} \times \sigma_{c}=52 \times 2 \times 40 \times \sigma_{c}=4160 \sigma_{c} \\
& \therefore & \sigma_{c} & =150 \times 10^{3} / 4180 \equiv 36 \mathrm{~N} / \mathrm{mm}^{2}=36 \mathrm{MPa}
\end{aligned}
$$

From above. we see that the induced stresses are less than the given design stresses, therefore.
b) \mathbf{i}

For power transmission gears, the tooth form most commonly used the involute profile as
a)Involute gears can be manufactured easily: Since the rack in an involute system has straight sides and since the generating cutters usually have rack profile, these cutters can be easily manufactured. Involute gears can be produced more accurately and at a lesser cost.
b) The gearing has a feature that enables smooth meshing despite the misalignment of center
b) ii distance to some degree.
c) For effective conjugate action i.e for maintaining a constant velocity ration, in case of involute gearing system, the center distance can be changed without affecting angular velocity ratio.
d)In involute gearing as the path of contact is a straight line and the pressure angle is constant .

2 marks each

Sketch of Protected type flanged coupling with details :

a) Transverse shear stress: When a section is subjected to two equal \& opposite forces acting tangentially across the section such that it tends to shear off across the section. The stress is produced is called as transverse stress
For Single shearing, Shear stress $\mathrm{T}=\mathrm{W} / \mathrm{A}$
For Double shearing, Shear stress $\mathrm{T}=\mathrm{W} / 2 \mathrm{~A}$
b)Compressive stress: When a body is subjected to equal \& opposite axial push forces, the stress produced is called as compressive stress. It is denoted by " σ_{c} "

$$
\sigma_{\mathrm{c}}=\frac{P}{A} \quad \mathrm{~N} / \mathrm{mm}^{2}
$$

c) Torsional shear stress: When a machine member is subjected to the action of two equal and opposite couples acting in parallel planes (or torque or twisting moment), then the machine member is said to be subjected to torsion. The stress set up by torsion is known as torsional shear stress. It is zero at the centroid axis and maximum at the outer surface.

$$
\frac{T}{J}=\frac{\mathrm{T}}{r}=\frac{G \theta}{L}
$$

Attempt any FOUR of the following

Methods of reducing stress concentration in cylindrical members with shoulders
a)ii

(d) Cylindrical component

Stress concentration can be reduced in cylindrical members with shoulders by providing fillet at sharp corners of shoulders. Fig 1. Showing cylindrical member with shoulder having sharp corners i.e change in C / S is sudden and therefore stress distribution line get disturbed .so for fig 1, stress concentration is more. fig. $2 \& 3$ members shoulder having gradual change in C / S. so here stress line maintain spacing and therefore stress concentration is less.

$\mathrm{T}=\mathrm{P} \times \mathrm{L}=800 \times 1000=800 \times 10^{3} \quad \mathrm{~N}-\mathrm{mm}$
Equivalents twisting moments
$\mathrm{Te}=\sqrt{M^{2}+T^{2}}=\sqrt{\left(80 \times 10^{3}\right)^{2}+\left(800 \times 10^{3}\right)^{2}}=804 \times 10^{3} \mathrm{~N}-\mathrm{mm}$
Also ,Equivalents twisting moments
$\mathrm{Te}=\frac{\pi}{16} x \mathrm{~d} 1^{3} x \tau_{\text {max }}$
$804 \times 10^{3}=\frac{\pi}{16} \times \mathrm{d} 1^{3} \times 70 \quad, \mathbf{d}_{\mathbf{1}}=\mathbf{3 8 . 8 1} \mathbf{~ m m} \cong \mathbf{4 4} \mathbf{~ m m}$
(assume diameter more than 40 mm)
Step 4) Design of key : Consider Key is rectangular
$W=d / 4=40 / 4=10 \mathrm{~mm} \quad t=d / 6=40 / 6=6.67 \mathrm{~mm}$

$$
\mathrm{T}=W x l x \tau x \frac{d}{2}
$$

$$
800 \times 10^{\mathbf{3}}=10 \times l \times 70 \times \frac{40}{2}
$$

$l=57.14 \mathrm{~mm}$
Length of key l may be taken as boss length $l 2=50 \mathrm{~mm}$ -
Step 5) Considering bending failure of lever, we can determine cross section of lever.
c)

Bending moment on lever,
$\mathrm{R}_{\mathrm{b}}=\mathrm{d}_{2} / 2=64 / 2=32 \mathrm{~mm}$
$\mathrm{M}=\mathrm{P} \mathrm{X}\left[\mathrm{L}-\mathrm{R}_{\mathrm{b}}\right]=800 \times[1000-32]=774.4 \times 10^{3} \mathrm{~N} . \mathrm{mm}$
$\sigma_{\mathrm{b}}=(\mathrm{M} / \mathrm{Z}), \quad \mathrm{Z}=1 / 6 \mathrm{t} \mathrm{B}^{2}=1.5 \mathrm{Xt}^{3}$
$73=\left(774.4 \times 10^{3} / 1.5 \mathrm{Xt}^{3}\right), \mathbf{t}=\mathbf{1 9 . 9} \mathbf{~ m m} \cong \mathbf{2 0} \mathbf{m m} \& \mathbf{B}=\mathbf{3 t}=\mathbf{3} \mathbf{x} \mathbf{2 0}=\mathbf{6 0} \mathbf{m m}$

Consideration in design of key:

1) Power to be transmitted.
d)
2) Tightness of fit
3) Stability of connection

Any 4

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous)
(ISO/IEC - 27001-2005 Certified)
WINTER- 16 EXAMINATION
Model Answer
Subject Code: 17610

	Sub	Answer	Marking
Q.	Q.		Scheme
No.	N.		

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

high speed or supply of lubricant fails. it is stick-slip phenomenon in which alternate shearing and welding takes place rapidly at high spots.

Remedies- by proper designing of the parameters such as speed, pressure and proper flow of lubricant, so that the temperature at the rubbing faces is within the permissible limits.
4)Abrasive wear- the foreign particles of lubricants such as dirt, dust or burr enter between the tooth and damage the form of tooth

Remedies- by providing filters for the lubricating oil or using high viscosity lubricant oil which unable the formation of thicker oil film and hence permits easy passage of such particles with ought damage of gear tooth surface.
5)Corrosive wear- due to presence of corrosive elements such as additives present in the lubricating oils.

Remedies- proper anti corrosive additives should be used.

Importance of Aesthetic considerations in design -

Each product is to be design to perform a specific function or a set of functions to the satisfaction of customers. In a present days of buyer's market, with a number of products available in the market are having most of the parameters identical,the appearance of the product is often a major factor in attracting the customer.

For any product, there exists a relationship between the functional requirement and the appearance of a product. The aesthetic quality contributes to the performance of the product, through the extent of contribution varies from product to product. The job of industrial designer is to create new shapes and forms for the product which are aesthetically appealing.

For ex.(1) The chromium plating of automobile components improves the corrosion resistance along with the appearance.(2) the aerodynamic shape of the car improves
(explanation 4 marks)
a) i.

Attempt any TWO (2X8)

(i) efficiency of screw $\eta=\tan \alpha / \tan (\alpha+\phi)$

And for self locking screws, $\phi \geq \alpha$ or $\alpha \leq \phi$
Efficiency $\leq \tan (\phi) / \tan (\phi+\phi)$
$\leq \tan \phi / \tan 2 \phi$
$\leq \tan \phi /\left(2 \tan \phi /\left(1-\tan ^{2} \phi\right)\right)$
$\leq \tan \phi \times\left(1-\tan ^{2} \phi\right) /(2 \tan \phi)$
$\leq 1 / 2-\tan ^{2} \phi / 2$
ii. From this expression efficiency of self locking screw is less than 50\%
self locking property of the threads-if $\phi>\alpha$ the torque required to lower the load will

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

be positive, indicating that an effort is applied to lower the load. if friction angle is greater than the helix angle or coefficient of friction is greater than the tangent of helix angle
applications- for very large use of screw in threaded fastener, screws in screw top container lids, vices, C-clamps and screw jacks
(i) it is easier to overextend the extension spring. Compression springs will bottom out before the overextend. Also it seems like the tensile strength will be weaker at the attachment point for the extension spring, making it generally larger and more cumbersome to correct the deficiency
self locking property -
torque required to lower the load, $\mathrm{T}=\mathrm{W} \tan (\phi-\alpha) \mathrm{xd} / 2$ self locking property of the threads-if $\phi>\alpha$ the torque required to lower the the load will be positive, indicating that an effort is applied to lower the load. if friction angle is greater than the helix angle or coefficient of friction is greater than the tangent of helix angle(2marks)

Over hauling of screws-

in the above expression, if $\phi<\alpha$, then the torque required to lower the load will be negative. The load will start moving downward without the application of any torque, such a condition is known as over hauling of screws.(2marks)
(i) definition of (1) Basic static load rating-static radial load or axial load which corresponds to a total permanent deformation of the ball and race, at the most heavily stressed contact,equal to 0.001times the ball diameter.
(2) basic dynamic load rating- the constant stationary radial load or a constant axial load which a group of of apparently bearings with stationary outer ring can endure for a rating life of one million revolutions with only 10% failure.
(3)Limiting speed- it is the empirically obtained value for the maximum speed at bearings can be continuously operated without failing from seizure or generation of excessive heat.
ii. Physical characteristics of good bearing material- compressive strength, fatigue strength, embeddability, bondability, corrosion resistant, thermal conductivity, thermal expansion, conformability

Attempt any four(4×4)

a) Acme thread is stronger-1 mark

Direct tensile load in each bolt, $W_{t 1}=W_{H} / 5=38971 / 5=7794.20 \mathrm{~N}$
Turning moment due to W_{H} about G

$$
\mathrm{T}_{\mathrm{H}}=\mathrm{W}_{\mathrm{Hx}} 25=38971 \times 25=974275 \mathrm{~N} \text { (anticlockwise) }
$$

direct shear load on each bolt $=W s=W v / 5=22500 / 5=4500 \mathrm{~N}$
Turning moment due to Wv about edge of the bracket,
$\mathrm{Tv}=\mathrm{W}_{\mathrm{v}} \times 175=22500 \times 175=3937500 \mathrm{~N}-\mathrm{mm}$ (clockwise (clockwise)
Net turning moment $=3937500-974275=2963225 \mathrm{~N}$ \qquad
total moment of the load on the bolts @ th tilting edge

$$
\begin{equation*}
=2 w x\left(L_{1}\right)^{2}+2 w x\left(L_{2}\right)^{2}=2 x w \times(50)^{2}+2 x w \times(150)^{2}=50000 w N-m m- \tag{II}
\end{equation*}
$$

from equations (I) and(II)
$2963225 \mathrm{~N}=50000 \mathrm{w}$ N-
$\mathrm{w}=592.645 \mathrm{~N}$
max. tensile load on each of the upper bolt,

$$
W t_{2}=W L_{2}=592.645 \times 150=88896.75 \mathrm{~N}
$$

tensile load on each of the upper bolt,
$\mathrm{Wt}=\mathrm{W}_{\mathrm{t} 1}+\mathrm{Wt}_{2}=7794.20+88896.75=96690.95 \mathrm{~N}$
equivalent tensile load $=W$ te $=1 / 2\left(W t+V^{-}(W t)^{2}+4(W s)^{2}\right.$

$$
=1 / 2(96690.95+97108.91)=96899.93 \mathrm{~N}
$$

Tensile load on each bolt $=\Pi / 4(\mathrm{dc})^{2} \mathrm{x} 6 \mathrm{t}=0.7854 \mathrm{x}(\mathrm{dc})^{2} \times 70$

$$
\mathrm{dc}=41.98 \mathrm{~mm}
$$

from coarse series the standard core dia. Is 49.0177 mm and corresponding size of the bolt is M56
thickness of the arm of the bracket
cross sectional area of the $\operatorname{arm} \mathrm{A}=\mathrm{bXt}=100 \mathrm{xt}$

