Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and Communication Skills.)
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by the candidate and those in the model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and the model answer.
6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 1		Attempt any THREE:		12
	(a)	State the meaning of partial safety factors for material strength		
	Ans.	Partial safety factor for material strength: It is a strength reduction factor (greater than unity) when applied to the characteristic strength gives a strength known as design strength.	2	4
		Partial safety factor for load: It is a load enhancing factor (greater than unity) which when multiplied to characteristic load gives a load known as design load for which structure is to be designed.	2	
	(b)	Draw a neat sketch showing strain diagram and stress diagram for a singly reinforced balanced section.		
	Ans.			
			4	4

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 1	(b) Ans.	Solution: $\begin{aligned} & \% \mathrm{p}_{\mathrm{t}}=\frac{\mathrm{Ast}}{\mathrm{~b} \times \mathrm{d}} \times 100 \\ & 1.02=\frac{\text { Ast }}{230 \times 400} \times 100 \\ & \mathrm{~A}_{\mathrm{st}}=938.4 \mathrm{~mm}^{2} \\ & \mathrm{X}_{\mathrm{u}}=\frac{0.87 \mathrm{f}_{\mathrm{y}} \mathrm{~A}_{\mathrm{st}}}{0.36 \mathrm{f}_{\mathrm{ck}} \mathrm{~b}}=\frac{0.87 \times 415 \times 938.4}{0.36 \times 25 \times 230} \\ & \mathrm{X}_{\mathrm{u}}=163.676 \mathrm{~mm} \\ & \mathrm{X}_{\mathrm{umax}}=0.48 \mathrm{~d}=0.48 \times 400=192 \mathrm{~mm} \\ & \mathrm{X}_{\mathrm{u}}=163.676 \mathrm{~mm}<\mathrm{X}_{\mathrm{umax}}=192 \mathrm{~mm} \end{aligned}$ Hence, section is under reinforced, $\begin{aligned} & \mathrm{M}_{\mathrm{u}}=0.87 \mathrm{f}_{\mathrm{y}} \cdot \mathrm{~A}_{\mathrm{st}} \cdot\left(\mathrm{~d}-0.42 \mathrm{X}_{\mathrm{u}}\right) \\ & \mathrm{M}_{\mathrm{u}}=0.87 \times 415 \times 938.4[400-(0.42) \times(163.676)] \\ & \mathrm{M}_{\mathrm{u}}=112.233 \times 10^{6} \mathrm{~N}-\mathrm{mm} \\ & \mathrm{M}_{\mathrm{u}}=112.233 \mathrm{kN}-\mathrm{m} \end{aligned}$ A R. C. slab, 120 mm thick effective, has a simply supported effective span of 3.2 m . It is reinforced with $\mathbf{1 2 ~ \mathbf { ~ m m }}$ diameter bars at a spacing of 100 mm . Calculate the safe load (including self weight) the slab can carry if $f_{c k}=20 \mathrm{~N} / \mathrm{mm}^{2}$ and $f_{y}=415 \mathrm{~N} / \mathrm{mm}^{2}$. Given: $1=3.2 \mathrm{~m}=3200 \mathrm{~mm}$ $\mathrm{d}=120 \mathrm{~mm}$ $\dot{\emptyset}=12 \mathrm{~mm}$ Spacing of bars $=100 \mathrm{~mm}$ $\mathrm{f}_{\mathrm{ck}}=20 \mathrm{~N} / \mathrm{mm}^{2}$ $\mathrm{f}_{\mathrm{y}}=415 \mathrm{~N} / \mathrm{mm}^{2}$ To find: $\mathrm{w}=\text { ? }$ Solution:	1 1 1 1 1	6

Model Answer: Summer 2018
Subject: Design of R.C.C. Structure

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 2	Ans.	> Given: > $1 \quad=3 \mathrm{~m}=3000 \mathrm{~mm}$ > $\mathrm{t}_{\mathrm{s}} \quad=230 \mathrm{~mm}$ > $\mathrm{LL}+\mathrm{FF}=3.75 \mathrm{kN} / \mathrm{m}^{2}$ > $\dot{\emptyset}_{\mathrm{x}} \quad=8 \mathrm{~mm}$ > $\dot{\emptyset}_{\mathrm{y}}=6 \mathrm{~mm}$ > $\mathrm{MF}=1.4$ > $\mathrm{C}=20 \mathrm{~mm}$ > $\mathrm{f}_{\mathrm{ck}}=20 \mathrm{~N} / \mathrm{mm}^{2}$ > $\mathrm{f}_{\mathrm{y}} \quad=415 \mathrm{~N} / \mathrm{mm}^{2}$ Solution: Step (1) $\begin{aligned} & \mathrm{d}=\frac{\text { Span }}{20 \times \mathrm{MF}}=\frac{3000}{20 \times 1.4}=107.143 \mathrm{~mm} \\ & \mathrm{D}=\mathrm{d}+\mathrm{c}+\frac{\varphi_{x}}{2}=107.143+20+\frac{8}{2}=131.143 \mathrm{~mm} \end{aligned}$ Provide, D $=140 \mathrm{~mm}$ $\mathrm{d}=140-20-\frac{4}{2}=116 \mathrm{~mm}$ Step (2) Effective span Min. of (a) \& (b) a) $1_{e}=l+d=3000+116=3116 \mathrm{~mm}=3.116 \mathrm{~m}$ b) $1_{e}=1+t_{\mathrm{s}}=3000+230=3230 \mathrm{~mm}=3.230 \mathrm{~m}$ $1_{\mathrm{e}}=3.116 \mathrm{~m}$ Step (3) Load \& B M calculation i) D.L. of slab $\quad=0.140 \times 1 \times 1 \times 25=3.5 \mathrm{kN} / \mathrm{m}$ ii) L.L. + FF of slab $=3.75 \times 1 \times 1 \quad=3.75 \mathrm{kN} / \mathrm{m}$ Total load $=7.25 \mathrm{kN} / \mathrm{m}$ Factored load $\left(w_{d}\right)=1.5 \times \mathrm{w}$ $\begin{aligned} & =1.5 \times 7.25 \\ & =10.875 \mathrm{kN} / \mathrm{m} \end{aligned}$ $\mathrm{BM}=\mathrm{Mu}=\frac{\mathrm{w}_{\mathrm{d}}\left(\mathrm{l}_{\mathrm{e}}\right)^{2}}{8}=\frac{10.875 \times(3.116)^{2}}{8}$ $\mathrm{BM}=\mathrm{Mu}=13.199 \mathrm{kN}-\mathrm{m}$	1 1 1	

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 2		Step (4) Check for depth $\begin{gather*} \mathrm{Mu}_{\text {max }}=\mathrm{M}_{\mathrm{u}} \\ 0.138 \mathrm{f}_{\mathrm{ck}} \mathrm{~b}\left(\mathrm{~d}_{\mathrm{reqd}}\right)^{2}=13.199 \times 10^{6} \\ 0.138 \times 20 \times 1000 \times\left(\mathrm{d}_{\text {reqd }}\right)^{2}=13.199 \times 10^{6} \\ \left(\mathrm{~d}_{\text {reqd }}\right)=69.153 \mathrm{~mm}<\mathrm{d}=116 \mathrm{~mm} \end{gather*} .$ Step (5) Maximum area of reinforcement Ast $_{\text {max }}=0.04 \times b \times \mathrm{D}=0.04 \times 1000 \times 140=5600 \mathrm{~mm}^{2}$ Minimum area of reinforcement $\mathrm{Ast}_{\min }=\frac{0.12}{100} \mathrm{bD}=\frac{0.12}{100} \times 1000 \times 140=168 \mathrm{~mm}^{2}$ Step (6) Main steel and its spacing $\begin{aligned} & \mathrm{A}_{\mathrm{st}}=\frac{0.5 \mathrm{f}_{\mathrm{ck}}}{\mathrm{f}_{\mathrm{y}}}\left[1-\sqrt{1-\frac{4.6 \times \mathrm{Mux} \times 10^{6}}{\mathrm{f}_{\mathrm{ck}} \mathrm{bd}}}\right] \mathrm{bd} \\ & \mathrm{~A}_{\mathrm{st}}=\frac{0.5 \times 20}{415}\left[1-\sqrt{1-\frac{4.6 \times 13.199 \times 10^{6}}{20 \times 1000 \times(116)^{2}}}\right] \times 1000 \times 116 \end{aligned}$ $\mathrm{A}_{\mathrm{st}}=335.433 \mathrm{~mm}^{2}$ Spacing of bar Min. of a) $\quad \mathrm{S}_{\mathrm{x}}=\frac{1000 \times \mathrm{A} \varphi_{\mathrm{x}}}{\mathrm{A}_{\mathrm{st}}}=\frac{1000 \times \frac{\pi}{4}(8)^{2}}{335.433}=149.853 \mathrm{~mm}$ b) $\quad \mathrm{S}_{\mathrm{x}}=3 \mathrm{~d}=3 \times 116=348 \mathrm{~mm}$ c) $\quad S_{x}=300 \mathrm{~mm}$ $\mathrm{S}_{\mathrm{x}}=140 \mathrm{~mm} \mathrm{c} / \mathrm{c}$ Provide $8 \mathrm{~mm} \varphi$ bars @ $140 \mathrm{~mm} \mathrm{c} / \mathrm{c}$ along the shorter span Step (7) Distribution steel and its spacing $\mathrm{A}_{\text {std }}=\frac{0.15}{100} \mathrm{bD}=\frac{0.15}{100} \times 1000 \times 140=210 \mathrm{~mm}^{2}$	1 1	

Model Answer: Summer 2018
Subject: Design of R.C.C. Structure

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 2		Step (1) Slab thickness, as $1_{\mathrm{x}}=4 \mathrm{~m}>3.5 \mathrm{~m}$ and $\mathrm{LL}=3.5 \mathrm{kN} / \mathrm{m}^{2}>3 \mathrm{kN} / \mathrm{m}^{2}$ and Fe 500 is used. $\begin{aligned} & \mathrm{d}=\frac{\text { Span }}{20 \times \mathrm{MF}}=\frac{4000}{20 \times 1.2}=166.667 \mathrm{~mm} \\ & \mathrm{D}=\mathrm{d}+\mathrm{c}+\frac{\varphi_{\mathrm{x}}}{2}=166.667+20+\frac{10}{2}=191.667 \mathrm{~mm} \end{aligned}$ Provide, D $=200 \mathrm{~mm}$ $\mathrm{d}=200-20-\frac{10}{2}=175 \mathrm{~mm}$ Step (2) Effective span $\begin{aligned} & 1_{\mathrm{x}}=1_{\mathrm{xe}}=1_{\mathrm{x}}+\mathrm{d}=4000+175=4175 \mathrm{~mm}=4.175 \mathrm{~m} \\ & 1_{\mathrm{y}}=\mathrm{l}_{\mathrm{ye}}=1_{\mathrm{y}}+\mathrm{d}=5600+175=5775 \mathrm{~mm}=5.775 \mathrm{~m} \end{aligned}$ Step (3) Load \& B M calculation i) D.L. of slab $=0.2 \times 1 \times 1 \times 25=5.0 \mathrm{kN} / \mathrm{m}$ ii) L.L. of slab $=3.5 \times 1 \times 1 \quad=3.5 \mathrm{kN} / \mathrm{m}$ i) F.F. of slab $=1 \times 1 \times 1 \quad=1.0 \mathrm{kN} / \mathrm{m}$ $\text { Total load }=9.5 \mathrm{kN} / \mathrm{m}$ Factored load $\left(\mathrm{w}_{\mathrm{d}}\right)=1.5 \times \mathrm{w}$ $\begin{aligned} & =1.5 \times 9.5 \\ & =14.25 \mathrm{kN} / \mathrm{m} \end{aligned}$ BM calculations, $\begin{gathered} \mathrm{Mu}_{\mathrm{x}}=\alpha_{\mathrm{x}} \cdot \mathrm{w}_{\mathrm{d}} \cdot\left(1_{\mathrm{xe}}\right)^{2}=\left(0.099 \times 14.25 \times(4.175)^{2}\right) \\ \mathrm{Mu}_{\mathrm{x}}=24.590 \mathrm{kN}-\mathrm{m} \end{gathered}$ $\mathrm{Mu}_{\mathrm{y}}=\alpha_{\mathrm{y}} \cdot \mathrm{w}_{\mathrm{d}} \cdot\left(1_{\mathrm{xe}}\right)^{2}=\left(0.051 \times 14.25 \times(4.175)^{2}\right)$ $\mathrm{Mu}_{\mathrm{y}}=12.667 \mathrm{kN}-\mathrm{m}$ Step (4) Check for depth $\begin{gather*} \mathrm{Mu}_{\max }=\mathrm{M}_{\mathrm{ux}} \\ 0.133 \mathrm{f}_{\mathrm{ck}} \mathrm{~b}\left(\mathrm{~d}_{\mathrm{reqd}}\right)^{2}=24.590 \times 10^{6} \\ \left(\mathrm{~d}_{\text {reqd }}\right)=96.148 \mathrm{~mm}<\mathrm{d}=175 \mathrm{~mm} \end{gather*}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$ 1 1 1	

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 2		Step (5) Main steel and its spacing In X direction $\begin{aligned} & \mathrm{A}_{\mathrm{stx}}=\frac{0.5 \mathrm{f}_{\mathrm{ck}}}{\mathrm{f}_{\mathrm{y}}}\left[1-\sqrt{1-\frac{4.6 \times \mathrm{Mux} \times 10^{6}}{\mathrm{f}_{\mathrm{ck}} \mathrm{bd} \mathrm{~d}^{2}}}\right] \mathrm{bd} \\ & \mathrm{~A}_{\mathrm{st}}=\frac{0.5 \times 20}{500}\left[1-\sqrt{1-\frac{4.6 \times 24.590 \times 10^{6}}{20 \times 1000 \times(175)^{2}}}\right] \times 1000 \times 175 \\ & \mathrm{~A}_{\mathrm{st}}=339.665 \mathrm{~mm}^{2} \end{aligned}$ Spacing of bar Min. of a) $\mathrm{S}_{\mathrm{x}}=\frac{1000 \times \mathrm{A} \varphi_{\mathrm{x}}}{\mathrm{A}_{\mathrm{st}}}=\frac{1000 \times \frac{\pi}{4}(10)^{2}}{339.665}=231.227 \mathrm{~mm}$ b) $\quad \mathrm{S}_{\mathrm{x}}=3 \mathrm{~d}=3 \times 175=525 \mathrm{~mm}$ c) $\quad S_{x}=300 \mathrm{~mm}$ $\mathrm{S}_{\mathrm{x}}=230 \mathrm{~mm} \mathrm{c} / \mathrm{c}$ Provide $10 \mathrm{~mm} \varphi$ bars @ $230 \mathrm{~mm} \mathrm{c} / \mathrm{c}$ In Y direction $d^{\prime}=d-\varphi_{x}=175-10=165 \mathrm{~mm}$ $\mathrm{A}_{\text {sty }}=\frac{0.5 \mathrm{f}_{\mathrm{ck}}}{\mathrm{f}_{\mathrm{y}}}\left[1-\sqrt{1-\frac{4.6 \times \mathrm{Muy} \times 10^{6}}{\mathrm{f}_{\mathrm{ck}} \mathrm{bd}^{\prime 2}}}\right] \mathrm{bd}^{\prime}$ $\mathrm{A}_{\text {sty }}=\frac{0.5 \times 20}{500}\left[1-\sqrt{1-\frac{4.6 \times 12.667 \times 10^{6}}{20 \times 1000 \times(165)^{2}}}\right] \times 1000 \times 165$ $\mathrm{A}_{\text {sty }}=181.565 \mathrm{~mm}^{2}$ $\mathrm{A}_{\text {stmin }}=\frac{0.12}{100} \times 1000 \times 175=210 \mathrm{~mm}^{2}$ $\mathrm{A}_{\text {sty }}=181.565 \mathrm{~mm}^{2}>\mathrm{A}_{\text {stmin }}=210 \mathrm{~mm}^{2}$ $\mathrm{A}_{\mathrm{sty}}=210 \mathrm{~mm}^{2}$ Using 8 mm dia.bar Spacing of bar Min. of a) $\mathrm{S}_{\mathrm{y}}=\frac{1000 \times \mathrm{A} \varphi_{y}}{\mathrm{~A}_{\text {sty }}}=\frac{1000 \times \frac{\pi}{4}(8)^{2}}{210}=239.359 \mathrm{~mm}$ b) $\quad \mathrm{S}_{\mathrm{y}}=3 \mathrm{~d}^{\prime}=3 \times 165=495 \mathrm{~mm}$ c) $\quad S_{y}=300 \mathrm{~mm}$ $\mathrm{S}_{\mathrm{y}}=230 \mathrm{~mm} \mathrm{c} / \mathrm{c}$ Provide $8 \mathrm{~mm} \varphi$ bars @ $230 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	$11 / 2$	8

Model Answer: Summer 2018
Subject: Design of R.C.C. Structure

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 2	(c)-(i)	Draw the cross-section of a dog-legged staircase showing reinforcement details. Fig. Dog legged staircase (Note: 3 marks for sketch and 1 marks for labeling.) A cantilever slab of effective span 1.0 m carries a superimposed load of $1.5 \mathrm{kN} / \mathrm{m}^{2}$ including floor finish. Calculate the depth and area of reinforcement. Use M20 concrete and mild steel. Take $\mathrm{MF}=\mathbf{1 . 5 5}$.	4	4

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 2	Ans.	Given: $1_{\mathrm{e}} \quad=1 \mathrm{~m}=1000 \mathrm{~mm}$ $\mathrm{LL}+\mathrm{FF}=1.5 \mathrm{kN} / \mathrm{m}^{2}$ $\mathrm{MF}=1.55$ $\mathrm{f}_{\mathrm{ck}}=20 \mathrm{~N} / \mathrm{mm}^{2}$ $\mathrm{f}_{\mathrm{y}}=250 \mathrm{~N} / \mathrm{mm}^{2}$ To find: $\mathrm{D}=$? Ast in both direction $=$? Solution: Step 1) Slab thickness $\mathrm{d}=\frac{\text { Span }}{7 \times \mathrm{M} \cdot \mathrm{~F} .}$ Assume, Cover $=15 \mathrm{~mm}$ and $\varphi_{\mathrm{x}}=10 \mathrm{~mm}$ $\mathrm{d}=\frac{1000}{7 \times 1.55}=92.165 \mathrm{~mm}$ $\mathrm{D}=\mathrm{d}+\mathrm{c}+\frac{\varphi_{\mathrm{x}}}{2}=92.165+15+\frac{10}{2}=112.165 \mathrm{~mm}$ provide, $\mathrm{D}=120 \mathrm{~mm}$, $\mathrm{d}=120-15-\frac{10}{2}=100 \mathrm{~mm}$ $\mathrm{D}=120 \mathrm{~mm}, \mathrm{~d}=100 \mathrm{~mm}$ Step (2) Effective span $1_{\mathrm{e}}=1000+\frac{100}{2}=1050 \mathrm{~mm}=1.05 \mathrm{~m}$ Step 3) Load cal. and BM i) D.L. of slab $\quad=0.120 \times 1 \times 1 \times 25=3.0 \mathrm{kN} / \mathrm{m}$ ii) L.L.+ F.F. of slab $=1.5 \times 1 \times 1 \quad=1.5 \mathrm{kN} / \mathrm{m}$ $\text { Total laod }(\mathrm{w}) \quad=4.5 \mathrm{kN} / \mathrm{m}$ Factored load $\mathrm{w}_{\mathrm{d}}=1.5 \times 4.5=6.75 \mathrm{kN} / \mathrm{m}$ $\mathrm{BM}=\mathrm{M}_{\mathrm{u}}=\frac{(\mathrm{wd}) 1_{\mathrm{e}}^{2}}{2}=\frac{6.75 \times 1.05^{2}}{2}=3.72 \mathrm{kN}-\mathrm{m}$	1	

Model Answer: Summer 2018
Subject: Design of R.C.C. Structure

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 3	(b) Ans. (c) Ans. (d)	Write the expressions for effective flange width of T and L beams. State the meaning of each term. Expressions for effective flange width : i. For T beam $\mathrm{b}_{\mathrm{f}}=\frac{1_{0}}{6}+\mathrm{b}_{\mathrm{w}}+6 \mathrm{D}_{\mathrm{f}}$ ii. For L beam $b_{f}=\frac{l_{0}}{12}+b_{w}+3 D_{f}$ where, $b_{f}=$ Effective width of flange $1_{0}=$ Distance between points of zero moment in the beam $b_{w}=$ Breath of web $D_{f}=$ Thickness of flange b $=$ Actual width of flange. State when and how minimum shear reinforcement is provided. Write the expression for minimum shear reinforcement giving the meaning of terms involved. If Nominal shear stress ($\zeta \mathrm{v})<$ Design shear strength of concrete $(\zeta \mathrm{c})$, minimum shear reinforcement should be provided. It is provided in form of stirrup. Expression for minimum shear reinforcement: $\frac{\text { Asv }}{(\mathrm{b} \mathrm{x} \mathrm{~Sv})} \geq 0.4 / 0.87 \mathrm{fy}$ Where, $\mathrm{A}_{\mathrm{sv}}=$ total cross section area of stirrups legs effective in shear $\mathrm{S}_{\mathrm{v}}=$ stirrups spacing along the length of the member $b=$ breadth of beam or web of flanged beam $f_{y}=$ characteristic strength of stirrup reinforcement in N / mm^{2} which shall not be taken greater than $415 \mathrm{~N} / \mathrm{mm}^{2}$. A 16 mm diameter bar of grade Fe 500 is used for resisting compression. Calculate the development length if the design bond stress is $1.2 \mathrm{~N} / \mathrm{mm}^{2}$ for plain bars in tension.	$11 / 2$ $11 / 2$ 1 1 1 1 1	4

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 3	Ans. (e) Ans.	$\begin{aligned} & \text { Given data: } \varphi=16 \mathrm{~mm}, \mathrm{fy}=500 \mathrm{~N} / \mathrm{mm}^{2}, \tau_{\mathrm{bd}}=1.2 \mathrm{~N} / \mathrm{mm}^{2}, \text { bar is in compression } \\ & \mathrm{L}_{\mathrm{d}}=\frac{0.87 \times \mathrm{fy} \times \varphi}{4 \times \tau_{\mathrm{bd}}{ }^{\prime}} \\ & =\frac{0.87 \times 500 \times 16}{4 \times 1.6 \times 1.25 \times 1.2} \quad \begin{array}{l} \tau_{\mathrm{bd}}{ }^{\prime}=1.6 \times 1.25 \times \tau_{\mathrm{bd}}---- \text { for deformed bar } \\ \text { the value of } \tau_{\text {bd }} \text { increased by } 60 \% \text { and } \\ \text { for bar in compression } \tau_{\text {bd }} \text { shall be increased } \\ \text { by } 25 \% . \end{array} \\ & \mathrm{L}_{\mathrm{d}}=725 \mathrm{~mm} \end{aligned}$ Write IS specifications for longitudinal and transverse reinforcement of an axially loaded short column. IS specifications for longitudinal reinforcement of an axially loaded short column: i. Minimum diameter of bar in column $=12 \mathrm{~mm}$ ii. Minimum number of bars in circular column $=6 \mathrm{Nos}$ iii. Cover of the column $=40 \mathrm{~mm}$ iv. Minimum and maximum steel in column Max \% of steel $=6 \%$ of gross cross sectional area of column Min \% of steel $=0.8 \%$ of gross cross sectional area of column IS specifications for transverse reinforcement of an axially loaded short column: i. IS specification for diameter of lateral ties: The diameter of the link should be maximum of the following: a) The diameter of the links should be at least one fourth of the largest diameter of the longitudinal steel. b) In any case the links should not be less than 6 mm in diameter. ii. IS specification for pitch: The spacing of the link should not exceed the least of the following- a) The least lateral dimension of column. b) Sixteen times the diameter of the smallest longitudinal bar. c) 300 mm	2 1 2 2	4

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 4	(d) Ans.	i. Due to elastic shortening of concrete: As the prestress is transferred to concrete, the member shortens and prestressing steel also gets shortened along with it, resulting in loss of prestressed in steel. OR ii. Due to creep of concrete: Creep is a plastic deformation under constant stress. Concrete under the action of constant stress continues to deform with time, causing loss of prestress. OR iii. Due to shrinkage of concrete: During the process of drying and hardening, concrete undergoes contraction reducing the prestressing force. OR iv. Due to creep in steel - The loss of prestress due to creep of steel is the product of modulus of elasticity of steel and creep strain of steel. OR v. Due to frictional loss: It takes place only in post-tensioning system sue to relative movement between the tendon and the wall of the duct. OR vi. Due to slip at anchorages: The loss of prestress due to slip is due to slipping of wires during anchoring. A square column of side 425 mm is reinforced with 8 bars of 20 mm diameter of grade Fe 500 . If the grade of concrete is M25, calculate the safe load the column can carry. Step 1 $\text { Gross area, } \begin{aligned} \mathrm{A}_{\mathrm{g}} & =425 \times 425 \\ & =180625 \mathrm{~mm}^{2} \end{aligned}$ Step 2 $\begin{aligned} \text { Area of steel }\left(\mathrm{A}_{\mathrm{sc}}\right) & =8 \times\left(\frac{\pi}{4}\right) \times(20)^{2} \\ & =2513.274 \mathrm{~mm}^{2} \end{aligned}$ Step 3 $\text { Area of concrete } \begin{aligned} \left(\mathrm{A}_{\mathrm{C}}\right) & =\mathrm{Ag}-\mathrm{A}_{\mathrm{sc}} \\ & =180625-2513.274 \\ & =178111.726 \mathrm{~mm}^{2} \end{aligned}$	2 each (any one)	4

\begin{tabular}{|c|c|c|c|c|}
\hline Que. No. \& \begin{tabular}{l}
Sub. \\
Que.
\end{tabular} \& Model Answers \& Marks \& Total Marks \\
\hline Q. 4 \& \begin{tabular}{l}
(B) \\
(a) \\
Ans.
\end{tabular} \& \begin{tabular}{l}
Step 4 \\
Ultimate load carrying capacity (\(\mathrm{P}_{\mathrm{u}}\))
\[
\begin{aligned}
\mathrm{P}_{\mathrm{u}} \& =\left(0.4 \times \mathrm{fck} \times \mathrm{A}_{\mathrm{C}}\right)+\left(0.67 \times \mathrm{fy} \times \mathrm{A}_{\mathrm{sc}}\right) \\
\& =(0.4 \times 25 \times 178111.726)+(0.67 \times 500 \times 2513.274) \\
\& =2623064.05 \mathrm{~N} \\
\& =2623.06 \mathrm{kN}
\end{aligned}
\] \\
Safe load carrying capacity (P)
\[
\begin{aligned}
\& \mathrm{P}=\frac{\mathrm{Pu}}{\gamma_{\mathrm{f}}}=\frac{2623.06}{1.5} \\
\& \mathrm{P}=1748.707 \mathrm{kN}
\end{aligned}
\] \\
Attempt any ONE: \\
A doubly reinforced beam of size \(250 \mathrm{~mm} \times 400 \mathrm{~mm}\) is reinforced with 3,20 \# bars in tension and 2,16 \# bars in compression each at an effective cover of \(\mathbf{4 0} \mathbf{~ m m}\). Calculate the ultimate moment of resistance if \(f_{c k}=20 \mathrm{MPa}, f_{y}=415 \mathrm{MPa}\) and \(f_{\mathrm{sc}}=353 \mathrm{MPa}\). \\
Given: \\
b \(\quad=250 \mathrm{~mm}\) \\
D \(=400 \mathrm{~mm}\) \\
C \(=40 \mathrm{~mm}\) \\
d \(\quad=\mathrm{D}-\mathrm{C}=360 \mathrm{~mm}\) \\
Ast \(=3 \times \frac{\pi}{4} \times 20^{2}=942.477 \mathrm{~mm}^{2}\) \\
Asc \(=2 \times \frac{\pi}{4} \times 16^{2}=402.123 \mathrm{~mm}^{2}\) \\
\(\mathrm{f}_{\mathrm{sc}}=353 \mathrm{~N} / \mathrm{mm}^{2}\) \\
\(\mathrm{f}_{\mathrm{ck}}=20 \mathrm{~N} / \mathrm{mm}^{2}\) \\
\(\mathrm{f}_{\mathrm{y}}=415 \mathrm{~N} / \mathrm{mm}^{2}\) \\
To find:
\[
\mathrm{M}_{\mathrm{u}}=\text { ? }
\]
\end{tabular} \& 1

1 \& 4

6 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
Que. \\
No.
\end{tabular} \& \begin{tabular}{l}
Sub. \\
Que.
\end{tabular} \& Model Answers \& Marks \& Total Marks \\
\hline Q. 4 \& (b)

Ans. \& \begin{tabular}{l}
$$
\begin{aligned}
\text { Step } 1 \text { : Find } \mathrm{X}_{\mathrm{umax}} & =0.48 \mathrm{~d} \\
& =0.48 \times 360 \\
\mathrm{X}_{\mathrm{umax}} & =172.8 \mathrm{~mm}
\end{aligned}
$$ \\
Step 2 : Find Ast_{2}
$$
\begin{aligned}
& \mathrm{f}_{\mathrm{cc}}=0.45 \times \mathrm{f}_{\mathrm{ck}}=0.45 \times 20=9 \mathrm{~N} / \mathrm{mm}^{2} \\
& \text { Ast }_{2}=\frac{\left(\mathrm{f}_{\mathrm{sc}}-\mathrm{f}_{\mathrm{cc}}\right) \times \mathrm{A}_{\mathrm{sc}}}{0.87 \times \mathrm{f}_{\mathrm{y}}}=\frac{(353-9) \times 402.123}{0.87 \times 415} \\
& \text { Ast }_{2}=383.133 \mathrm{~mm}^{2} \\
& \text { Ast }_{1}=\text { Ast }- \text { Ast }_{2}=942.477-383.133=559.344 \mathrm{~mm}^{2}
\end{aligned}
$$ \\
Step 3 : Find Xu_{1}
$$
\mathrm{Xu}_{1}=\frac{0.87 \times \mathrm{f}_{\mathrm{y}} \times \mathrm{Ast}_{1}}{0.36 \times \mathrm{f}_{\mathrm{ck}} \times \mathrm{b}}=\frac{0.87 \times 415 \times 559.344}{0.36 \times 20 \times 250}=112.195 \mathrm{~mm}
$$ \\
Step 4 : Find type of section \\
As $\mathrm{Xu}_{1}=112.195 \mathrm{~mm}<\mathrm{X}_{\text {umax }}=172.8 \mathrm{~mm}$ \\
Section is under-reinforced. \\
Step 5 : Find Moment of Resistance M_{u}
$$
\begin{aligned}
& M_{u}=0.87 \times f_{y} \times A s t_{1} \times\left(d-0.42 \mathrm{Xu}_{1}\right)+\left[\left(\mathrm{f}_{\mathrm{sc}}-\mathrm{f}_{\mathrm{cc}}\right) \times \mathrm{A}_{\mathrm{sc}}\left(\mathrm{~d}-\mathrm{d}^{\prime}\right)\right] \\
& \mathrm{M}_{\mathrm{u}}=0.87 \times 415 \times 559.344 \times(360-0.42 \times 112.195)+[(353-9) \times 402.123 \times(360-40)] \\
& M_{u}=107.451 \times 10^{6} \mathrm{~N}-\mathrm{mm} \\
& M_{u}=107.451 \mathrm{kN}-\mathrm{m}
\end{aligned}
$$ \\
Calculate the area of steel reinforcements required for a doubly reinforced beam $250 \mathrm{~mm} \times 450 \mathrm{~mm}$ over all, subjected to ultimate bending moment of $165 \mathrm{kN}-\mathrm{m}$. Take $f_{\text {ck }}=20 \mathrm{MPa}, f_{y}=415 \mathrm{MPa}$, $\mathrm{d}^{\prime}=\mathbf{4 5} \mathrm{mm}$ and $\mathrm{f}_{\mathrm{sc}}=353 \mathrm{MPa}$. The effective cover to tension steel is $\mathbf{4 5 \mathrm { mm }}$. \\
Given: \\
b $\quad=250 \mathrm{~mm}$ \\
D $=450 \mathrm{~mm}$ \\
C $=\mathrm{d}^{\prime}=45 \mathrm{~mm}$ \\
d $\quad=\mathrm{D}-\mathrm{C}=405 \mathrm{~mm}$ \\
$\mathrm{Mu}=165 \mathrm{kNm}$ \\
$\mathrm{f}_{\mathrm{sc}}=353 \mathrm{~N} / \mathrm{mm}^{2}$ \\
$\mathrm{f}_{\mathrm{ck}}=20 \mathrm{~N} / \mathrm{mm}^{2}$ \\
$\mathrm{f}_{\mathrm{y}}=415 \mathrm{~N} / \mathrm{mm}^{2}$ \\
To find: \\
Ast $=$? \\
Asc $=$?

 \&

1 \\
1 \\
1 \\
1
\end{tabular} \& 6 \\

\hline
\end{tabular}

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 4		Solution: $\begin{array}{ll} \text { Step } & \text { 1) To find } \mathrm{x}_{\mathrm{umax}} \\ \mathrm{x}_{\mathrm{umax}} & =0.48 \mathrm{~d} \\ & =0.48 \times 405 \\ & =194.4 \mathrm{~mm} \end{array}$ Step 2) To find $\mathrm{M}_{\mathrm{u}_{1}}$ $\begin{aligned} \mathrm{M}_{\mathrm{u}_{1}}=\mathrm{M}_{\mathrm{ulim}} & =0.138 \mathrm{f}_{\mathrm{ck}} \mathrm{bd}^{2} \\ & =0.138 \times 20 \times 250 \times 405^{2} \\ & =113.177 \times 10^{6} \mathrm{~N}-\mathrm{mm} \end{aligned}$ Step 3) To find $\mathrm{A}_{\mathrm{st}_{1}}$ $\begin{aligned} & \mathrm{Pt}_{\text {lim }}=0.048 \mathrm{fck}=0.048 \times 20=0.96 \% \quad \text {---- for M20 Concrete } \\ & \mathrm{A}_{\mathrm{st}_{1}}=\frac{\mathrm{Pt}_{\text {lim }} \times \mathrm{bd}}{100}=\frac{0.96 \times 250 \times 405}{100} \\ & \mathrm{~A}_{\mathrm{st}_{1}}=972 \mathrm{~mm}^{2} \end{aligned}$ Step 4) Balanced moment of resistance $\left(\mathrm{Mu}_{2}\right)$ $\begin{aligned} \mathrm{Mu}_{2} & =\mathrm{Mu}-\mathrm{Mu}_{1} \\ & =165 \times 10^{6}-113.177 \times 10^{6} \\ & =51.823 \times 10^{6} \mathrm{~N}-\mathrm{mm} \end{aligned}$ Step 5) To find Asc $\begin{aligned} & \mathrm{fcc}=0.45 \mathrm{fck}=0.45 \times 20=9 \mathrm{~N} / \mathrm{mm}^{2} \\ & \mathrm{fsc}=353 \mathrm{~N} / \mathrm{mm}^{2} \\ & \mathrm{Mu}_{2}=\operatorname{Asc}(\mathrm{fsc}-\mathrm{fcc})\left(\mathrm{d}-\mathrm{d}^{\prime}\right) \\ & 51.823 \times 10^{6}=\operatorname{Asc}(353-9) \times(405-45) \\ & \text { Asc }=418.467 \mathrm{~mm}^{2} \end{aligned}$ Step 6)To find Ast_{2} $\mathrm{Cu}_{2}=\mathrm{Tu}_{2}$ $\text { Asc (fsc-fcc) }=\text { Ast }_{2} \times 0.87 \times f y$ $418.467 \times(353-9)=\text { Ast }_{2} \times 0.87 \times 415$ Ast $_{2}=398.706 \mathrm{~mm}^{2}$ \Total Ast $=$ Ast $_{1}+$ Ast $_{2}$ $=972+398.706$ $\text { Ast }=1370.706 \mathrm{~mm}^{2}$	1 1 1 1 1	6

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 5		Step 3) To find $\mathrm{M}_{\mathrm{u}_{1}}$ $\begin{aligned} \mathrm{M}_{\mathrm{u}_{1}}=\mathrm{M}_{\mathrm{ulim}} & =0.138 \mathrm{f}_{\mathrm{ck}} \mathrm{bd}^{2} \\ & =0.138 \times 20 \times 230 \times 400^{2} \\ & =101.568 \times 10^{6} \mathrm{~N}-\mathrm{mm} \\ \mathrm{M}_{\mathrm{u}_{1}} & =101.568 \mathrm{kNm}<\mathrm{M}_{\mathrm{u}}=157.59 \mathrm{kNm} \end{aligned}$ Hence, Doubly reinforced beam is required. Step 4) To find $\mathrm{A}_{\mathrm{st}_{1}}$ $\begin{aligned} & \mathrm{Pt}_{\text {lim }}=0.048 \mathrm{fck}=0.048 \times 20=0.96 \% \quad--- \text { - for M20 Concrete } \\ & \mathrm{A}_{\mathrm{st}_{1}}=\frac{\mathrm{Pt}_{\text {lim }} \times \mathrm{bd}}{100}=\frac{0.96 \times 230 \times 400}{100} \\ & \mathrm{~A}_{\mathrm{st} \mathrm{t}_{1}}=883.2 \mathrm{~mm}^{2} \end{aligned}$ Step 5) Balanced moment of resistance $\left(\mathrm{Mu}_{2}\right)$ $\begin{aligned} \mathrm{Mu}_{2} & =\mathrm{Mu}^{-\mathrm{Mu}_{1}} \\ & =157.59 \times 10^{6}-101.568 \times 10^{6} \\ & =56.022 \times 10^{6} \mathrm{~N}-\mathrm{mm} \end{aligned}$ Step 6) To find Asc $\begin{aligned} & \mathrm{fcc}=0.45 \mathrm{fck}=0.45 \times 20=9 \mathrm{~N} / \mathrm{mm}^{2} \\ & \mathrm{fsc}=353 \mathrm{~N} / \mathrm{mm}^{2} \\ & \mathrm{Mu}_{2}=\operatorname{Asc}(\mathrm{fsc}-\mathrm{fcc})\left(\mathrm{d}-\mathrm{d}^{\prime}\right) \\ & 56.022 \times 10^{6}=\operatorname{Asc}(353-9) \times(400-40) \\ & \text { Asc }=452.374 \mathrm{~mm}^{2} \end{aligned}$ Step 7)To find Ast ${ }_{2}$ $\mathrm{Cu}_{2}=\mathrm{Tu}_{2}$ Asc(fsc-fcc) $=$ Ast ${ }_{2} \times 0.87 \times f y$ $452.374 \times(353-9)=\text { Ast }_{2} \times 0.87 \times 415$ Ast $_{2}=431.011 \mathrm{~mm}^{2}$ Step $\begin{aligned} \text { 8)Total Ast } & =\mathrm{Ast}_{1}+\mathrm{Ast}_{2} \\ & =883.2+431.011 \end{aligned}$ $\text { Ast }=1314.211 \mathrm{~mm}^{2}$	1 1 1 1	8

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 5	(b) Ans.	A beam $230 \mathrm{~mm} \times 450 \mathrm{~mm}$ deep effective is reinforced with 4 - 16 \# bars of grade Fe 415. The beam is subjected to a factored shear force of 147 kN . Design the shear reinforcement. Use two legged vertical stirrups of 8 \# bars. Take $\zeta_{\mathrm{uc}}=0.57 \mathrm{~N} / \mathrm{mm}^{2}$. Given: To find: b $=230 \mathrm{~mm}$ Spacing of stirrups $=$? d $=450 \mathrm{~mm}$ Ast $=4 \times \frac{\pi}{4} \times(16)^{2}=804.248 \mathrm{~mm}^{2}$ $\mathrm{V}_{\mathrm{u}} \quad=147 \mathrm{kN}$ $\phi \quad=8 \mathrm{~mm}$ diameter 2 legged $\zeta_{\text {uc }} \quad=0.57 \mathrm{~N} / \mathrm{mm}^{2}$ $\mathrm{f}_{\mathrm{y}}=415 \mathrm{~N} / \mathrm{mm}^{2}$ Solution : Step1) Nominal shear stress $\varsigma_{\mathrm{v}}=\frac{\mathrm{V}_{\mathrm{u}}}{\mathrm{~b} \times \mathrm{d}}=\frac{147 \times 10^{3}}{230 \times 450}=1.42 \mathrm{~N} / \mathrm{mm}^{2}$ Step 2) Shear strength of concrete $\varsigma_{\mathrm{uc}}=0.57 \mathrm{~N} / \mathrm{mm}^{2}<\mathrm{\varsigma}_{\mathrm{v}}=1.42 \mathrm{~N} / \mathrm{mm}^{2}$ Shear reinforcement is required. Step 3)Shear force for which shear reinforcement is required $\begin{aligned} & \mathrm{V}_{\mathrm{us}}=\mathrm{V}_{\mathrm{u}}-\left(\varsigma_{\mathrm{uc}} \times \mathrm{b} \times \mathrm{d}\right)=\left(147 \times 10^{3}\right)-(0.57 \times 230 \times 450) \\ & \mathrm{V}_{\mathrm{us}}=88.005 \mathrm{kN} \end{aligned}$ Step4) Shear force to be resisted by vertical stirrups Assuming bentup bars are not provided. Shear force to be resisted by vertical stirrups $\mathrm{V}_{\mathrm{usv}}=\mathrm{V}_{\mathrm{us}}=88.005 \mathrm{kN}$ Step5) Spacing of stirrups $\mathrm{Asv}=2 \times \frac{\pi}{4} \times 8^{2}=100.53 \mathrm{~mm}^{2}$	1 1 1	

Model Answer: Summer 2018
Subject: Design of R.C.C. Structure
Sub. Code: 17604

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 5		Step3) Check for eccentricity $\mathrm{e}_{\text {max }}=0.05 \times \mathrm{b}=0.05 \times 450=22.5 \mathrm{~mm}$ $\mathrm{e}_{\text {min }}=\left(\frac{l_{\mathrm{o}}}{500}+\frac{\mathrm{b}}{30}\right)$ or 20 mm whichever is larger $=\left(\frac{3500}{500}+\frac{450}{30}\right)$ or 20 mm whichever is larger $\mathrm{e}_{\min }=22 \mathrm{~mm}<\mathrm{e}_{\max }=22.5 \mathrm{~mm}$ Step 4) Main Steel Asc $=0.01 \times \mathrm{Ag}=0.01 \times 450^{2}=2025 \mathrm{~mm}^{2}$ Providing, 25 mm dia.bars No.of bars $=\frac{\text { Asc }}{\mathrm{A} \varphi}=\frac{2025}{\frac{\pi}{4} \times 25^{2}}=4.12$ Provide 6 bars of 25 mm dia. as main steel Step5) Transverse steel i.e.links Dia.of link $=\frac{1}{4} \times \varphi$ or 6 mm whichever is greater Dia. of link $=\frac{1}{4} \times 25$ or 6 mm whichever is greater Dia. of link $=6.25 \mathrm{~mm}$ or 6 mm whichever is greater Provide 8 mm dia.links Spacing of links $=$ Minimum of below a) $\mathrm{S}=\mathrm{b}=450 \mathrm{~mm}$ b) $S=16 \times \varphi=16 \times 25=400 \mathrm{~mm}$ c) $S=300 \mathrm{~mm}$ $\mathrm{S}=300 \mathrm{~mm}$ Provide 8 mm dia.links at $300 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	1 $11 / 2$ $11 / 2$	

Model Answer: Summer 2018
Subject: Design of R.C.C. Structure
Sub. Code: 17604

Model Answer: Summer 2018

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 6	(c) Ans.	A column of size $400 \mathrm{~mm} \times 400 \mathrm{~mm}$ carries an axial load of 1500 kN . Calculate the size and depth for B.M. of a square pad footing using M20 and Fe 500. The safe bearing capacity of soil is $350 \mathrm{kN} / \mathrm{m}^{2}$. Given: $\begin{aligned} & \mathrm{b}=400 \mathrm{~mm} \\ & \mathrm{P} \quad=1500 \mathrm{kN} \\ & \mathrm{SBC}=350 \mathrm{kN} / \mathrm{m}^{2} \\ & \mathrm{f}_{\mathrm{ck}}=20 \mathrm{~N} / \mathrm{mm}^{2} \\ & \mathrm{f}_{\mathrm{y}} \quad=500 \mathrm{~N} / \mathrm{mm}^{2} \end{aligned}$ Solution: To find: Size of footing $=$? Main steel $=$? Step 1 $\text { Ultimate S.B.C } \begin{aligned} \left(\mathrm{q}_{\mathrm{u}}\right) & =2 \times 350 \\ & =700 \mathrm{kN} / \mathrm{m}^{2} \end{aligned}$ Step 2 Size of footing Assuming 5\% as self wt.of footing $\begin{aligned} & \text { Area of footing }\left(\mathrm{A}_{\mathrm{f}}\right)=\frac{\left(1.05 \times \mathrm{P}_{\mathrm{u}}\right)}{\mathrm{q}_{\mathrm{u}}}=\frac{(1.05 \times(1.5 \times 1500))}{700} \\ & =3.375 \mathrm{~m}^{2} \\ \mathrm{~L} & =\sqrt{\mathrm{A}_{\mathrm{f}}} \\ & =\sqrt{3.375} \\ & =1.837 \mathrm{~m} » 1.9 \mathrm{~m} \\ & \text { Adopt size } 1.9 \mathrm{~m} \times 1.9 \mathrm{~m} \end{aligned}$	1	

Model Answer: Summer 2018
Subject: Design of R.C.C. Structure

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 6	(d)	Step 3 Upword soil pressure (p) $\begin{gathered} \mathrm{p}=\frac{\mathrm{P}_{\mathrm{u}}}{(\mathrm{~L} \times \mathrm{B})}=\frac{1.5 \times 1500}{(1.9 \times 1.9)}=623.268 \mathrm{kN} / \mathrm{m}^{2} \\ \begin{aligned} \mathrm{M}_{\mathrm{x}}= & \mathrm{M}_{\mathrm{y}}=1 \times \mathrm{x}_{1} \times \mathrm{p} \times \frac{\mathrm{x}_{1}}{2}=1 \times 0.75 \times 623.268 \times \frac{0.75}{2} \\ & =175.294 \mathrm{kN}-\mathrm{m} \end{aligned} \\ \begin{aligned} & \mathrm{d}_{\text {req }}= \sqrt{\frac{\mathrm{M}_{\mathrm{x}}}{\left(0.133 \times \mathrm{f}_{\mathrm{I}} \times \mathrm{b}\right)}}=\sqrt{\frac{175.294 \times 10^{6}}{(0.133 \times 20 \times 1000)}} \\ &=256.709 \mathrm{~mm}>260 \mathrm{~mm} \end{aligned} \end{gathered}$ adopt cover of 50 mm $\mathrm{D}=\mathrm{d}+50=260+50=310 \mathrm{~mm}$ Provide, D $=310 \mathrm{~mm}$ and d $=260 \mathrm{~mm}$ Step 5 $\begin{aligned} \text { Ast }_{x}=\text { Ast }_{y} & =\frac{0.5 \times f \mathrm{fk}}{\mathrm{fy}} \times\left[1-\sqrt{1-\left(\frac{4.6 \times \mathrm{M}_{\mathrm{ux}}}{\left(\mathrm{fck} \times \mathrm{bd}^{2}\right)}\right)}\right] \times \mathrm{bd} \\ & =\frac{0.5 \times 20}{500} \times\left[1-\sqrt{1-\left(\frac{\left.4.6 \times 175.294 \times 10^{6}\right)}{\left(20 \times 1000 \times 260^{2}\right)}\right)}\right] \times 1000 \times 260 \\ & =1896.524 \mathrm{~mm}^{2} \end{aligned}$ using 16 mm diameter $\begin{aligned} \mathrm{S}_{\mathrm{x}}=\mathrm{S}_{\mathrm{y}} & =\frac{(1000 \times \mathrm{A} \varphi)}{\text { Ast }}=\frac{1000 \times \frac{\pi}{4} \times 16^{2}}{1896.524} \\ & =106.016 \mathrm{~mm} » 100 \mathrm{~mm} \mathrm{c} / \mathrm{c} \end{aligned}$ Provide $16 \mathrm{~mm} \varphi @ 100 \mathrm{~mm} \mathrm{c} / \mathrm{c}$ both way Calculate the ultimate moment of resistance of a T-beam having flange width $\mathbf{1 2 5 0} \mathbf{~ m m}$, thickness of slab - $\mathbf{1 1 5} \mathbf{~ m m}$, effective depth -600 mm , width of web -300 mm and tension reinforcement consisting of $\mathbf{4}$ bars of $\mathbf{2 5} \mathbf{~ m m}$ diameter of grade Fe 500 . The grade of concrete is M20.	1	4

Model Answer: Summer 2018

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 6	(e) Ans.	Draw the cross-section, strain diagram and stress diagram for a singly reinforced T beam with the neutral axis within the flange.	4	4

