Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and Communication Skills.)
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by the candidate and those in the model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and the model answer.
6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 1	(A) (a) Ans.	Attempt any THREE of the following :		(12)
		Define limit state and state types of various limit states. Limit State : It may be defined as the acceptable limit for the safety and serviceability of the structure before failure occurs.	2	
		Types of various limit states: (1) Limit state of collapse (a) Flexure (b) Shear (c) Torsion (2) Limit state of serviceability (a) Deflection (b) Cracking	1 1	
	(b) Ans.	State the functions of reinforcement. Functions of reinforcement are as follows : 1.In case of slab, beams and wall of water tanks, reinforcement is mainly provided to carry direct or bending tensile stresses.		
		2.In case of columns the steel is provided to resist the direct compressive stress as well as bending stresses if any. 3.In case of beams stirrups are provided to resist the diagonal tension due to shear and hold the main steel in position.	1 each (any four)	4
		4.The box type mesh of reinforcement is provided to resist torsion. 5.The steel is provided in the form of rectangular, circular, lateral ties or spirals to prevent bucking of main bars in column.		
		6.The distribution steel is provided to distribute the concentrated loads and to reduce the effects of temperature and shrinkage and to hold main bars in position.		

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 1	Ans.	Given : To find: $\mathrm{b} \quad=200 \mathrm{~mm}$ $\mathrm{M}_{\mathrm{u}}=?$ $\mathrm{~d} \quad=450 \mathrm{~mm}$ $\mathrm{~A}_{\mathrm{st}}=?$ $\mathrm{Md}=150 \mathrm{kNm}=150 \times 10^{6} \mathrm{Nmm}$ $\mathrm{f}_{\mathrm{ck}}=30 \mathrm{~N} / \mathrm{mm}^{2}$ $\mathrm{f}_{\mathrm{y}}=415 \mathrm{~N} / \mathrm{mm}^{2}$		
		Solution : $\begin{aligned} & \mathrm{Mu}_{\text {lim }}=(0.138) \times \mathrm{fck} \times \mathrm{b} \times \mathrm{d}^{2}=(0.138) \times 30 \times 200 \times 450^{2} \\ & \mathrm{Mu}_{\text {lim }}=167.67 \times 10^{6} \mathrm{Nmm} \quad \text { OR } \\ & \mathrm{Mu}_{\text {lim }}=167.67 \mathrm{kNm} \end{aligned}$	1	
			1	
		Section is under - reinforced.	1	
		$\begin{aligned} \text { Ast } & =\frac{0.5 \times \mathrm{fck}}{\mathrm{fy}} \times\left[1-\sqrt{1-\frac{4.6 \times \mathrm{Md} \times 10^{6}}{\mathrm{fck} \times \mathrm{b} \times \mathrm{d}^{2}}}\right] \times \mathrm{b} \times \mathrm{d} \\ & =\frac{0.5 \times 30}{415} \times\left[1-\sqrt{1-\frac{4.6 \times 150 \times 10^{6}}{30 \times 200 \times 450^{2}}}\right] \times 200 \times 450 \\ \text { Ast } & =1114.669 \mathrm{~mm}^{2} \end{aligned}$	1 1	6
Q. 2		Attempt any TWO of the following :		(16)
	(a)	Design a cantilever slab of 2 m span carrying super imposed load of $3 \mathrm{kN} / \mathrm{m}^{2}$ including floor finish. Adopt M 20 and Fe 415 steel. Sketch the c / s of slab showing all details. (No check required). Take end bearing as $\mathbf{2 3 0} \mathbf{~ m m}$. (NOTE : Answer may vary according to assumptions made by students)		
	Ans.	Given: L $\quad=2 \mathrm{~m}=2000 \mathrm{~mm}$ $\mathrm{LL}+\mathrm{FF}=3 \mathrm{kN} / \mathrm{m}^{2}$ End bearing $=230 \mathrm{~mm}$ $\begin{aligned} & \mathrm{f}_{\mathrm{ck}}=20 \mathrm{~N} / \mathrm{mm}^{2} \\ & \mathrm{f}_{\mathrm{y}}=415 \mathrm{~N} / \mathrm{mm}^{2} \end{aligned}$ To find : $\mathrm{D}=?$ Ast in both direction $=$?		
		Assumptions: $C=15 \mathrm{~mm}, \phi_{\mathrm{x}}=10 \mathrm{~mm}, \phi_{\mathrm{y}}=8 \mathrm{~mm}$		

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 2	(a)	Step (5)		
		Main steel and its spacing		
		$\mathrm{A}_{\mathrm{st}}=\frac{0.5 \mathrm{f}_{\mathrm{ck}}}{\mathrm{f}_{\mathrm{y}}}\left[1-\sqrt{1-\frac{4.6 \times \mathrm{Mu} \times 10^{6}}{\mathrm{f}_{\mathrm{ck}} \mathrm{bd} \mathrm{~d}^{2}}}\right] \mathrm{bd}$		
		$\mathrm{A}_{\mathrm{st}}=\frac{0.5 \times 20}{415}\left[1-\sqrt{1-\frac{4.6 \times 26.209 \times 10^{6}}{20 \times 1000 \times(180)^{2}}}\right] \times 1000 \times 180$		
		$\mathrm{A}_{\mathrm{st}}=424.232 \mathrm{~mm}^{2}$		
		$\mathrm{A}_{\mathrm{st} \min }=\frac{0.12}{100} \times 1000 \times 200=240 \mathrm{~mm}^{2}$	1	
		$\mathrm{A}_{\mathrm{st}}=424.232 \mathrm{~mm}^{2}<\mathrm{A}_{\text {stmin }}=240 \mathrm{~mm}^{2}$		
		Hence, $\mathrm{A}_{\mathrm{st}}=424.232 \mathrm{~mm}^{2}$		
		Spacing of bar Min. of		
		$\mathrm{S}_{\mathrm{x}}=\frac{1000 \times \mathrm{A} \phi_{\mathrm{x}}}{}=\underline{1000 \times \frac{\pi}{4}(10)^{2}}=185.134 \mathrm{~mm}$		
		a) $\quad \mathrm{S}_{\mathrm{x}}=\frac{\mathrm{A}_{\mathrm{st}}}{424.232}=185.134 \mathrm{~mm}$		
		b) $\quad \mathrm{S}_{\mathrm{x}}=3 \mathrm{~d}=3 \times 180=540 \mathrm{~mm}$		
		c) $\mathrm{S}_{\mathrm{x}}=300 \mathrm{~mm}$		
		$\mathrm{S}_{\mathrm{x}}=180 \mathrm{~mm} \mathrm{c} / \mathrm{c}$		
		Provide $10 \mathrm{~mm} \varphi$ bars @ $180 \mathrm{~mm} \mathrm{c} / \mathrm{c}$		
		Step 6)		
		$\mathrm{Ast}_{\mathrm{y}}=\mathrm{Ast}_{\min }=\frac{0.12}{100} \times 1000 \times 200=240 \mathrm{~mm}^{2}$	1	8
		Assuming, $8 \mathrm{~mm} \phi$ bars.		
		Spacing of bar $=$ Min. of		
		$1000 \times \mathrm{A} \phi_{\mathrm{y}} \quad 1000 \times \frac{\pi}{4}(8)^{2}$		
		a) $\mathrm{S}_{\mathrm{y}}=\frac{\mathrm{A}_{\mathrm{st} y}}{\mathrm{~A}_{\mathrm{y}}}=\frac{4}{240}=209.439 \mathrm{~mm}$		
		b) $\mathrm{S}_{\mathrm{y}}=5 \mathrm{~d}=5 \times 180=900 \mathrm{~mm}$		
		c) $\quad \mathrm{S}_{\mathrm{y}}=450 \mathrm{~mm}$		
		$\mathrm{S}_{\mathrm{y}}=200 \mathrm{~mm} \mathrm{c} / \mathrm{c}$		
		Provide $8 \mathrm{~mm} \varphi$ bars @ $200 \mathrm{~mm} \mathrm{c/c}$		

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 2	(a) (b) Ans.	Design a roof slab for a room having inner dimensions as 3.0 X 4.5 m . The slab is simply supported on four sides of walls of $\mathbf{2 3 0} \mathbf{~ m m}$ thick and corners are not held down. The live load is $2 \mathrm{kN} / \mathrm{m}^{2}$. Use M20 concrete and Fe 415 steel. Take M.F. of 1.4. Sketch the cross section of slab along shorter span showing all details. (No check required). (NOTE : Answer may vary according to assumptions made by students) Given: $\begin{aligned} 1_{\mathrm{x}} & =3 \mathrm{~m}=3000 \mathrm{~mm} \\ & =4.5 \mathrm{~m}=4500 \mathrm{~mm}\end{aligned}$ $1_{\mathrm{y}}=4.5 \mathrm{~m}=4500 \mathrm{~mm}$ Wall thk. $=230 \mathrm{~mm}$ $\mathrm{LL}=2 \mathrm{kN} / \mathrm{m}^{2}$ $\mathrm{MF}=1.4$ $\mathrm{f}_{\mathrm{ck}}=20 \mathrm{~N} / \mathrm{mm}^{2}$ $\mathrm{f}_{\mathrm{y}}=415 \mathrm{~N} / \mathrm{mm}^{2}$ Assumptions : $\begin{aligned} & \mathrm{FF}=1 \mathrm{kN} / \mathrm{m}^{2} \\ & \phi_{\mathrm{x}}=10 \mathrm{~mm} \\ & \mathrm{C} \end{aligned}=20 \mathrm{~mm}$ To find : $\mathrm{D}=$? Ast in both direction $=$?	1	

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 2	(b)	The passage 3 m wide is supported on 230 mm thick side walls. It carries super imposed loads of $4 \mathrm{kN} / \mathrm{sq}$. m including floor finish. Design a one way slab using M 20 concrete and Fe 415 steel. Take M.F. = 1.4. Sketch \mathbf{c} / \mathbf{s} of slab along shorter span showing reinforcement details. Check not required. (NOTE : Answer may vary according to assumptions made by students) Given: $\begin{aligned} & 1 \quad=3 \mathrm{~m}=3000 \mathrm{~mm} \\ & \mathrm{t}_{\mathrm{s}}=230 \mathrm{~mm} \\ & \mathrm{LL}+\mathrm{FF}=4 \mathrm{kN} / \mathrm{m}^{2} \\ & \mathrm{MF}=1.4 \\ & \mathrm{f}_{\mathrm{ck}}=20 \mathrm{~N} / \mathrm{mm}^{2} \\ & \mathrm{f}_{\mathrm{y}}=415 \mathrm{~N} / \mathrm{mm}^{2} \end{aligned}$ Assupmtion : $\begin{aligned} \phi_{\mathrm{x}} & =10 \mathrm{~mm} \\ \phi_{\mathrm{y}} & =8 \mathrm{~mm} \\ \mathrm{C} & =20 \mathrm{~mm} \end{aligned}$ Step (1) $\begin{aligned} & \mathrm{d}=\frac{\text { Span }}{20 \times \mathrm{MF}}=\frac{3000}{20 \times 1.4}=107.143 \mathrm{~mm} \\ & \mathrm{D}=\mathrm{d}+\mathrm{c}+\frac{\phi_{\mathrm{x}}}{2}=107.143+20+\frac{10}{2}=132.143 \mathrm{~mm} \end{aligned}$	1	8

$\begin{aligned} & \text { Que. } \\ & \text { No. } \\ & \hline \end{aligned}$	Sub. Que.	Model Answer	Marks	Total Marks
Q. 2	(c)	Provide, $\mathrm{D}=140 \mathrm{~mm}$ $\mathrm{d}=140-20-\frac{10}{2}=115 \mathrm{~mm}$ Step (2) Effective span Min. of (a) \& (b) a) $1_{e}=1+d=3000+115=3115 \mathrm{~mm}=3.115 \mathrm{~m}$ b) $1_{\mathrm{e}}=1+\mathrm{t}_{\mathrm{s}}=3000+230=3230 \mathrm{~mm}=3.230 \mathrm{~m}$ $1_{\mathrm{e}}=3.115 \mathrm{~m}$ Step (3) Load \& B M calculation i) D.L. of slab $\quad=0.140 \times 1 \times 1 \times 25=3.5 \mathrm{kN} / \mathrm{m}$ ii) L.L. + FF of slab $=4 \times 1 \times 1 \quad=4.0 \quad \mathrm{kN} / \mathrm{m}$ $\text { Total load }=7.5 \quad \mathrm{kN} / \mathrm{m}$ Factored load $\left(\mathrm{w}_{\mathrm{d}}\right)=1.5 \times \mathrm{w}$ $\begin{gathered} =1.5 \times 7.5 \\ =11.25 \mathrm{kN} / \mathrm{m} \\ \mathrm{BM}=\mathrm{Mu}=\frac{\mathrm{w}_{\mathrm{d}}\left(1_{\mathrm{e}}\right)^{2}}{8}=\frac{11.25 \times(3.115)^{2}}{8} \\ \mathrm{BM}=\mathrm{Mu}=13.645 \mathrm{kN}-\mathrm{m} \end{gathered}$ Step (4) Check for depth $\begin{gather*} \mathrm{Mu}_{\max }=\mathrm{M}_{\mathrm{u}} \\ 0.138 \mathrm{f}_{\mathrm{ck}} \mathrm{~b}\left(\mathrm{~d}_{\text {reqd }}\right)^{2}=13.645 \times 10^{6} \\ 0.138 \times 20 \times 1000 \times\left(\mathrm{d}_{\text {reqd }}\right)^{2}=13.645 \times 10^{6} \\ \left(\mathrm{~d}_{\text {reqd }}\right)=70.312 \mathrm{~mm}<\mathrm{d}=115 \mathrm{~mm} \end{gather*}$ Step (5) Minimum area of reinforcement $\mathrm{Ast}_{\min }=\frac{0.12}{100} \mathrm{bD}=\frac{0.12}{100} \times 1000 \times 140=168 \mathrm{~mm}^{2}$	1 1 1 1	

\begin{tabular}{|c|c|c|c|c|}
\hline Que. No. \& Sub. Que. \& Model Answer \& Marks \& Total Marks \\
\hline Q. 3 \& \begin{tabular}{l}
(e) \\
Ans.
\end{tabular} \& \begin{tabular}{l}
Find moment of resistance (Mu) of a T beam with following data \(b_{f}=1500 \mathrm{~mm}, b_{w}=\mathbf{3 0 0} \mathbf{~ m m}, d=700 \mathrm{~mm}, D_{f}=\mathbf{1 0 0} \mathbf{~ m m}, A_{s t}=\mathbf{2 5 0 0}\) \(\mathrm{mm}^{2}\). Concrete M20 and Fe 415 steel. \\
Given : \\
\(\mathrm{bf}=1500 \mathrm{~mm}\) \\
Df \(=100 \mathrm{~mm}\) \\
\(\mathrm{bw}=300 \mathrm{~mm}\) \\
\(\mathrm{d}=700 \mathrm{~mm}\) \\
Ast \(=2500 \mathrm{~mm}^{2}\) \\
To find \(M_{u}\) \\
Step 1) \\
To find \(\mathrm{Xu}=\) ? (Assume \(\mathrm{Xu}<\mathrm{Df}\))
\[
\begin{aligned}
\mathrm{X}_{\mathrm{u}} \& =\frac{0.87 \times \mathrm{fy} \times \mathrm{Ast}}{036 \times \mathrm{fck} \times \mathrm{bf}} \\
\& =\frac{0.87 \times 415 \times 2500}{0.36 \times 20 \times 1500} \\
\mathrm{X}_{\mathrm{u}} \& =83.576 \mathrm{~mm}<\mathrm{D}_{\mathrm{f}}=100 \mathrm{~mm}----\mathrm{OK}
\end{aligned}
\] \\
Step 2) \\
To find \(\mathrm{X}_{\mathrm{umax}}\) \\
\(\mathrm{X}_{\text {umax }}=0.48 \mathrm{X} \mathrm{d}\)
\[
=0.48 \times 700
\] \\
\(\mathrm{X}_{\text {umax }}=336 \mathrm{~mm}\) \\
As, \(\mathrm{X}_{\mathrm{u}}<\mathrm{X}_{\mathrm{umax}}\), \\
So, beam is under reinforced. \\
Step 3)
\[
\begin{aligned}
\& \text { To find } \mathbf{M u}=\text { ? } \\
\& \begin{aligned}
\mathrm{Mu} \& =\mathrm{Tu} \times \mathrm{Zu} \\
\& =0.87 \times \text { fy } \times \text { Ast }(\mathrm{d}-0.42 \mathrm{Xu}) \\
\& =0.87 \times 415 \times 2500(700-0.42 \times 83.576) \\
\& =600.153 \times 10^{6} \mathrm{~N}-\mathrm{mm} \\
\mathbf{M u} \& =\mathbf{6 0 0 . 1 5 3} \mathbf{~ K N}-m
\end{aligned}
\end{aligned}
\]
\end{tabular} \& 1

1
1
1
1
1 \& 4

\hline
\end{tabular}

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 4	(a) (b) Ans.	- The tendon can freely move inside the hardened concrete as it is not in contact with concrete. - The prestressing force is created by tensioning the cable using hydraulic jack. - The anchorage at the ends of the tendons are adjusted to keep the stretched tendons firmly in position - Now, cement grout is forced under pressure to fill the space around the tendons completely. - Finally the anchorages are covered with a protective coat of grout. Stress distribution diagram for prestressing Stress distribution diagram for prestressing Justify over reinforced sections are disallowed in L.S.M. 1) In over-reinforced section, percentage of steel is more than critical percentage. 2) Due to this, the concrete crushes reaching its ultimate strain before steel reaching its yield point. 3) In this case, the beam will fail initially due to overstress in the concrete, suddenly without giving any warning. 4) Therefore, design codes restrict the percentage of steel in RC sections to that of balanced section thus disallowing over- reinforced section.	2	4

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 4	(c) Ans. (d) Ans.	Draw stress and strain diagram for doubly reinforced section in L.S.M. State meaning of each term. Stress-Strain in a Doubly Reinforced Section Where, $b=$ Width of beam d = Effective depth d' = cover to compression reinforcement $\mathrm{A}_{\mathrm{st}}=$ Area of steel in tension $\mathrm{A}_{\mathrm{sc}}=$ Area of steel in compression $X_{u}=$ Depth of neutral axis. Design a circular column to carry an axial load of 1500 kN . Using MS lateral ties. Use M25 concrete and Fe 415 steel. The unsupported length of column is 3.75 m . (NOTE : According to assumption of \% steel, answer may vary) Factored load $\left(\mathrm{P}_{\mathrm{u}}\right)=1.5 \times 1500=2250 \mathrm{kN}$ Assume 0.8% of A_{g} for compression steel $\mathrm{A}_{\mathrm{sc}}=0.008 \times \mathrm{A}_{\mathrm{g}}$ $\mathrm{P}_{\mathrm{u}} \quad=\left(0.4 \times\right.$ fck $\left.\times \mathrm{A}_{\mathrm{c}}\right)+\left(0.67 \times \mathrm{fy} \times \mathrm{A}_{\mathrm{sc}}\right)$ $2250 \times 10^{3}=\left(0.4 \times 25 \times\left(\mathrm{A}_{\mathrm{g}}-\mathrm{A}_{\text {sc }}\right)\right)+\left(0.67 \times 415 \times\left(0.008 \times \mathrm{A}_{\mathrm{g}}\right)\right)$ $2250 \times 10^{3}=\left(0.4 \times 25 \times\left(\mathrm{A}_{\mathrm{g}}-0.008 \times \mathrm{A}_{\mathrm{g}}\right)\right)+\left(0.67 \times 415 \times\left(0.008 \times \mathrm{A}_{\mathrm{g}}\right)\right)$ $\mathrm{A}_{\mathrm{g}}=185270 \mathrm{~mm}^{2}$ Dia. of circular column $\begin{aligned} & \mathrm{D}=\sqrt{\frac{4 \times \mathrm{A}_{\mathrm{g}}}{\pi}}=\sqrt{\frac{4 \times 185270}{\pi}}=485.7 \mathrm{~mm} \\ & \text { say, } \mathrm{D}=500 \mathrm{~mm} \end{aligned}$	 1 1 1 1 1	4

\begin{tabular}{|c|c|c|c|c|}
\hline Que. No. \& Sub. Que. \& Model Answer \& Marks \& Total Marks \\
\hline Q. 4 \& \begin{tabular}{l}
(B) \\
(a) \\
Ans.
\end{tabular} \& \begin{tabular}{l}
Slenderness Ratio \(=\frac{L}{D}=\frac{3750}{500}=7.5<12\) \\
Hence, column is short.
\[
\mathrm{A}_{\mathrm{sc}}=0.008 \times \mathrm{A}_{\mathrm{g}}=\mathrm{A}_{\mathrm{sc}}=0.008 \times \frac{\pi}{4} \times 500^{2}=1571 \mathrm{~mm}^{2}
\] \\
Provide, \(8-16 \mathrm{~mm} \phi\) bars.
\[
\mathrm{A}_{\mathrm{sc}} \text { provided }=8 \times \frac{\pi}{4} \times 16^{2}=1608 \mathrm{~mm}^{2}
\] \\
Diameter of links \(=\frac{1}{4} \times \phi_{\mathrm{L}}\) or 6 mm whichever is greater
\[
\begin{aligned}
\& =\frac{1}{4} \times 16 \text { or } 6 \mathrm{~mm} \text { whichever is greater } \\
\& =6 \mathrm{~mm}
\end{aligned}
\] \\
Spacing of links \(=\) Min. of following \\
(a) \(\mathrm{S}=\mathrm{D}=500 \mathrm{~mm}\) \\
(b) \(S=16 \times \phi_{\mathrm{L}}=16 \times 16=256 \mathrm{~mm}\) \\
(c) \(\mathrm{S}=300 \mathrm{~mm}\) \\
Hence, provide \(6 \mathrm{~mm} \phi\) links at \(250 \mathrm{mmc} / \mathrm{c}\) \\
Attempt any ONE of the following : \\
Find the moment of resistance of the beam \(250 \times 500 \mathrm{~mm}\) deep if it is reinforced with \(\mathbf{4 - 2 0} \mathbf{~ m m}\) diameter bars in tension zone and \(\mathbf{2 - 1 2} \mathbf{~ m m}\) diameter bars in compression zone, each at an effective cover of 40 mm . Assume M15 concrete and Fe 415 steel. \\
(NOTE : Answer may vary according to assumption made by students) \\
Given: \\
b \(=250 \mathrm{~mm}\) \\
D \(=500 \mathrm{~mm}\) \\
C \(=40 \mathrm{~mm}\) \\
d \(=D-C=460 \mathrm{~mm}\) \\
Ast \(=4 \times \frac{\pi}{4} \times 20^{2}=1256.64 \mathrm{~mm}^{2}\) \\
Asc \(=2 \times \frac{\pi}{4} \times 12^{2}=226.19 \mathrm{~mm}^{2}\) \\
\(\mathrm{f}_{\mathrm{ck}}=15 \mathrm{~N} / \mathrm{mm}^{2}\) \\
\(\mathrm{f}_{\mathrm{y}}=415 \mathrm{~N} / \mathrm{mm}^{2}\) \\
Assuming: \(\mathrm{f}_{\mathrm{sc}}=353 \mathrm{~N} / \mathrm{mm}^{2}\)
\[
\mathrm{M}_{\mathrm{u}}=\text { ? }
\]
\end{tabular} \& 1 \& 4

(6)

\hline
\end{tabular}

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 4	(a) (b) Ans.	Step 1 :Find $X_{\text {umax }}=0.48 \mathrm{~d} \quad$------ for Fe 415 $\begin{aligned} & =0.48 \times 460 \\ X_{u \max } & =220.8 \mathrm{~mm} \end{aligned}$ Step 2 : Find Ast_{2} $\begin{aligned} & \mathrm{f}_{\mathrm{cc}}=0.45 \times \mathrm{f}_{\mathrm{ck}}=0.45 \times 15=6.75 \mathrm{~N} / \mathrm{mm}^{2} \\ & \text { Ast }_{2}=\frac{\left(\mathrm{f}_{\mathrm{sc}}-\mathrm{f}_{\mathrm{cc}}\right) \times \mathrm{A}_{\mathrm{sc}}}{0.87 \times \mathrm{f}_{\mathrm{y}}}=\frac{(353-6.75) \times 226.19}{0.87 \times 415} \\ & \text { Ast }_{2}=226.918 \mathrm{~mm}^{2} \\ & \text { Ast }_{1}=\text { Ast } \text { Ast }_{2}=1256.64-226.918=1029.722 \mathrm{~mm}^{2} \end{aligned}$ Step 3 : Find Xu_{1} $\mathrm{Xu}_{1}=\frac{0.87 \times \mathrm{f}_{\mathrm{y}} \times \mathrm{Ast}_{1}}{0.36 \times \mathrm{f}_{\mathrm{ck}} \times \mathrm{b}}=\frac{0.87 \times 415 \times 1029.722}{0.36 \times 15 \times 250}=275.393 \mathrm{~mm}$ Step 4 : Find type of section As $\mathrm{Xu}_{1}=275.393 \mathrm{~mm}>\mathrm{X}_{\text {umax }}=220.8 \mathrm{~mm}$ Section is over-reinforced. Step 5 : Find Moment of Resistance M_{u} $\begin{aligned} & M_{u}=\left(0.138 \times \mathrm{fck} \times b \times d^{2}\right)+\left[\left(\mathrm{f}_{\mathrm{sc}}-\mathrm{f}_{\mathrm{cc}}\right) \times \mathrm{A}_{\mathrm{sc}}\left(\mathrm{~d}-\mathrm{d}^{\prime}\right)\right] \\ & \mathrm{M}_{\mathrm{u}}=\left(0.138 \times 15 \times 250 \times 500^{2}\right)+[(353-6.75) \times 226.19 \times(460-40)] \\ & \mathrm{M}_{\mathrm{u}}=162.268 \times 10^{6} \mathrm{~N}-\mathrm{mm} \\ & \mathrm{M}_{\mathrm{u}}=162.268 \mathrm{kN}-\mathrm{m} \end{aligned}$ A beam is required to resist a total B.M. of 120 kNm . The size of beam is limited to $300 \mathrm{~mm} X 610 \mathrm{~mm}$ overall. Clear cover on both sides is 30 mm . Calculate reinforcement in form of 20 mm diameter on both sides. Use (M15 and Fe 415). Given: b $\quad=300 \mathrm{~mm}$ D $=610 \mathrm{~mm}$ C $=\mathrm{d}^{\prime}=30 \mathrm{~mm}$ d $\quad=\mathrm{D}-\mathrm{C}=580 \mathrm{~mm}$ $\mathrm{M}=120 \mathrm{kNm}$ $\mathrm{f}_{\mathrm{ck}}=15 \mathrm{~N} / \mathrm{mm}^{2}$ $\mathrm{f}_{\mathrm{y}}=415 \mathrm{~N} / \mathrm{mm}^{2}$ To find : Ast $=$? Asc $=$? Assumtion : $\mathrm{f}_{\mathrm{sc}}=353 \mathrm{~N} / \mathrm{mm}^{2}$	1 1 1	6

$\begin{gathered} \text { Que. } \\ \text { No. } \\ \hline \end{gathered}$	Sub. Que.	Model Answer	Marks	Total Marks
Q. 4	(b)	Step 1)		
		$\mathrm{M}_{\mathrm{d}}=\mathrm{M}_{\mathrm{u}}=1.5 \times \mathrm{M}=1.5 \times 120=180 \mathrm{kNm}$	1	
		Step 2) To find $\mathrm{M}_{\mathrm{u}_{1}}$		
		$\mathrm{M}_{\mathrm{u}_{1}}=\mathrm{M}_{\text {ulim }}=0.138 \mathrm{f}_{\text {ck }} \mathrm{bd}{ }^{2}$	1	
		$=0.138 \times 15 \times 300 \times 580^{2}$		
		$=208.904 \times 10^{6} \mathrm{~N}-\mathrm{mm}>\mathrm{M}_{\mathrm{u}}=180 \mathrm{kNm}$	1	
		Hence, beam is singly reinforced beam.		
		Step 3) To find $\mathrm{A}_{\mathrm{st}_{1}}$		
		$\mathrm{Pt}_{\text {lim }}=0.048 \mathrm{fck}=0.048 \times 15=0.72 \% \quad---$ - for M20 Concrete	1	
		$\mathrm{A}=\frac{\mathrm{Pt}_{\mathrm{lim}} \times \mathrm{bd}}{0.72 \times 300 \times 580}$		
		$\mathrm{A}_{\mathrm{st}_{1}}=\frac{\mathrm{Pt}}{100}=\frac{100}{}$	1	
		$\mathrm{A}_{\mathrm{st}_{1}}=1252.8 \mathrm{~mm}^{2}$		
		Using, 20 mm dia. bar.		
		$\text { No. of bar }=\frac{\mathrm{A}_{\mathrm{st}_{1}}}{(\pi)}=\frac{1252.8}{(\pi)}=3.98=4$	1	6
		$\left(\frac{\pi}{4}\right) \times \mathrm{d}^{2} \quad\left(\frac{\pi}{4}\right) \times 20^{2}$		
		Provide 4-20 mm dia.bar on tension side only.		
				(16)
Q. 5		Attempt any TWO :		
	(a)	Design a rectangular beam for an effective span of 5.85 m . The super imposed load is $70 \mathrm{kN} / \mathrm{m}$ and size of beam is limited to 300 X 700 mm overall. Use M20 and Fe415. Assume a cover of 40 mm		
	Ans.	(NOTE : Answer may vary according to assumption made by student)		
		Given: To find		
		$\mathrm{b}=300 \mathrm{~mm}$ Ast $=$?		
		D $=700 \mathrm{~mm} \quad$ Asc $=$?		
		C $=40 \mathrm{~mm}$		
		$\mathrm{d}=\mathrm{D}-\mathrm{C}=660 \mathrm{~mm}$		
		$\mathrm{w} \quad=70 \mathrm{kN} / \mathrm{m}$		
		$1=5.85 \mathrm{~m}=5850 \mathrm{~mm}$		
		$\mathrm{f}_{\mathrm{ck}}=20 \mathrm{~N} / \mathrm{mm}^{2}$		
		$\mathrm{f}_{\mathrm{y}}=415 \mathrm{~N} / \mathrm{mm}^{2}$		
		Assumption: $\mathrm{f}_{\mathrm{sc}}=353 \mathrm{~N} / \mathrm{mm}^{2}$		

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 5	(b)	$\begin{array}{lll} \text { Given: } & \text { To find : } \\ \mathrm{b} & =300 \mathrm{~mm} & \text { Spacing of stirrups }=? \\ \text { D } & =600 \mathrm{~mm} & \\ \mathrm{C} & =30 \mathrm{~mm} & \\ \mathrm{~d} & =\mathrm{D}-\mathrm{C}=570 \mathrm{~mm} & \\ 1 & =6 \mathrm{~m}=6000 \mathrm{~mm} & \\ \mathrm{w} & =25 \mathrm{kN} / \mathrm{m} & \\ \text { Ast }= & 6 \times \frac{\pi}{4} \times(25)^{2}=2945.243 \mathrm{~mm}^{2} & \\ \mathrm{f}_{\mathrm{ck}} & =20 \mathrm{~N} / \mathrm{mm}^{2} & \\ \mathrm{f}_{\mathrm{y}} & =415 \mathrm{~N} / \mathrm{mm}^{2} & \end{array}$ Step 1) Factored Shear Force $\mathrm{w}_{\mathrm{d}}=1.5 \times \mathrm{w}=1.5 \times 25=37.5 \mathrm{kN} / \mathrm{m}$ $\mathrm{V}_{\mathrm{u}}=\frac{\mathrm{w}_{\mathrm{d}} \times 1}{2}=\frac{37.5 \times 6}{2}=112.5 \mathrm{kN}$ Step 2) Nominal shear stress $\varsigma_{\mathrm{v}}=\frac{\mathrm{V}_{\mathrm{u}}}{\mathrm{~b} \times \mathrm{d}}=\frac{112.5 \times 10^{3}}{300 \times 570}=0.658 \mathrm{~N} / \mathrm{mm}^{2}<\varsigma_{\mathrm{c} \max }=2.8 \mathrm{~N} / \mathrm{mm}^{2}$ Step 3) Shear strength of concrete (ς_{c}) $\% \mathrm{pt}=\frac{\mathrm{A}_{\mathrm{st}}}{\mathrm{~b} \times \mathrm{d}} \times 100=\frac{2945.243}{300 \times 570} \times 100=1.72 \%$ $\begin{array}{lll}\text { Pt (\%) } & 1.5 & 1.75 \\ \varsigma_{c} & 0.68 & 0.71\end{array}$ By interpolation $\varsigma_{c}=0.7064 \mathrm{~N} / \mathrm{mm}^{2}$ As $\varsigma_{\mathrm{v}}=0.658 \mathrm{~N} / \mathrm{mm}^{2}<\varsigma_{\mathrm{c}}=0.7064 \mathrm{~N} / \mathrm{mm}^{2}$ Shear reinforcement is not required. However nominal shear reinforcement should be provided. Provide stirrups of 2 legged 8 mm dia. Step 4) Spacing of stirrups Asv $=2 \times \frac{\pi}{4} \times 8^{2}=100.53 \mathrm{~mm}^{2}$ Spacing of stirrups $=$ Min. of following - a) $\mathrm{Sv}=\frac{0.87 \times \mathrm{f}_{\mathrm{y}} \times \mathrm{Asv}}{0.4 \times \mathrm{b}}=\frac{0.87 \times 415 \times 100.53}{0.4 \times 300}=302.469 \mathrm{~mm}$ b) $S v=0.75 \times \mathrm{d}=0.75 \times 660=495 \mathrm{~mm}$	1 1 1 1 1	

| Que. |
| :---: | :---: | :---: | :---: | :---: |
| Nub. |
| Que. |\quad (c)

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 5	(c)	using 16 mm diameter		
Q. 6		$\begin{aligned} \mathrm{S}_{\mathrm{x}}=\mathrm{S}_{\mathrm{y}} & =\frac{(1000 \times \mathrm{A} \phi)}{\text { Ast }}=\frac{1000 \times \frac{\pi}{4} \times 16^{2}}{2156.443} \\ & =93.237 \mathrm{~mm} \\ & =90 \mathrm{~mm} \mathrm{c} / \mathrm{c} \end{aligned}$	1	8
		Provide $16 \mathrm{~mm} \phi @ 90 \mathrm{~mm} \mathrm{c} / \mathrm{c}$ both way		
		Attempt any FOUR of the following :		(16)
	(a)	Write four IS specifications for the longitudinal reinforcement in columns.		
	Ans.	IS specifications for longitudinal reinforcement of an axially loaded short column:		
		i) Minimum diameter of bar in column $=12 \mathrm{~mm}$ ii) Minimum number of bars in circular column $=6 \mathrm{Nos}$ iii) Cover of the column $=40 \mathrm{~mm}$ iv) Minimum and maximum steel in column Max $\%$ of steel $=6 \%$ of gross cross sectional area of column Min $\%$ of steel $=0.8 \%$ of gross cross sectional area of column	1 each	4
	(b)	State the meaning of nominal cover. State purposes of providing cover to reinforcement.		
	Ans.	Nominal cover : It is defined as the distance measured from the concrete surface to the nearest surface of the reinforcing bar.	2	
		Purposes of providing cover to reinforcement : 1) To prevent corrosion of steel . 2) To give necessary embedment to the reinforcing bar.	1 each	4
	(c) Ans.	Calculate effective flange width for a T beam having span 8 m . The c/c distance between beams is 2.5 mm , width of web as 230 $\mathbf{m m}$ and flange depth as $\mathbf{1 2 0} \mathbf{~ m m}$. Supports are simple. (NOTE : c/c distance between beam should be 2.5 m instead of 2.5 mm)		
		$1_{\mathrm{o}}=8000+230=8230 \mathrm{~mm}$	1	
		$b_{f}=\left(\frac{1_{o}}{6}+b_{w}+\left(6 \times D_{f}\right)\right)$ or c/c distance between supports whichever is lesser 8230	1	
		$=\left(\frac{8250}{6}+230+(6 \times 120)\right) \text { or } 2500 \mathrm{~mm}$	1	4
		$\mathrm{b}_{\mathrm{f}}=2321.667 \mathrm{~mm}$	1	

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 6	(d) Ans.	Sketch the critical sections used in the design of pad footings for bending and shears. Critical section used in the design of pad footings for bending : Critical section used in the design of pad footings for shears: One-way Shear Failure of Column Footing Two-way Action	$2{ }^{2}$	4

\begin{tabular}{|c|c|c|c|c|}
\hline Que. No. \& Sub. Que. \& Model Answer \& Marks \& Total Marks \\
\hline Q. 6 \& (e)
Ans. \& \begin{tabular}{l}
Calculate ultimate moment of resistance of the \(T\) beam having flange width 800 mm , slab thickness 120 mm , web thickness 300 \(\mathbf{m m}\) and effective depth 500 mm to the centre of \(\mathbf{4 - 2 0} \mathbf{~ m m ~ F e ~} 415\) bars using M25 concrete. (singly reinforced section is sufficient) bf \(=800 \mathrm{~mm}\) \\
Df \(=120 \mathrm{~mm}\) \\
bw \(=300 \mathrm{~mm}\) \\
\(\mathrm{d}=500 \mathrm{~mm}\)
\[
\begin{aligned}
\& \text { Ast }=4 \times \frac{\pi}{4} \times 20^{2}=1256.637 \mathrm{~mm}^{2} \\
\& \mathrm{f}_{\mathrm{ck}}=25 \mathrm{~N} / \mathrm{mm}^{2} \\
\& \mathrm{f}_{\mathrm{y}}=415 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
\] \\
To find: \(\mathbf{M}_{\mathbf{u}}=\) ? \\
Step 1 \\
Find \(\mathrm{x}_{\mathrm{u}}\)
\[
\begin{aligned}
0.36 \times \mathrm{fck} \times \mathrm{b}_{\mathrm{f}} \times \mathrm{x}_{\mathrm{u}} \& =0.87 \times \text { fy } \times \text { Ast } \\
0.36 \times 25 \times 800 \times \mathrm{x}_{\mathrm{u}} \& =0.87 \times 415 \times 1256.637 \\
\mathrm{x}_{\mathrm{u}} \& =63.015 \mathrm{~mm}<\mathrm{D}_{\mathrm{f}}=120 \mathrm{~mm}
\end{aligned}
\] \\
Step 2 \\
Find \(\mathrm{x}_{\text {umax }}\)
\[
\begin{aligned}
\mathrm{x}_{\mathrm{umax}} \& =0.48 \times \mathrm{d} \quad \text { for } \mathrm{Fe} 415 \\
\& =0.48 \times 500 \\
\& =240 \mathrm{~mm}
\end{aligned}
\] \\
\(\therefore\) As \(\mathrm{x}_{\mathrm{u}}<\mathrm{x}_{\mathrm{umax}}\) section is under reinforced \\
Step 3 \\
Find \(M_{u}\)
\[
\begin{aligned}
\mathrm{M}_{\mathrm{u}} \& =\mathrm{T}_{\mathrm{u}} \times a \\
\& =0.87 \times \mathrm{fy} \times \mathrm{Ast} \times\left(\mathrm{d}-0.42 \times \mathrm{x}_{\mathrm{u}}\right) \\
\& =0.87 \times 415 \times 1256.637 \times(500-0.42 \times 63.015) \\
\& =214.846 \times 10^{6} \mathrm{~N}-\mathrm{mm} \\
\mathrm{Mu} \& =214.846 \mathrm{kN}-\mathrm{m}
\end{aligned}
\]
\end{tabular} \& 1

1
1
1
1 \& 4

\hline
\end{tabular}

