Model Answer: Summer 2017

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and Communication Skills.)
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by the candidate and those in the model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and the model answer.
6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

$\begin{aligned} & \hline \text { Que. } \\ & \text { No. } \end{aligned}$	Sub. Que.	Model Answers	Marks	Total Marks
1	c) Ans.	2. In case of columns the steel is provided to resist the direct compressive stress as well as bending stresses if any. 3. In case of beams stirrups are provided to resist the diagonal tension due to shear and hold the main steel in position. 4. The box type mesh of reinforcement is provided to resist torsion. 5. The steel is provided in the form of rectangular, circular, lateral ties or spirals to prevent bucking of main bars in column. 6. The distribution steel is provided to distribute the concentrated loads and to reduce the effects of temperature and shrinkage and to hold main bars in position. State two advantages and two disadvantages of prestressed concrete. Advantages of prestressed concrete. 1. The use of high strength concrete and steel in prestressed members results in lighter and slender members than is possible with RC members. 2. In fully prestressed members the member is free from tensile stresses under working loads, thus whole of the section is effective. 3. In prestressed members, dead loads may be counter-balanced by eccentric prestressing. 4. Prestressed concrete member possess better resistance to shear forces due to effect of compressive stresses presence or eccentric cable profile. 5. Use of high strength concrete and freedom from cracks, contribute to improve durability under aggressive environmental conditions.	01 mark each (any four) 01 mark each (any two)	04

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
1	d) Ans. e) Ans.	6. Long span structures are possible so that saving in weight is significant \& thus it will be economic. 7. Factory products are possible. 8. Prestressed members are tested before use. 9. Prestressed concrete structure deflects appreciably before ultimate failure, thus giving ample warning before collapse. 10. Fatigue strength is better due to small variations in prestressing steel, recommended to dynamically loaded structures. Disadvantages of Prestressed Concrete 1. The availability of experienced builders is scanty. 2. Initial equipment cost is very high. 3. Availability of experienced engineers is scanty. 4. Prestressed sections are brittle. 5. Prestressed concrete sections are less fire resistant. State various forms of shear reinforcement in beams. 1. Vertical stirrups 2. Bent up bars along with stirrups, 3. Inclined stirrups State two ductile detailing provisions in IS 13920. Requirement for longitudinal reinforcement in flexural members: 1) The top as well as bottom reinforcement shall consist of at least two bars throughout the member length. 2) The maximum steel ratio on any face at any section, shall not exceed $P_{\text {max }}=0.025$ 3) The positive steel at a joint face must be at least equal to half the negative steel at that face. (Note: Any other members ductile detailing provisions should be considered)	01 mark each (any two) 04 02 marks each (any two)	04

Model Answer: Summer 2017

Subject: Design of RCC Structures
Sub. Code: - 17604

Model Answer: Summer 2017

Model Answer: Summer 2017

Subject: Design of RCC Structures
Sub. Code: - 17604

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
2	b)	(Note: Answer may vary on assumption of cover diameter of the bar) The effective dimensions of a slab panel are $\mathbf{4 m \times 7} \mathbf{m}$. it carries super imposed loads of $4 \mathbf{k N} / \mathbf{s q m}$. Design a suitable slab using. M20 and Fe 415 steel. Take M.F. $=1.25, \quad \alpha_{x}=0.113$ and $\alpha_{y}=$ 0.037. Find total depth D factored $B M$ and reinforcement details using suitable bars. Sketch the \mathbf{c} / s of slab along shorter span showing reinforcement details. $$ Step (1) Slab thickness, $\mathrm{LL}=4 \mathrm{kN} / \mathrm{m}^{2}>3 \mathrm{kN} / \mathrm{m}^{2} \text { and }$ $l_{x}=4 \mathrm{~m}>3.5 \mathrm{~m}$ $\mathrm{d}=\frac{\text { Span }}{20 \times \mathrm{MF}}=\frac{4000}{20 \times 1.4}=160 \mathrm{~mm}$ Assuming, $10 \mathrm{~mm} \phi$ bars and cover of 15 mm $\mathrm{D}=\mathrm{d}+\mathrm{c}+\frac{\phi}{2}=160+15+\frac{10}{2}=180 \mathrm{~mm}$ \therefore Provide, $\mathrm{D}=180 \mathrm{~mm} \mathrm{~d}=160 \mathrm{~mm}$	01	

Model Answer: Summer 2017

Subject: Design of RCC Structures

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
2		Step (2) Effective span $\begin{aligned} & l_{x}=l_{x e}=4 \mathrm{~m}=4000 \mathrm{~mm} \\ & l_{y}=l_{y e}=7 \mathrm{~m}=7000 \mathrm{~mm} \end{aligned}$ (As given diamensions are effective diamentions of slab panel) (3)Load \& B M calculation i) D.L. of slab $=0.180 \times 1 \times 1 \times 25=4.5 \mathrm{kN} / \mathrm{m}$ ii) L.L. of slab $=4 \times 1 \times 1=4 \mathrm{kN} / \mathrm{m}$ i) F.F. of slab $=1 \times 1 \times 1=1.0 \mathrm{kN} / \mathrm{m}$ $\text { Total load }=9.5 \mathrm{kN} / \mathrm{m}$ Factored load $\left(w_{\mathrm{d}}\right)=1.5 \times w$ $\begin{aligned} & =1.5 \times 9.5 \\ & =14.25 \mathrm{kN} / \mathrm{m} \end{aligned}$ BM calculations, $\begin{aligned} & \mathrm{M} u_{x}= \alpha_{\mathrm{x}} \cdot w_{\mathrm{d}} \cdot\left(l_{x e}\right)^{2}=\left(0.113 \times 14.25 \times(4)^{2}\right) \\ & \mathrm{Mu}_{\mathrm{x}}=25.764 \mathrm{kN}-\mathrm{m} \end{aligned}$ $\mathrm{M} u_{y}=\alpha_{\mathrm{y}} \cdot w_{\mathrm{d}} \cdot\left(l_{x e}\right)^{2}=\left(0.037 \times 14.25 \times(4)^{2}\right)$ $\mathrm{Mu}_{\mathrm{x}}=8.436 \mathrm{kN}-\mathrm{m}$ Step (4) Check for depth $\begin{gather*} \mathrm{Mu}_{\max }=\mathrm{M}_{\mathrm{ux}} \\ 0.138 \mathrm{f}_{\mathrm{ck}} \mathrm{~b}\left(\mathrm{~d}_{\text {reqd }}\right)^{2}=25.764 \times 10^{6} \\ \left(\mathrm{~d}_{\text {reqd }}\right)=96.616 \mathrm{~mm}<\mathrm{d}=160 \mathrm{~mm} \end{gather*}$ Step (5) Main steel and its spacing In X direction $\begin{aligned} & \mathrm{A}_{\mathrm{stx}}=\frac{0.5 \mathrm{f}_{\mathrm{ck}}}{\mathrm{f}_{\mathrm{y}}}\left[1-\sqrt{\left.1-\frac{4.6 \times \mathrm{M} u \times 10^{6}}{\mathrm{f}_{\mathrm{ck}} \mathrm{bd}}\right] \mathrm{bd}}\right. \\ & \mathrm{A}_{\mathrm{st}}=\frac{0.5 \times 20}{415}\left[1-\sqrt{1-\frac{4.6 \times 25.764 \times 10^{6}}{20 \times 1000 \times(160)^{2}}}\right] \times 1000 \times 160 \\ & \mathrm{~A}_{\mathrm{st}}=475.541 \mathrm{~mm}^{2} \end{aligned}$	01 01 01 01	08

Model Answer: Summer 2017

Model Answer: Summer 2017

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
2	c)	Design a cantilever chajja with following data: $\operatorname{Span}=1.50 \mathrm{~m}$, width $=2.0 \mathrm{~m}$, L.L. $=\mathrm{kN} / \mathrm{m}^{2}$. Floor finish $=0.5 \mathrm{kN} / \mathrm{m}^{2}$, support lintel $=230 \times 300 \mathrm{~mm}$ concrete $\mathrm{M} \mathrm{20}, \mathrm{Fe} 415$ steel, sketch the c/s of chaja. Showing steel details. Given: Span $=l=1.5 \mathrm{~m}=1500 \mathrm{~mm}$, Width $=2 \mathrm{~m}=2000 \mathrm{~mm}$ $\mathrm{LL}=1.5 \mathrm{kN} / \mathrm{m}^{2}, \mathrm{FF}=0.5 \mathrm{kN} / \mathrm{m}^{2}$ Support $=230 \times 300 \mathrm{~mm}$ $\mathrm{f}_{\mathrm{ck}}=20 \mathrm{~N} / \mathrm{mm}^{2}, \mathrm{f}_{\mathrm{y}}=415 \mathrm{~N} / \mathrm{mm}^{2}$ Step 1) Slab thickness $d=\frac{\operatorname{Span}}{7 \times M \cdot F}$ Assume, M.F.1.4, cover $=15 \mathrm{~mm}$ and $\phi=10 \mathrm{~mm}$ $d=\frac{1500}{7 \times 1.4}=153.06 \mathrm{~mm}$ $D=d+c+\frac{\phi}{2}=153.06+15+\frac{10}{2}=173.06 \mathrm{~mm}$ provide, $\mathrm{D}=180 \mathrm{~mm}$, $\mathrm{d}=180-15-\frac{10}{2}=160 \mathrm{~mm}$ $\mathrm{D}=180 \mathrm{~mm}, \mathrm{~d}=160 \mathrm{~mm}$ Step (2) Effective span $l_{e}=l+\frac{d}{2}=1580 \mathrm{~mm}=1.58 \mathrm{~m}$ Step 3) Load cal. and BM i) D.L. of slab $=0.180 \times 1 \times 1 \times 25=4.5 \mathrm{kN} / \mathrm{m}$ ii) L.L. of slab $=1.5 \times 1 \times 1=1.5 \mathrm{kN} / \mathrm{m}$ iii) F.F. pf slab $=0.50 \times 1 \times 1=0.5 \mathrm{kN} / \mathrm{m}$ $\text { Total } \operatorname{laod}(\mathrm{w})=6.5 \mathrm{kN} / \mathrm{m}^{\prime}$ Factored load $\mathrm{w}_{\mathrm{d}}=1.5 \times 6.5=9.75 \mathrm{kN} / \mathrm{m}$ $B M=M_{u}=\frac{(w d) l_{e}^{2}}{2}=\frac{9.75 \times 1.580^{2}}{2}=12.169 \mathrm{kN}-\mathrm{m}$ Check for depth , $\mathrm{Mu}_{\max }=\mathrm{M}_{\mathrm{ux}}$	01 01 01 01	

Model Answer: Summer 2017

Model Answer: Summer 2017
Subject: Design of RCC Structures
Sub. Code: - 17604

\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
Que. \\
No.
\end{tabular} \& Sub. Que. \& Model Answers \& Marks \& \begin{tabular}{l}
Total \\
Marks
\end{tabular} \\
\hline 2 \& a)

Ans. \& | (Note: Answer may vary on assumption of cover diameter of the bar) |
| :--- |
| Attempt any FOUR : |
| Find the moment of resistance (M_{r}) of fec (T) beam with following data: $D_{f}=120 \mathrm{~mm}, b_{f}=1500 \mathrm{~mm}, b_{w}=300 \mathrm{~mm} \mathrm{~d}=\mathbf{4 5 0} \mathrm{mm}, A_{\mathrm{sf}}=$ $2200 \mathrm{~mm}^{2}$, concrete M25, steel Fe 500. |
| Given : $\begin{aligned} & \mathrm{bf}=1500 \mathrm{~mm} \\ & \mathrm{Df}=120 \mathrm{~mm} \\ & \mathrm{bw}=300 \mathrm{~mm} \\ & \mathrm{~d}=450 \mathrm{~mm} \\ & \text { Ast }=2200 \mathrm{~mm}^{2} \end{aligned}$ |
| To find M_{u} |
| Step 1) |
| To find $\mathrm{Xu}=$? (Assume $\mathrm{Xu}<\mathrm{Df}$) $\begin{aligned} & X_{u}=\frac{0.87 \mathrm{fy} \mathrm{Ast}}{0.36 \mathrm{fck} b_{f}} \\ & X_{u}=\frac{0.87 \times 500 \times 2200}{0.36 \times 25 \times 1500} \end{aligned}$ |
| $\mathrm{Xu}=70.88 \mathrm{~mm}<\mathrm{Df}=120 \mathrm{~mm} \ldots . . . \mathrm{ok}$ | \& 01 \& 16

\hline
\end{tabular}

Model Answer: Summer 2017

Subject: Design of RCC Structures
Sub. Code:-17604

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
3		where, $\mathrm{b}_{\mathrm{f}}=$ effective width of flange $l_{0}=$ distance between points of zero moment in the beam $b_{w}=$ breath of web $D_{f}=$ thickness of flange $b=$ actual width of flange. Define development length $\&$ state factors affecting development length. Development Length: Development length is defined as the length of the bar required on either side of the section to develop the required stress in steel at that section through bond. OR Development length is an embedded length of the bar required to develop the design stress in reinforcement at the critical section Factors affecting development length: 1. Grade of steel. 2. Grade of concrete. 3. Diameter of bar. 4. Design bond stress. Diameter of a steel bar is 20 mm , steel Fe 415 grade and design bond stress is 1.2 MPa for plain bars in tension, calculate the development length for bar inn compression. Given: $\begin{aligned} & \Phi=20 \mathrm{~mm} \\ & \mathrm{f}_{\mathrm{ck}}=20 \mathrm{~N} / \mathrm{mm}^{2} \\ & \mathrm{f}_{\mathrm{y}}=415 \mathrm{~N} / \mathrm{mm}^{2} \end{aligned}$ Bond stress, $\tau_{\mathrm{bd}}=1.2 \mathrm{~N} / \mathrm{mm}^{2}$	02 $\begin{aligned} & 1 / 2 \\ & \text { mark } \\ & \text { each } \end{aligned}$	

\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
Que. \\
No.
\end{tabular} \& Sub. Que. \& Model Answers \& Marks \& Total Marks \\
\hline 3 \& e)

Ans. \& \begin{tabular}{l}
Development length for bar in compression
$$
L d=\frac{0.87 \mathrm{fy} \phi}{4 \mathrm{tbd}}
$$

For Fe 500 steel value of $\tau_{\text {bd }}$ shall be increased by 60% and for bar in compression, the value of bond stress for bar in tension shall be increased by 25%
$$
\begin{aligned}
& L d=\frac{0.87 \times 415 \times 20}{4 \times 1.6 \times 1.25 \times 1.2} \\
& L_{d}=752.1875 \mathrm{~mm}
\end{aligned}
$$

Design a rectangular column with following data:

Factored load $=3500 \mathrm{kN}$, concrete M 20, Steel Fe 415, Unsupported length $=4.0 \mathrm{~m}$. Assume 1% steel.

(Note: Answer may vary according to shape of column assumed) Given:
$$
\begin{aligned}
& \mathrm{P}_{\mathrm{u}}=3500 \mathrm{kN} \\
& \mathrm{~L}=4 \mathrm{~m}=4000 \mathrm{~mm} \\
& \mathrm{~F}_{\mathrm{ck}}=20 \mathrm{~N} / \mathrm{mm}^{2} \\
& \mathrm{~F}_{\mathrm{y}}=415 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

Step 1)

To find Size of column
$$
\mathrm{P}_{\mathrm{u}}=\left(0.4 \mathrm{f}_{\mathrm{ck}} \mathrm{~A}_{\mathrm{c}}\right)+\left(0.67 \mathrm{fy}_{\mathrm{y}} \mathrm{~A}_{\mathrm{sc}}\right)
$$

Assume 1% of steel in column

Area of steel, $\mathrm{A}_{\mathrm{sc}}=0.01 \mathrm{Ag}_{\mathrm{g}}$

Area of concrete $\mathrm{A}_{\mathrm{c}}=\mathrm{Ag}_{\mathrm{g}}-\mathrm{A}_{\mathrm{sc}}$

$\mathrm{A}_{\mathrm{c}}=0.99 \mathrm{~A}_{\mathrm{g}}$

$3500 \times 10^{3}=\left(0.4 \times 20 \times 0.99 \mathrm{~A}_{\mathrm{g}}\right)+\left(0.67 \times 415 \times 0.01 \mathrm{~A}_{\mathrm{g}}\right)$

$\mathrm{A}_{\mathrm{g}}=327.087 \times 10^{3} \mathrm{~mm}^{2}$

Assume $\mathrm{b}=400 \mathrm{~mm}$

 \&

02

02
\end{tabular} \& 04

\hline
\end{tabular}

$\begin{aligned} & \hline \text { Que. } \\ & \text { No. } \end{aligned}$	Sub. Que.	Model Answers	Marks	Total Marks
3		(Students may assume any other value of 'b' according the ' d ' will changed) $\mathrm{D}=\frac{A g}{b}=\frac{327.087 \times 10^{3}}{400}=817.71 \mathrm{~mm}=820 \mathrm{~mm}$ Step 2) Check for minimum eccentricity $\begin{aligned} \mathrm{e}_{\min } & =\mathrm{L} / 500+\mathrm{D} / 30 \text { OR } 20 \mathrm{~mm} \text { whichever is greater } \\ & =4000 / 500+820 / 30 \\ \mathrm{e}_{\min } & =35.33 \mathrm{~mm} \text { OR } 20 \mathrm{~mm} \text { whichever is greater } \\ \mathrm{e}_{\min } & =35.33 \mathrm{~mm} \\ \mathrm{e}_{\max } & =0.05 \mathrm{D} \\ & 0.05 \mathrm{D}=0.05 \times 820=41 \mathrm{~mm} \\ \mathrm{e}_{\min } & 35.33 \mathrm{~mm}<\mathrm{e}_{\max } 41 \mathrm{~mm}0 k \text { for minimum eccentricity. } \end{aligned}$ Provide size of column $=400 \mathrm{~mm} \times 820 \mathrm{~mm}$ $\begin{aligned} \mathrm{A}_{\mathrm{sc}} & =0.01 \mathrm{Ag} \\ & =0.01 \mathrm{X} 400 \mathrm{X} 820 \\ \mathrm{~A}_{\mathrm{sc}} & =3282 \mathrm{~mm}^{2} \end{aligned}$ Provide 8 bars of $20 \mathrm{~mm} \phi$ bar and 2 bars of $25 \mathrm{~mm} \phi$ $\begin{aligned} & \mathrm{A}_{\text {scprod }}=8 \times 314.15+2 \times 490.87=3494.94 \mathrm{~mm}^{2}>3282 \mathrm{~mm}^{2} . . \text { ok } \\ & \% \mathrm{Pt}=\frac{3494.24}{400 \times 820} \times 100=1.06 \% \\ & \% \mathrm{Pt}_{\min }=0.18 \%<\% \mathrm{Pt}=1.06<\% \mathrm{Pt}_{\max }=6 \% \end{aligned}$ Step 3)Lateral Ties Diameter of ties $=1 / 4 \mathrm{X}$ diameter of longitudinal steel bar. $\begin{aligned} & =1 / 4 \times 25 \\ & =6.25 \mathrm{~mm} \end{aligned}$ So, provide 8 mm dia. lateral ties. Pitch should not be greater than i) Least lateral dimensions of column i.e. 400 mm . ii) $16 \times$ dia. of longitudinal steel $=16 \times \phi=16 \times 20=320 \mathrm{~mm}$ iii) 300 mm (Select minimum of above values) Therefore, provide lateral ties $8 \mathrm{~mm} \phi @ 300 \mathrm{~mm} \mathrm{c} / \mathrm{c}$.	01 01 01	04

$\begin{aligned} & \hline \text { Que. } \\ & \text { No. } \end{aligned}$	Sub. Que.	Model Answers	Marks	Total Marks
	c) Ans. d) Ans.	Define: (i) Characteristic strength and (ii) Characteristic load. i) Characteristic Strength Characteristic Strength means that value of the strength of the material below which not more than 5% of the test results are expected to fall. ii) Characteristic Load Characteristic Load means that value of load which has 95% probability of not being exceeded during the life of the structure. State four situations where doubly reinforced section are preferred. 1) When the singly reinforced beams need considerable depth to resist large bending moment, it becomes necessary to provide doubly reinforced section. 2) When the size of rectangular beam cross-section is limited because of architectural reasons or practical reasons then it becomes necessary. 3) When the sections are subjected to reversal of bending moment. 4) When it is required to reduce the long-term deflection, it becomes necessary to provide doubly reinforced section. 5) When a beam is continuous overall several supports; the beam is subjected to alternate sagging also it becomes necessary to provide doubly reinforced section.		04

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
	B) a) Ans.	Solve any ONE : A R. C. beam $230 \times 450 \mathrm{~mm}$ effective is subjected to a working moment of $150 \mathrm{kN}-\mathrm{m}$ calculate area of steel I tension and compression zone. Use M 200 concrete and Fe415 steel. (Assume $d^{\prime}=45 \mathrm{~mm}$, and for $d^{\prime} / d^{\prime}=0.1, f_{s c}=353 \mathrm{MPa}$) Given data, $\begin{array}{lc} \mathrm{b}=230 \mathrm{~mm} & \mathrm{~d}=450 \mathrm{~mm} \\ \mathrm{M}=150 \mathrm{KN} \cdot \mathrm{~m} & \mathrm{~d}^{\prime}=30 \mathrm{~mm} \\ \mathrm{f}_{\mathrm{ck}}=20 \mathrm{~N} / \mathrm{mm}^{2} & \mathrm{f}_{\mathrm{y}}=415 \mathrm{~N} / \mathrm{mm}^{2} \\ \mathrm{f}_{\mathrm{sc}}=353 \mathrm{~N} / \mathrm{mm}^{2} & \end{array}$ To find, $\mathrm{A}_{\mathrm{sc}}=$? and $\mathrm{A}_{\mathrm{st}}=$? $\mathrm{M}_{\mathrm{u}}=1.5 \mathrm{M}=1.5 \mathrm{x} 150=225 \mathrm{KN} . \mathrm{m}$ Step 1 To find Xumax, $\begin{aligned} X_{\mathrm{umax}} & =0.48 \mathrm{~d} \ldots \ldots \ldots . \text { for fe } 415 \\ & =0.48 \times 450 \\ \mathbf{X}_{\mathbf{u} \max } & =\mathbf{2 1 6} \mathbf{~ m m} \end{aligned}$ Step 2 To find $M_{u l i m}\left(M_{u 1}\right)$ $\begin{aligned} & \mathrm{M}_{\mathrm{ulim}}==0.138 \mathrm{f}_{\mathrm{ck}} \mathrm{bd}^{2} \quad \ldots \text { for fe } 415 \\ & \mathrm{M}_{\mathrm{ulim}}=0.138 \times 20 \times 230 \times 450^{2} \\ & \mathbf{M}_{\mathbf{u l i m}}=\mathbf{1 2 8 . 5 4 7} \times 1 \mathbf{1 0}^{6} \mathbf{N} \mathbf{- m m} \end{aligned}$ Step 3 find $M_{u 2}$ $\begin{aligned} & \mathrm{M}_{\mathrm{u} 2}=\mathrm{M}_{\mathrm{u}}-\mathrm{M}_{\mathrm{ulim}} \\ & \mathrm{M}_{\mathrm{u} 2}=225-128.54 \\ & \mathbf{M u}_{\mathbf{u}}=\mathbf{9 6 . 4 6} \mathbf{~ K N . m} \end{aligned}$	01	06

\begin{tabular}{|c|c|c|c|c|}
\hline Que. No. \& Sub. Que. \& Model Answers \& Marks \& \begin{tabular}{l}
Total \\
Marks
\end{tabular} \\
\hline 4 \& b) \& \begin{tabular}{l}
Fine the moment of resistance of a beam \(230 \mathrm{~mm} x 450 \mathrm{~mm}\) deep reinforced with \(4-16 \mathrm{~mm}\) diameter bars in tension zone and 2 12 mm diameter bars in compression zone. Assume effective cover of 40 mm . \\
Given data :-
\[
\begin{aligned}
\& \mathrm{b}=230 \mathrm{~mm} \\
\& \mathrm{D}=450 \mathrm{~mm} \\
\& \mathrm{~d}^{\prime}=\mathrm{D}-\mathrm{d}^{\prime}=450-40=410 \mathrm{~mm} \\
\& \mathrm{~d}^{\prime}=40 \mathrm{~mm} \\
\& \mathrm{~A}_{\mathrm{sc}}=2 \mathrm{x}(\pi / 4) \times 12^{2}=226.19 \mathrm{~mm}^{2} \\
\& \mathrm{~A}_{\mathrm{st}}=4 \mathrm{x}(\pi / 4) \times 16^{2}=804.24 \mathrm{~mm}^{2} \\
\& \mathrm{f}_{\mathrm{ck}}=20 \mathrm{~N} / \mathrm{mm}^{2} \\
\& \mathrm{f}_{\mathrm{y}}=415 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
\] \\
Step 1 - To find Xu max
\[
\begin{aligned}
X_{\text {umax }} \& =0.48 \mathrm{~d} \ldots \ldots . . \text { for Fe } 415 \\
\& =0.48 \times 410 \\
\& =196.8 \mathrm{~mm}
\end{aligned}
\] \\
Step 2 - To find actual Xu ,
\[
\begin{aligned}
\& A s t_{2}=\frac{(F s c-F c c) A s c}{0.87 \mathrm{fy}} \\
\& \mathrm{Fcc}=0.45 \mathrm{fck}=0.45 \times 20=9 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
\] \\
fsc is depend on \(\mathrm{d}^{\prime} / \mathrm{d}\) ratio
\[
\frac{d^{\prime}}{d}=\frac{40}{410}=0.0975
\]
\begin{tabular}{|l|l|l|l|l|}
\hline \(\mathbf{d} / \mathbf{d}\) \& .05 \& 0.10 \& 0.15 \& 0.20 \\
\hline fsc \& 355 \& 352 \& 342 \& 329 \\
\hline
\end{tabular}
\[
\begin{array}{cc}
\frac{d^{\prime}}{d} \& F s c \\
0.5 \& 355 \\
0.0975 \& ? \\
0.10 \& 352
\end{array}
\] \\
(Note : Given data is insufficient any suitable value of 'fsc' assumed should be considered)
\end{tabular} \& 01

01 \&

\hline
\end{tabular}

Model Answer: Summer 2017

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
4		$F s c=\left[\frac{(352-355)}{(0.1-0.05)} \times(0.9075-0.05)\right]+355$		06
		$\mathrm{fsc}=\mathbf{3 5 2 . 1 5 ~ N / \mathrm { mm } ^ { 2 }}$	01	
		$A s t_{2}=\frac{(352.15-9) \times 226.19}{0.87 \times 415}=214.97 \mathrm{~mm}^{2}$		
		Ast $_{1}=$ Ast- Ast ${ }_{2}$		
		= 804.24-214.97		
		$=589.27 \mathrm{~mm}^{2}$	01	
		Step 3 Find Xu		
		$X_{u}=\frac{0.87 \mathrm{fy}_{\mathrm{Ast}}^{1}}{}$		
		$X_{\text {L }}=\frac{0.87 \times 415 \times 589.27}{0.3620 \times 230}$		
		$X_{u}=\frac{0.36 \times 20 \times 230}{}$	01	
		$X_{u}=128.47 \mathrm{~mm}$		
		$\mathrm{Xu}<\mathrm{Xu}$ max the section is Under reinforced		
		Step 4 Moment of Resistance		
		$M_{u}=0.87 \times f_{y} \times A_{s t} \times\left(d-0.42 X_{u}\right)+\left(f_{s c}-f_{c c}\right) \times A_{s c}\left(d-d^{\prime}\right)$		
		$M_{u}=0.87 \times 415 \times 589.27 \times(410-0.42 \times 128.47)+(352.15-9) \times 226.19(410-40)$	01	
		$M_{u}=104.468 \times 10^{-6} \mathrm{~N}-\mathrm{mm}$		
		$M_{u}=104.468 \mathrm{kN}-\mathrm{m}$		
	a)			16
5.		Attempt any TWO:		
	Ans.	A doubly reinforced beam section $230 \mathrm{~mm} \times 40 \mathrm{~mm}$ effective carries a factored moment of $175 \mathbf{k N}-\mathrm{m}$. fine the area of steel. Required if M 20concrte and $\mathbf{F e} 500$ are used. Assume d' $=\mathbf{5 0 m m}$ and $\sigma_{\mathrm{sc}}=353 \mathrm{~N} / \mathrm{mm}^{2}$.		
		Given : $b=230 \mathrm{~mm} \quad d=450 \mathrm{~mm}(\text { effective })$		
		$\begin{aligned} & M d=175 \mathrm{kN}-\mathrm{m} \\ & M 20 \quad F e 500 \quad \mathrm{Fck}=20 \mathrm{~N} / \mathrm{mm}^{2} \end{aligned}$		
		$f y=500 \mathrm{~N} / \mathrm{mm}$		
		Step 1)		
		To find $\mathrm{x}_{\text {umax }}$ $x_{u \max }=0.46 d$		
		$x^{\text {max }}=0.46 \times 450$	01	

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
5		Step 2) To find $\quad \mathrm{M}_{\mathrm{ulim}}$ $\begin{aligned} M_{u \lim }= & 0.133 f_{c k} b d^{2} \\ & =0.133 \times 20 \times 230 \times 450^{2} \\ & =123.89 \mathrm{kN} . \mathrm{m} \end{aligned}$ Step 3) To find $\quad \mathrm{A}_{\mathrm{st}_{1}}$ $\begin{aligned} & P t_{\text {lim }}=0.038 \times f_{c k}=0.038 \times 20=0.76 \\ & A_{s t_{1}}=\frac{P t_{\text {lim }} \times b d}{100} \\ & \quad=\frac{0.76 \times 230 \times 450}{100} \\ & A_{s t_{1}}=786.6 \mathrm{~mm}^{2} \end{aligned}$ Step 4) $\begin{aligned} M u_{2}= & M d-M d_{1} \\ & =175-123.89 \\ & =51.11 \mathrm{kN}-\mathrm{m} \end{aligned}$ Step 5) To find Asc $M u_{2}=\operatorname{Asc}(f s c-f c c)\left(d-d^{\prime}\right)$ $51.11 \times 10^{6}=\operatorname{Asc}\left(353-0.45 \times f_{c k}\right) \times(450-50)$ $51.11 \times 10^{6}=\operatorname{Asc}(353-0.45 \times 20) \times(450-50)$ Asc $=371.44 \mathrm{~mm}^{2}$ Step 6) To find Ast ${ }_{2}$ $C u_{2}=T u_{2}$ $\operatorname{Asc}(f s c-f c c)=A s t_{2} \times 0.87 \times 500$ $371.44(353-0.45 \times 20)=A s t_{2} \times 0.87 \times 500$ $A s t_{2}=293.74 \mathrm{~mm}^{2}$ total \quad Ast $=A s t_{1}+A s t_{2}$ $\begin{aligned} & =786.6+293.74 \\ & =1080.34 \mathrm{~mm}^{2} \end{aligned}$	01 01 01 01 01 01 01	

\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
Que. \\
No.
\end{tabular} \& Sub. Que. \& Model Answers \& Marks \& Total Marks \\
\hline 5 \& b) \& \begin{tabular}{l}
A beam \(250 \mathrm{~mm} \times 415 \mathrm{~mm}\) effective depth is reinforced with 4 bars of 16 mm dia of grad Fe 415. The shear force of the support is \(\mathbf{9 0}\) kN. Design the shear reinforcement. Use M 20 concrete and \(\mathbf{6 m m}\) dia. vertical stirrups of \(\mathbf{F e} 415\) steel. \\
Given data:
\[
\begin{array}{ll}
\mathrm{b}=250 \mathrm{~mm} \& \mathrm{f}_{\mathrm{y}}=415 \mathrm{~N} / \mathrm{mm}^{2} \\
\mathrm{~d}=415 \mathrm{~mm} \& \mathrm{f}_{\mathrm{ck}}=20 \mathrm{~N} / \mathrm{mm}^{2}
\end{array}
\] \\
4 bars \(16 \mathrm{~mm} \varphi\)
\[
\mathrm{V}=90 \mathrm{kN}
\] \\
Ast \(=4 \times \frac{\pi}{4} \times 16^{2}=804.25 \mathrm{~mm}^{2}\) \\
Stirrups \(6 \mathrm{~mm} \varphi\) \\
Step 1) \\
To calculate factored shear force
\[
\begin{aligned}
\mathrm{Vu}=\mathrm{V} \& \times 1.5 \\
\& =90 \times 1.5 \\
\& =135 \mathrm{kN}
\end{aligned}
\] \\
Step 2) \\
To calculate shear \(\operatorname{stress}\left(\tau_{v}\right)\)
\[
\tau_{\mathrm{v}}=\frac{\mathrm{Vu}}{\mathrm{bd}}=\frac{135 \times 10^{3}}{230 \times 415}=1.3 \mathrm{~N} / \mathrm{mm}^{2}
\]
\[
\tau_{\text {cmax }}=2.8 \mathrm{~N} / \mathrm{mm}^{2} \quad \ldots \text { for } \mathrm{M}_{20} \text { concrete }
\] \\
Step 3) \\
Calculate pt\%, Ast, \(\tau_{c}\) \\
(Note: Given data is insufficient. Any suitable value of \(\tau_{\mathrm{c}}\) assumed should be considered)
\end{tabular} \& 01
01

01 \&

\hline
\end{tabular}

Model Answer: Summer 2017

Que. No.	$\begin{aligned} & \hline \text { Sub. } \\ & \text { Que. } \end{aligned}$	Model Answers	Marks	Total Marks
5		$\begin{aligned} & p t_{1}=0.75 \quad \tau_{c 1}=0.56 \\ & p t_{2}=1.0 \quad \tau_{c 2}=0.62 \\ & p t=0.78 \quad \text { then } \quad \tau_{c} \\ & \tau_{c}=\tau_{c 1}+\frac{\left(\tau_{c 2}-\tau_{c 1}\right)}{\left(p t_{2}-p t_{1}\right)} \times\left(p t-p t_{1}\right) \\ & \tau_{c}=0.56+\frac{(0.62-0.56)}{(1.0-0.75)} \times(0.78-0.75) \\ & \tau_{c}=0.57 \mathrm{~N} / \mathrm{mm}^{2} \\ & \tau_{v}=1.3 \mathrm{~N} / \mathrm{mm}^{2}>\tau_{c}=0.57 \mathrm{~N} / \mathrm{mm}^{2} \end{aligned}$ Shear reinforcement is required Step 4) Shear force for which shear reinforcement is required $\begin{aligned} & \text { Vus }=V u-\tau_{\mathrm{c}} \mathrm{bd} \\ &=135 \times 10^{3}-0.57 \times 230 \times 415 \\ &=80.593 \mathrm{kN} \\ &=80593 \mathrm{~N} \end{aligned}$ As bent up bars are not provided Vusv=Vus=80593N Provide $6 \mathrm{~mm} \phi$ two legged vertical stirrups Step 5) $\operatorname{Spacing}(\mathrm{Sv})=\frac{0.87 \mathrm{f}_{\mathrm{y}} \text { Asv.d }}{\text { Vusv }}$ $\mathrm{Sv}=\frac{0.87 \times 415 \times 2 \times \frac{\pi}{4} \times 6^{2} \times 415}{80593}$ $\mathrm{Sv}=105.13 \approx 100 \mathrm{~mm} \mathrm{c} / \mathrm{c}$ $\begin{aligned} & S v_{\min }=\frac{0.87 f_{y} A s v}{0.4 b}=\frac{0.87 \times 415 \times 2 \times \frac{\pi}{4} \times 6^{2}}{0.4 \times 230} \\ & S v_{\min }=221.92 \approx 220 \mathrm{~mm} \\ & S v_{\max }=0.75 d \text { or } \quad 300 \\ & S v_{\max }=0.75 \times 415 \quad \text { or } \quad 300 \\ & S v_{\max }=311.25 \text { or } \quad 300 \end{aligned}$ Provide $6 \mathrm{~mm} \phi$ two legged vertical stirrups ($100 \mathrm{mmc} / \mathrm{c}$.	01 01 01 01 01	08

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
5	c) Ans.	Design on R.C. column footing with following data. Size of column $=400 \mathrm{~mm} \times 400 \mathrm{~mm}$ Safe bearing capacity $=1200 \mathrm{kN} / \mathrm{m}^{2}$ Concrete M20 and steel Fe 415 is used. Calculate depth of footing from B.M criteria. No shear check is required. Given- Size of column -400 mm X 400 mm Safe bearing capacity of soil $=200 \mathrm{kN} / \mathrm{m}^{2}$ Load on column is 1200 kN $\begin{aligned} & \mathrm{f}_{\mathrm{ck}}=20 \mathrm{~N} / \mathrm{mm}^{2} \\ & \mathrm{fy}=415 \mathrm{~N} / \mathrm{mm}^{2} \end{aligned}$ Step 1 : Ultimate S.B.C $\left(q_{u}\right)=2 \times 200=400 \mathrm{kN} / \mathrm{m}^{2}$ Step 2 : Size of footing- $\begin{aligned} \mathrm{W}_{\mathrm{U}} & =\mathrm{W} \mathrm{X} \mathrm{Y}_{\mathrm{f}}=1200 \mathrm{X} 1.5=1800 \mathrm{kN} \\ \mathrm{~A}_{\mathrm{f}} & =1.05 \mathrm{X} \mathrm{~W}_{\mathrm{U}} / \mathrm{q}_{\mathrm{u}} \\ & =1.05 \mathrm{X} \mathrm{1800}^{2} / 400 \\ & =4.725 \mathrm{~m}^{2} \\ \mathrm{~L} & =\mathrm{B}=\sqrt{A F}=\sqrt{4.725}=2.173 \mathrm{~m}=\text { say } 2.20 \mathrm{~m} \end{aligned}$ Adopt footing of size 2.20 m X 2.20 m Step 3 : Upward soil pressure $\mathrm{p}=\mathrm{W}_{\mathrm{u}} /(\mathrm{L} \mathrm{X} \mathrm{~B})=1800 /(2.2 \mathrm{X} 2.2)=371.90 \mathrm{KN} / \mathrm{m}^{2}$	01 01 01	
			01	

Model Answer: Summer 2017

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
5		Step 4 :		
		Depth for flexure		
			01	
		Let $\mathrm{X}_{1}=\mathrm{Y}_{1}=$ projection beyond column $=(2.2-0.4) / 2=0.9$		
		$\mathrm{M}_{\mathrm{x}}=\mathrm{M}_{\mathrm{y}}=1 \times \mathrm{X}_{1} \times \mathrm{p} \times\left(\mathrm{X}_{1} / 2\right)$		
		$\mathrm{M}_{\mathrm{x}}=\mathrm{M}_{\mathrm{y}}=1 \mathrm{X} 0.9 \mathrm{X} 371 \mathrm{X}(0.9 / 2)$ $=15062 \mathrm{KNm}$		08
		$d_{r e q d}=\sqrt{M x / q \cdot f c k \cdot b}$		
		$d_{\text {reqd }}=\sqrt{\left(150.62 \times 10^{6} / 0.138 \times 20 \times 1000\right)}$		
		$=233.61 \mathrm{~mm}$ say 240 mm .		
		Adopt cover of 80 mm		
		$\mathrm{D}=240+80=320 \mathrm{~mm}$	01	
		Step 5 :		
		$A s t=\frac{0.5 f_{c k}}{f_{v}}\left[1-\sqrt{1-\frac{4.6 \times M_{u}}{f_{c k} b d^{2}}}\right] b d$		
		$\begin{aligned} & \text { Ast }=\frac{0.5 \times 20}{415}\left[1-\sqrt{1-\frac{4.6 \times 150.62 \times 10^{6}}{20 \times 1000 \times 240^{2}}}\right] 1000 \times 240 \\ & \text { Ast }=2132.120 \mathrm{~mm}^{2} \end{aligned}$		
		Using 16 mm diameter		
		Spacing, $\mathrm{S}_{\mathrm{x}}=\mathrm{S}_{\mathrm{y}}=1000 \mathrm{xAø}$ Ast		
		$=1000 \mathrm{X}(\pi / 4) \times 16^{2} / 2132.120$	01	
		$=94.30 \mathrm{~mm}$ say $90 \mathrm{~mm} \mathrm{c} / \mathrm{c}$		
		Provide 16 mm @@ $90 \mathrm{~mm} \mathrm{c/c}$ both way		

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
5		Step 6 : Development length- $\begin{aligned} \mathrm{L}_{\mathrm{d}} & =\left(0.87 \mathrm{f}_{\mathrm{y}} \mathrm{x} \varnothing\right) /\left(4 \tau_{\mathrm{bd}}\right) \\ & =(0.87 \mathrm{X} 415 \times 16) /(4 \times 1.2 \times 1.6) \\ & =752.187 \mathrm{~mm} \text { say } 760 \mathrm{~mm} \end{aligned}$ This length is available from face of column. Provide 350 mm depth near the face of column and reduce depth of footing 150 mm at the edge.	01	

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
6	e) Ans.	$\begin{aligned} & \mathrm{Mu}=0.87 \mathrm{f}_{\mathrm{y}} \cdot \mathrm{~A}_{\mathrm{st}}\left(d-0.42 X_{u}\right) \\ & \mathrm{Mu}=0.87 \times 415 \times 2200 \times(730-0.42 \times 73.54) \\ & \mathrm{Mu}=555.313 \times 10^{6} N-m m \\ & \mathrm{Mu}=555.313 \mathrm{kN}-\mathrm{m} \end{aligned}$ Calculate the area of longitudinal, steel for short circular column of dia. 300 mm with eff. Length 5.0 m to carry a factored load of 1000 kN . Use M20 concrete $\& \mathrm{Fe} 500$ steel. Given: $\begin{aligned} & D=300 \mathrm{~mm} \\ & L_{e f f}=5.0 \mathrm{~m}=5000 \mathrm{~mm} \quad P u=1000 \mathrm{kN} . \end{aligned}$ M20 And Fe-500 For circular column $\begin{aligned} & \mathrm{Ag}=\frac{\pi}{4} \times D^{2} \\ & \mathrm{Ag}=\frac{\pi}{4} \times 300^{2} \\ & \mathrm{Ag}=70.69 \times 10^{3} \mathrm{~mm}^{2} \\ & \mathrm{Ag}=A s c+A c \\ & A c=A g-A s c \\ & A c=\left(70.69 \times 10^{3}-A s c\right) \\ & P u=0.45 f c \mathrm{kAc}+0.67 \mathrm{fy} A s c \\ & 1000 \times 10^{3}=0.45 \times 20 \times\left(70.69 \times 10^{3}-A s c\right)+0.67 \times 500 \times A s c \\ & A s c=1115.92 \mathrm{~mm}^{2} \end{aligned}$	01 01 01 01 01	04

