

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

(ISO/IEC - 27001-2005 Certified)
WINTER- 16 EXAMINATION
Model Answer
Subject Code:
17610

\begin{tabular}{|c|c|c|c|}
\hline \& iii) \& \begin{tabular}{l}
Characteristics of Acme thread : (i)thread angle is \(29^{\circ}\) (ii) permit the use of split nut (iii)easy to manufacture (iv) max. bursting pressure on the thread \\
Characteristics of Square thread : (i) zero profile thread angle (ii) minimum bursting pressure on the nut
\end{tabular} \& 04

02
02

02

\hline b \& i) \& | Main considerations in machine design |
| :--- |
| Type of loads and stresses caused by the load: the load on a machine component, may act in several ways, due to which, the internal stresses are set up. |
| Mechanism: the successful operation of any machine depends largely upon the simplest arrangement of the parts, which will give desired motion |
| Selection of material: designer should know the deep knowledge of properties of materials and behavior under working conditions | \& | Any 6 pts. |
| :--- |
| 6 marks |

\hline
\end{tabular}

Convenient and economical features: the designed machine must be convenient to operate and cost wise economical for the customer

Use of standard part: reduced the overall cost
Safety of operation: to avoid accidental hazards, care should be taken by designer
Workshop facilities: a designer should be familiar with the limitations of his employer's workshop, in order to avoid necessity of vendors

Number of machines to be manufactured
Cost of construction and assembly: designed machine should be cheap and easy to assem6ble

Frictional resistance and lubrication: designer should provide necessary lubrication to the parts, where there is a sliding, rolling and rotating motion

Given : $\mathrm{P}=50 \mathrm{KW}=50000 \mathrm{~W}$
Speed $=600 \mathrm{rpm}$
$\mathrm{k}=\mathrm{Di} / \mathrm{do}=0.8$
$\sigma_{\mathrm{yt}}=380 \mathrm{~N} / \mathrm{mm} 2$
Factor of safety $=4$
Design stress $\sigma_{\mathrm{t}}=\sigma_{\mathrm{yt}} /$ fos $=380 / 4=95$
Shear stress $=\tau=\sigma_{t} / 2=95 / 2=47.5 \mathrm{~N} / \mathrm{mm} 2$
Torque transmitted by hollow shaft $T=P \times 60 / 2 \pi N$

$$
T=50000 \times 60 / 2 \pi \times 600
$$

$\mathrm{T}=\pi / 16 \mathrm{X} \tau \mathrm{X} \mathrm{do}{ }^{3}\left(1-\mathrm{k}^{4}\right)$
$795670=\pi / 16 \mathrm{X} 47.5 \mathrm{X} \mathrm{do}^{3}\left(1-0.8^{4}\right)$
$\mathrm{Do}^{3}=144529.313$
Do $=53 \mathrm{~mm}$ say 55 mm
$\mathrm{Di}=0.8 \mathrm{X} 55=44 \mathrm{~mm}$

Attempt any TWO
In the first type of levers, the fulcrum is in between the load and effort. In this case, the effort arm is greater than load arm, therefore M.A. obtained is more than 1

Application: Bell crank levers used in railway signaling arrangement, rocker arm in I.C.
Engines, handle of a hand pump, hand wheel of a punching press, beam of a balance, foot lever (any 1)

In the second type of levers, the load is in between the fulcrum and effort. In this case, the effort arm is more than the load arm, therefore M.A. is more than 1.

Application: levers of loaded safety valves, wheel barrow, nut cracker (any1)
In the third type of levers, the effort is in between the fulcrum and load. Since the effort arm, in this case, is less than the load arm, therefore M.A. is less than 1

Application: a pair of tongs, the treadle of sewing machine (any 1)

$\mathrm{T}=$ Torque transmitted by the shaft ,
$\mathrm{F}=$ tangential force acting at the circumference of the shaft,

\begin{tabular}{|c|c|c|c|}
\hline \& \& \multicolumn{2}{|l|}{\begin{tabular}{l}
MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION \\
(Autonomous) \\
(ISO/IEC - 27001-2005 Certified) \\
WINTER- 16 EXAMINATION
\end{tabular}} \\
\hline 3 \& C i

ii.

a. \& | ```d = dia. Of shaft, 1 = length of key, \(\mathrm{w}=\) width of key \(t=\) thickness of key \(\tau\) and \(\sigma_{c}=\) shear and crushing stress for the material of key``` |
| :--- |
| Consider shearing of key, the tangential shearing force acting at the circumference of the shaft , $\mathrm{F}=$ Area resisting shearing X shear stress $=1 \mathrm{xw} \times \tau$ |
| Torque transmitted by the shaft, $\mathrm{T}=\mathrm{FXd} / 2=1 \times \mathrm{x} \times \tau \mathrm{xd} / 2$ |
| Consider crushing of key, the tangential crushing force acting at the circumference of the shaft, $\mathrm{F}=$ Area resisting crushing x crushing stress $=1 \mathrm{xt} / 2 \times \sigma_{c}$ |
| Torque transmitted by the shaft , $\mathrm{T}=\mathrm{FX} \mathrm{d} / 2=1 \mathrm{xt} / 2 \times \sigma_{\mathrm{c}} \times \mathrm{d} / 2$ |
| The key is equally strong in shearing and crushing ,if |
| lxw x $\quad \tau \quad \mathrm{xd} / 2=1 \mathrm{xt} / 2 \times \sigma_{c} \mathrm{Xd} / 2$ |
| $\mathrm{w} / \mathrm{t}=\sigma_{\mathrm{c}} / 2 \tau$ |
| as, $\mathrm{w}=\mathrm{t}$ |
| therefore $\sigma_{c}=2 \tau$ |
| (i) Applications of maximum shear stress theory : for ductile material, crank shaft, propeller shafts, c frames |
| (ii) Applications of maximum principle normal stress theory: for brittle material, machine spindle, machine beds, c frames, overhang crank |
| Applications of cotter joint: cotter foundation bolt, big end of the connecting rod of a steam engine, joining piston rod with cross head, joining two rods with a pipe |
| Applications of knuckle joint: link of bicycle chain, tie bar of roof truss, link of suspension bridge, valve mechanism, fulcrum of lever, joint for rail shifting mechanism |
| Attempt any four |
| 30 Ni 16 Cr 5 : alloy steel |
| carbon 0.3% of average, Nickel 16%, chromium 5\% |
| 40C8 : Plain carbon steel |
| carbon 0.4% of average, manganese 0.8% |
| FeE230 : Steel with yield strength of $230 \mathrm{~N} / \mathrm{mm} 2$ | \& 02

\hline
\end{tabular}

the threaded portion such that the cross sectional area of the shank becomes equal to the area of the threaded portion

If bolts of uniform strength are not used a large portion of impact energy will be absorbed in the threaded portion and relatively a small portion of energy is absorbed by a shank. This uneven distribution of impact energy may lead to the fracture of the bolt in threaded portion .hence bolts of uniform strength are preferred.

	02
Bolts of Unitorm Strength $\mathrm{F}=$ tangential force acting at the circumference of the shaft, $\mathrm{d}=$ dia. Of shaft, $1=$ length of key, $\mathrm{w}=$ width of key $\mathrm{t}=$ thickness of key τ and $\sigma_{c}=$ shear and crushing stress for the material of key	04
Consider shearing of key, the tangential shearing force acting at the circumference of the shaft, $\mathrm{F}=$ Area resisting shearing X shear stress $=1 \mathrm{xw} \times 6 \mathrm{~s}$ Torque transmitted by the shaft, $\mathrm{T}=\mathrm{FXd} / 2=$ lxw x $6 \mathrm{~s} \times \mathrm{d} / 2$ Consider crushing of key, the tangential crushing force acting at the circumference of the shaft, $\mathrm{F}=$ Area resisting crushing x crushing stress $=1 \mathrm{xt} / 2 \times 6 \mathrm{c}$ Torque transmitted by the shaft , $\mathrm{T}=\mathrm{FXd} / 2=1 \mathrm{xt} / 2 \times 6 \mathrm{c} \mathrm{Xd} / 2$ The key is equally strong in shearing and crushing ,if $\begin{aligned} & 1 \mathrm{xw} \times 6 \mathrm{~s} \times \mathrm{d} / 2=1 \mathrm{xt} / 2 \times \sigma_{\mathrm{c}} \mathrm{X} \mathrm{~d} / 2 \\ & \mathrm{w} / \mathrm{t}=6 \mathrm{c} / 2 \tau \\ & \sigma_{\mathrm{c}}=2 \tau \end{aligned}$	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous)
(ISO/IEC - 27001-2005 Certified)
WINTER- 16 EXAMINATION

Attempt any ONE of the following

Design procedure of Shaft on the Basis of torsional rigidity.
Torsional rigidity. The torsional rigidity is important in the case of camshaft of an I.C.engine where the timing of the valves would be affected. The permissible amount of twist should not exceed 0.25° per metre length of such shafts. For line shafts or transmission shafts, deflections 2.5 to 3 degree per metre length may be used as limiting value. The widely used deflection for the shafts is limited to 1 degree in a length equal to twenty times the diameter of the shaft.

The torsional deflection may be obtained by using the torsion equation, Diameter of shaft on the basis of rigidity

$$
\frac{T}{J}=\frac{G \theta}{L}
$$

Where, $\boldsymbol{\theta}=$ Torsional deflection or angle of twist in radians,
$\boldsymbol{T}=$ Twisting moment or torque on the shaft, N.mm
$\boldsymbol{J}=$ Polar moment of inertia of the cross-sectional area about the axis of rotation,

L=Length of shaft in mm $\mathrm{G}=$ Modulus of rigidity in $\mathrm{N} / \mathrm{mm}^{2}$
$J=\frac{\pi}{32} \times d^{4}----------$ For solid shaft
$J=\frac{\pi}{32} \times\left(d o^{4}-d i^{4}\right)---------$-For Hollow shaft
Two Applications:
Propeller shaft of automobile, marine engine shaft and Shaft of pump and motor

S-N Curve:

Endurance Limit: It is defined as maximum value of the completely reversed bending stress which a polished standard specimen can withstand without failure, for infinite number of cycles (usually 107 cycles).It is known as endurance or fatigue limit (σe).

Need of Endurance Limit in Machine Design:
Endurance limit is used to describe a property of materials: the amplitude (or range) of
cyclic stress that can be applied to the material without causing fatigue failure.
Attempt Any TWO
Design of power Screw:
Given Data:
$\mathrm{W}=15 \mathrm{KN}=15 \times 10^{3} \mathrm{~N}, \sigma_{\text {cnut }}=85 \mathrm{~N} / \mathrm{mm}^{2}, \tau_{\text {nut }}=37 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{P}_{\mathrm{b}}=5 \mathrm{~N} / \mathrm{mm}^{2} \cdot \mu=0.14$
Design of Screw:

1) Core Diameter of screw :

Consider the screw under pure compression to find diameter of screw
$\sigma c=\frac{W}{\frac{\pi}{4} X(d c)^{2}}, \quad 85=\frac{15 x(10)^{3}}{\frac{\pi}{4} X(d c)^{2}} \mathrm{~d}_{\mathrm{C}}=14.99$ say 15 mm
Do $=$ Dc $/ 0.84=15 / 0.84=17.86$ Say 18 mm
$\mathrm{D}=(\mathrm{do}+\mathrm{dc}) / 2=(15+18) / 2=16.5 \mathrm{~mm}$
$\mathrm{P}=$ do- $\mathrm{dc}=18-15=3 \mathrm{~mm}$
ii)Length of Nut :

The bearing pressure between the thread
$P b=\frac{w}{\frac{\pi}{4} X\left(d o^{2}-d c^{2}\right) n} \quad, 5=\frac{15 x(10)^{3}}{\frac{\pi}{4} X\left(18^{2}-15^{2}\right) n}$,
$\mathrm{n}=38.60$ i.e $=40$ contacts
Height of Nut: $h=n \times p=40 \times 3=120 \mathrm{~mm}$
Helix angle $\alpha=\tan ^{-1} \frac{\text { Lead }}{\pi x 16.5}=3.31^{\circ}$
$\phi=\tan ^{-1} \mu=\tan ^{-1} x 0.12=6.84^{\circ}$
Torque required lifting the load
$\mathrm{T}_{1}=\mathrm{W} \cdot \tan (\alpha+\varnothing) \frac{d}{2}$
$\mathrm{T}_{1}=15 \times 10^{3} \tan (3.31+6.84) \frac{16.5}{2}=22159.13 \mathrm{~N} . \mathrm{mm}$
As collar friction is Neglecting, $\mathrm{T}_{2}=0$
Total Torque required to lift the load $=\mathrm{T}_{1}=22159.13 \mathrm{~N} . \mathrm{mm}$
III) Efficiency of power screw :

$$
\tilde{n}=\frac{\mathrm{W} \cdot \tan (\alpha) \frac{d}{2}}{T}
$$

$\frac{=\left(15 \times 10^{3} \tan (3.31) 16.5 / 2\right)}{22159.13}=0.323=32 \%$
IV)Shear stresses in threads of screw \& nut :

Shear stress induced in the screw thread
$\tau=\frac{W}{\pi X(d c) X t n} \quad$ as $\mathrm{t}=\mathrm{p} / 2$
$\tau=\frac{50 \times 10^{3}}{\pi X(15) \times 1.5 \times 40} \quad=5.30 \mathrm{~N} / \mathrm{mm}^{2}$
Shear stress induced in the Nut thread
$\tau=\frac{W}{\pi X(d o) X t n} \quad$ as $\mathrm{t}=\mathrm{p} / 2$
$\tau=\frac{50 \times 10^{3}}{\pi X(18) \times 1.5 \times 40} \quad=4.42 \mathrm{~N} / \mathrm{mm}^{2}$
b. Design of Helical Compression Spring:

Given Data: $\mathrm{W}=100 \mathrm{~N}, \delta=15 \mathrm{~mm}$,
$\tau=100 \mathrm{~N} / \mathrm{mm}^{2}, \mathbf{G}=\mathbf{8 4 \times 1 0} \mathbf{~} \mathbf{N} / \mathrm{mm}^{2}$
(actually in question paper $\mathrm{G}=4 \mathrm{MPa}$ is given, but it is not a correct value it could be a printing mistake)
$\mathrm{C}=12$
$\mathrm{C}=\mathrm{D}_{\mathrm{m}} / \mathrm{d}=12$,
$\mathrm{Ks}=1+\frac{1}{2 C}=1+\frac{1}{2 \times 12}=1.04$ (Neglecting curvature effect)
$\tau=K s \frac{8 W C}{\pi d^{2}}, 100=1.04 \times \frac{8 \times 100 \times 12}{\pi X d^{2}} \cdot \mathrm{~d}=5.6 \mathrm{~mm}$ Say 6 mm
ii. \quad Spring diameter : $\mathrm{D}=\mathrm{CX} \mathrm{d}=12 \mathrm{X} 6=72$
iii. No of turns:

$$
\delta=\frac{8 W D^{3} n}{G d^{4}}
$$

$$
15=\frac{8 \times 100 \times 72^{3} n}{84 \times 10^{3} \times 6^{4}} \mathrm{n}=5.47 \text { i.e } 6 \text { turns }
$$

Assuming squared $\&$ grounded ends ,total number of truns is given by $n^{\prime}=n+2=6+2=8$
iv. \quad Stiffness of spring $\mathrm{K}=\mathrm{W} / \delta=100 / 15=6.66$
(Note: spring is designed by considering $G=84 \times 10^{3} \mathrm{~N} / \mathrm{mm}^{2}$ instead of 4 Mpa)

Steps Involved in selection of a proper ball bearing
from Manufacture's Cataloge

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous)
(ISO/IEC - 27001-2005 Certified)
WINTER- 16 EXAMINATION
Model Answer \quad Subject Code: 17610
Attempt any FOUR of the following
Derivation of strength equation for parallel fillet weld subjected to tensile load
The parallel fillet welded joints are designed for shear strength. Consider a double parallel fillet welded joint as shown in Fig.

(大) Combraraton of tranguerse
and parallel fille tweld.

$$
A=0.707 s \times l
$$

If τ is the allowable shear stress for the weld metal, then the shear strength of the joint
for single parallel fillet weld,
$P=$ Throat area \times Allowable shear stress $=0.707 s \times l \times \tau$ and shear strength of the joint for double parallel fillet weld,
$P=2 \times 0.707 \times s \times l \times \tau=1.414 s \times l \times \tau$

Application of Leaf spring

(Any Two)
Bus/truck/Car suspension springs, diving board,

Sketch of Leaf Spring of semi elliptical Type

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

Given Data:

$$
\mathrm{D}=250 \mathrm{~mm}, \mathrm{P}=1.5 \mathrm{~N} / \mathrm{mm}^{2}, \mathrm{n}=12 \text { Nos. }, \sigma \mathrm{t}=30 \mathrm{Mpa}
$$

The upward force on the cover =
$P=\frac{\pi D^{2} P}{4}, P=\frac{\pi X 250^{2} X 1.5}{4}=73631 \mathrm{~N}$
Resisting force offered by 12 bolts

$$
P=\frac{\pi \mathrm{xdc}^{2} \mathrm{x} \sigma \mathrm{x} \mathrm{n}}{4}
$$

$73631=\frac{\pi \times \mathrm{dc}^{2} \times 30 \times 12}{4}, \mathrm{dc}=16.13 \mathrm{~mm}$
Do $=$ dc $/ 0.84=16.13 / 0.84=19.21 \mathrm{~mm}$
Nominal diameter of bolts $=19.21 \mathrm{~mm} .=20 \mathrm{~mm}$
Differentiate between sliding \& rolling contact bearing Any 4
d.

SR.NO	Parameter	Sliding contact bearing	Rolling contact bearing
$\mathbf{1}$	Size	large	Small
$\mathbf{2}$	starting torque	High	low
$\mathbf{3}$	noise	Less noise	High noise
$\mathbf{4}$	Life	Less life	Long life
$\mathbf{5}$	Cost	Less cost	More costly
$\mathbf{6}$	Coeff. of friction	High	less

e.

Given:

$\mathrm{C}=26 \mathrm{KN}, \mathrm{L}_{10 \mathrm{~h}}=8000 \mathrm{~h}, \mathrm{n}=300 \mathrm{rpm}$
Bearing life (L_{10})
$\mathrm{L} 10=\frac{60 n(\mathrm{~L} 10 \mathrm{~h})}{10^{6}}, \mathrm{~L} 10=\frac{60 \times 300 \times 8000}{10^{6}}=144$ million rev.
Equivalent radial load
$\mathrm{C}=\mathrm{P}\left(\mathrm{L}_{10}\right)^{0.3} \quad, \mathrm{P}=26000 /(144)^{0.3}=5854.16 \mathrm{~N}$
$\mathrm{Fr}=\mathrm{P}=5854.16 \mathrm{~N}$

