

Model Answer: Summer 2017

Subject: Design of RCC Structures

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and Communication Skills.)
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by the candidate and those in the model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and the model answer.
- 6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Model Answer: Summer 2017

Que. No.	Sub. Oue.	Model Answers	Marks	Total Marks
1		2. In case of columns the steel is provided to resist the direct compressive stress as well as bending stresses if any.		
		3. In case of beams stirrups are provided to resist the diagonal tension due to shear and hold the main steel in position.		
		4. The box type mesh of reinforcement is provided to resist torsion.	01 mark	
		5. The steel is provided in the form of rectangular, circular, lateral ties or spirals to prevent bucking of main bars in column.	each (any four)	04
		6. The distribution steel is provided to distribute the concentrated loads and to reduce the effects of temperature and shrinkage and to hold main bars in position.		
	c)	State two advantages and two disadvantages of prestressed concrete.		
	Ans.	Advantages of prestressed concrete.		
		1. The use of high strength concrete and steel in prestressed members results in lighter and slender members than is possible with RC members.		
		2. In fully prestressed members the member is free from tensile stresses under working loads, thus whole of the section is effective.		
		 In prestressed members, dead loads may be counter-balanced by eccentric prestressing. 	01 mark each (any	
		4. Prestressed concrete member possess better resistance to shear forces due to effect of compressive stresses presence or eccentric cable profile.	ιw0)	
		5. Use of high strength concrete and freedom from cracks, contribute to improve durability under aggressive environmental conditions.		

Que. No	Sub. Que	Model Answers	Marks	Total Marks
1	Zue.	6. Long span structures are possible so that saving in weight is		Triumb
		significant & thus it will be economic.		
		7. Factory products are possible.		
		8. Prestressed members are tested before use.		
		9. Prestressed concrete structure deflects appreciably before		04
		ultimate failure, thus giving ample warning before collapse.		
		10. Fatigue strength is better due to small variations in prestressing		
		steel, recommended to dynamically loaded structures.		
		Disadvantages of Prestressed Concrete		
		1. The availability of experienced builders is scanty.		
		2. Initial equipment cost is very high.	01	
		3. Availability of experienced engineers is scanty.	mark each	
		4. Prestressed sections are brittle.	(any	
		5. Prestressed concrete sections are less fire resistant.	two)	
	d)	State various forms of shear reinforcement in beams.		
	Ans.	1. Vertical stirrups		
		2. Bent up bars along with stirrups,	04	04
		3. Inclined stirrups		
	e)	State two ductile detailing provisions in IS 13920.		
	Ans.	Requirement for longitudinal reinforcement in flexural members:		
		1) The top as well as bottom reinforcement shall consist of at		
		least two bars throughout the member length.		
		2) The maximum steel ratio on any face at any section, shall not	02	
		exceed $P_{max} = 0.025$	marks each	04
		3) The positive steel at a joint face must be at least equal to half	(any two)	
		the negative steel at that face.		
		(Note : Any other members ductile detailing provisions should be		
		considered)		

Subject: Design of RCC Structures

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
1	(B)	Solve any ONE:		06
	a)	A beam 230mm x 450mm effective size carries a factored B. M. of		
		150 kN-m if concrete M20 and Steel grade Fe 500 are used, find		
		area of steel.		
	Ans.	$M_u = 150 \text{ kN-m} = 150 \times 10^6 \text{ N-mm}$		
		$\mathbf{M}_{\rm umax} = (0.133) f_{ck} b d^2$		
		$=(0.133)\times 20\times 230\times (450)^2$		
		$=123.889 \times 10^{6} \text{ N-mm}$	02	
		$M_{\rm umax} = 123.889 kN - m$		
		Since $M_u > M_{umax} = 123.889kN - m$		
		Section is over reinforced. Hence desiging balanced section	02	
		For Fe 500, % $P_{\text{tmax}} = 0.038 f_{\text{ck}} = 0.038 \times 20 = 0.76\%$		06
		But, % $P_{\text{tmax}} = \frac{A_{\text{st}}}{bd} \times 100$		
		$0.76 = \frac{A_{st}}{220 - 450} \times 100$		
		$A_{1} = 786.6 \text{ mm}^{2}$	02	
	b)	Find moment of resistance if steel provided is 6 bars of 12 mm diameter in a beam 300 mm x 500 mm effective. Concrete M20		
		and. Steel Fe 500 are used.		
	Ans.	$A_{st} = 6 \times \frac{\pi}{4} \times (12)^2 = 678.584 \ mm^2$		
		$0.87 f_y A_{ct} = 0.87 \times 500 \times 678.584$		
		$X_{u} = \frac{1}{0.36f_{ck}b} = \frac{1}{0.36 \times 20 \times 300}$		
		$X_{u} = 136.659 \ mm$	02	
		$\overline{X_{u \max}} = 0.46d = 0.46 \times 500 = 230 \ mm$		
		$X_u = 136.659 \ mm < X_{u \max} = 230 \ mm$	02	
		Hence, section is under reinforced,		06
		$M_{u} = 0.87 f_{y} A_{st} (d - 0.42 X_{u})$		
		$M_{u} = 0.87 \times 500 \times 678.584 [500 - (0.42) \times (136.659)]$		
		$M_u = 130.649 \times 10^6 N - mm$	02	
		$M_u = 130.649 \ kN - m$		

Que.	Sub.			Total
No.	Que.	Model Answers	Marks	Marks
2.		Solve any TWO:		16
	a)	Design a one-way slab with following data span = 5.0 m, Live load		
		= 4.5 kN/m ² , Floor finish = 1 kN/m ² . Concrete M 20 and steel Fe		
		415, M.F. = 1.4. Sketch c/s of slab showing reinforcement details.		
		Given:		
	Ans.	l=2m LL=4.5 kN/m ² FF = 1 kN/m ²		
		MF =1.4 $f_{ck} = 20 \text{N/mm}^2$, $f_y = 415 \text{N/mm}^2$		
		Step (1)		
		$d = \frac{\text{Span}}{100} = \frac{5000}{100} = 178571 \text{ mm}$		
		$\frac{1}{20 \times \text{MF}} = \frac{1}{20 \times 1.4}$		
		Assuming, 10mm ϕ bars and cover of 20 mm		
		$D = d+c+\frac{\phi}{2} = 178.571+20+\frac{10}{2} = 203.571 \text{ mm}$	02	
		Provide, D =210 mm		
		$d = 210 - 20 - \frac{10}{2} = 185 \text{ mm}$		
		Step (2)		
		Effective span		
		$l_e = l + d = 5000 + 185 = 5185 \text{ mm} = 5.185 \text{ m}$	01	
		Step (3)		
		Load & B M calculation		
		i) D.L. of slab = $0.210 \times 1 \times 1 \times 25 = 5.25$ kN/m		
		ii) L.L. of slab = $4.5 \times 1 \times 1 = 4.5 \text{ kN/m}$		
		i) F.F. of slab = $1 \times 1 \times 1 \times 25 = 1.0$ kN/m	01	
		Total load = 10.75 kN/m	UI	
		Factored load $(w_d)=1.5 \times w$		
		=1.5×10.75		
		= 16.125 kN/m		
		BM = Mu = $\frac{W_{d}(l_{e})^{2}}{8} = \frac{16.125 \times (5.185)^{2}}{8}$		
		BM = Mu = 54.188 kN-m	01	

Subject: Design of RCC Structures

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
2		Step (4)		08
		Check for depth		
		$Mu_{max} = M_u$		
		$0.138 f_{ck} b (d_{reqd})^2 = 54.188 \times 10^6$		
		$0.138 \times 20 \times 1000 \times (d_{reqd})^2 = 54.188 \times 10^6$		
		(d _{reqd})=140.118mm <d=185mmok Step (5)</d=185mmok 		
		Main steel and its spacing		
		$A_{st} = \frac{0.5f_{ck}}{f_y} \left[1 - \sqrt{1 - \frac{4.6 \times Mu \times 10^6}{f_{ck}bd^2}} \right] bd$		
		$A_{st} = \frac{0.5 \times 20}{415} \left[1 - \sqrt{1 - \frac{4.6 \times 54.188 \times 10^6}{20 \times 1000 \times (185)^2}} \right] \times 1000 \times 185$		
		$A_{st} = 903.164 \text{mm}^2$	01	
		Spacing of bar Min. of	UI	
		a) $S_x = \frac{1000 \times A\phi}{A_{st}} = \frac{1000 \times \frac{\pi}{4}(10)^2}{903.164} = 86.960 \text{ mm}$		
		b) $S_x = 3d = 3 \times 185 = 555mm$		
		c) $S_x = 300 \text{mm}$		
		$S_x = 85 mm c/c$		
		Provide 10 mm ϕ bars @ 85mm c/c along the shorter span		
		Step 6)		
		Distribution steel and its spacing		
		$A_{std} = \frac{0.12}{100} bD = \frac{0.12}{100} \times 1000 \times 210 = 252 mm^2$		
		Assuming, $8mm \phi$ bars,		
		Spacing of bars is equal to min. of		
		a) $S_y = \frac{1000 \times A\phi_d}{Ast_d} = \frac{1000 \times \frac{\pi}{4}(8)^2}{252} = 199.466 \text{mm}$	01	
		b) $S_y = 5d = 5 \times 185 = 925 \text{mm}$		
		c) $S_y = 450 \text{mm}$		
		$S_y = 195 \text{mm c/c}$		
		Provide 8 mm ϕ bars @ 195 mm c/c along the longer span		

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
2		Step (2) Effective span $l_x = l_{xe} = 4 \text{ m} = 4000 \text{ mm}$ $l_y = l_{ye} = 7 \text{ m} = 7000 \text{ mm}$ (As given diamensions are effective diamentions of slab panel)	01	
		(3)Load & B M calculation i) D.L. of slab = $0.180 \times 1 \times 1 \times 25 = 4.5$ kN/m ii) L.L. of slab = $4 \times 1 \times 1 = 4$ kN/m i) F.F. of slab = $1 \times 1 \times 1 = 1.0$ kN/m Total load = 9.5 kN/m Factored load $(w_d)=1.5 \times w$	01	
		=1.5×9.5 = 14.25kN/m BM calculations, $Mu_x = \alpha_x . w_d . (l_{xe})^2 = (0.113 \times 14.25 \times (4)^2)$ $Mu_x = 25.764 kN . m$ $Mu_y = \alpha_y . w_d . (l_{xe})^2 = (0.037 \times 14.25 \times (4)^2)$ $Mu_x = 8.436 kN . m$	01	08
		Step (4) Check for depth $Mu_{max} = M_{ux}$ $0.138 f_{ck} b (d_{reqd})^2 = 25.764 \times 10^6$ $(d_{reqd}) = 96.616 \text{mm} < d = 160 \text{mm}$ Ok		
		Step (5) Main steel and its spacing In X direction $A_{stx} = \frac{0.5f_{ck}}{f_y} \left[1 - \sqrt{1 - \frac{4.6 \times Mu \times 10^6}{f_{ck} bd^2}} \right] bd$ $A_{st} = \frac{0.5 \times 20}{415} \left[1 - \sqrt{1 - \frac{4.6 \times 25.764 \times 10^6}{20 \times 1000 \times (160)^2}} \right] \times 1000 \times 160$	01	
		$A_{st} = 475.541 \text{ mm}^2$		

Subject: Design of RCC Structures

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
2		Spacing of bar Min. of a) $S_x = \frac{1000 \times A\phi}{A_{st}} = \frac{1000 \times \frac{\pi}{4}(10)^2}{475.541} = 165.158 \text{mm}$ b) $S_x = 3d = 3 \times 160 = 480 \text{mm}$ c) $S_x = 300 \text{mm}$ $S_x = 165 \text{mm c/c}$ Provide 10 mm ϕ bars @ 165 mm c/c In Y direction d' = $d - \phi = 160 - 10 = 150 \text{mm}$ $A_{sty} = \frac{0.5f_{ct}}{f_y} \left[1 - \sqrt{1 - \frac{4.6 \times Mu \times 10^6}{f_{ct} \text{k} \text{bd}^2}} \right] \text{bd}$ $A_{sty} = \frac{0.5F_{ct}}{415} \left[1 - \sqrt{1 - \frac{4.6 \times 8.436 \times 10^6}{20 \times 1000 \times (150)^2}} \right] \times 1000 \times 150$ $A_{st} = 138.158 \text{ mm}^2$ $A_{sty} = 216 \text{mm}^2$ Spacing of bar Min. of a) $S_y = \frac{1000 \times A\phi}{A_{sty}} = \frac{1000 \times \frac{\pi}{4}(10)^2}{216} = 363.61 \text{mm}$ b) $S_y = 3d = 3 \times 150 = 450 \text{mm}$ c) $S_y = 300 \text{mm}$ $S_y = 300 \text{mm}$	01	
		Provide 10 mm ϕ bars @ 300 mm c/c Main Steel (Y. Dir. ⁹) De HSO HAM COMME COMM	01	

Subject: Design of RCC Structures

Que.	Sub.			Total
No.	Que.	Model Answers	Marks	Marks
2	c)	Design a cantilever chajja with following data: Span = 1.50 m, width = 2.0 m, L.L.= kN/m^2 . Floor finish = 0.5 kN/m^2 , support lintel = 230×300 mm concrete M 20, Fe 415 steel, sketch the c/s of chajja. Showing steel details.		
	Ans.	Given ·		
		Span= $l=1.5m=1500$ mm, Width= $2m=2000$ mm		
		$LL=1.5kN/m^2$, FF=0.5kN/m ²		
		Support = $230 \times 300 \text{ mm}$		
		$f_{ck} = 20 \text{N/mm}^2$, $f_v = 415 \text{N/mm}^2$		
		Step 1)		
		Slab thickness		
		$d = \frac{Span}{7 \times M.F.}$		
		Assume, M.F.1.4, cover=15 mm and $\phi = 10mm$		
		$d = \frac{1500}{7 \times 1.4} = 153.06mm$		
		$D = d + c + \frac{\phi}{2} = 153.06 + 15 + \frac{10}{2} = 173.06mm$	01	
		provide, D=180mm,		
		$d=180-15-\frac{10}{2}=160$ mm		
		D=180mm, d=160mm		
		Step (2)		
		Effective span	01	
		$l_e = l + \frac{d}{2} = 1580mm = 1.58m$	01	
		Step 3)		
		Load cal. and BM		
		i) D.L. of slab = $0.180 \times 1 \times 1 \times 25 = 4.5 kN / m$		
		ii) L.L. of slab = $1.5 \times 1 \times 1 = 1.5 kN / m$		
		iii) F.F. pf slab = $0.50 \times 1 \times 1 = 0.5kN / m$	01	
		Total laod (w) = 6.5 kN/m'		
		Factored load $w_d = 1.5 \times 6.5 = 9.75 kN / m$		
		$BM = M_u = \frac{(wd)l_e^2}{2} = \frac{9.75 \times 1.580^2}{2} = 12.169kN - m$	01	
		Check for depth,		
		$Mu_{max} = M_{ux}$		

Subject: Design of RCC Structures

Que.	Sub.	Model Answers	Marks	Total Marks
2	Que.	$0.138 f_{ab} b (d_{rad})^2 = 12 \times 10^6$		IVIAIKS
		$0.138 \times 20 \times 1000 \times (d_{-1})^2 = 12.169 \times 10^6$		
		$(d_{reqd}) = 66400 \text{ mm} < d=160 \text{mm}$ Ok		08
		Step (5)		00
		Main steel and its spacing		
		$A_{st} = \frac{0.5f_{ck}}{f_y} \left[1 - \sqrt{1 - \frac{4.6 \times Mu \times 10^6}{f_{ck}bd^2}} \right] bd$		
		$A_{st} = \frac{0.5 \times 20}{415} \left[1 - \sqrt{1 - \frac{4.6 \times 12.169 \times 10^6}{20 \times 1000 \times (160)^2}} \right] \times 1000 \times 160$		
		$A_{st} = 216.857 \text{ mm}^2$	02	
		$A_{\rm stmin} = \frac{0.12}{100} \times 1000 \times 180 = 216 mm^2$	02	
		Spacing of bar Min. of		
		a) $S_x = \frac{1000 \times A\phi}{A_{st}} = \frac{1000 \times \frac{\pi}{4}(10)^2}{216.857} = 362.173 \text{ mm}$		
		b) $S_x = 3d = 3 \times 160 = 480$ mm		
		c) $S_x = 300 \text{mm}$		
		$S_x = 300 \text{mm c/c}$		
		Provide 10 mm ϕ bars @ 300 mm c/c		
		Step 6)		
		$A_{sty} = A_{stmin} = \frac{0.12}{100} \times 1000 \times 180 = 216 mm^2$		
		Assuming, 8 mm ϕ bars		
		Spacing of bar Min. of		
		a) $S_y = \frac{1000 \times A\phi}{A_{st}} = \frac{1000 \times \frac{\pi}{4}(8)^2}{216} = 232.710 \text{mm}$		
		b) $S_y = 5d = 3 \times 160 = 800$ mm	01	
		c) $S_y = 450 \text{mm}$	VI	
		$S_y = 230 \text{mm c/c}$		
		Provide 8 mm ϕ bars @ 230 mm c/c		

Subject: Design of RCC Structures

Subject: Design of RCC Structures

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
3		Step 2) To find X_{umax} $X_{umax} = 0.46 X d$ = 0.46 X 450 X_{umax} =207 mm As, $X_u < X_{umax}$,	01	04
		So, beam is under reinforced.	01	
		Step 3)		
		To find Mu=? Mu = Tu x Zu		
		= 0.87 x fy x Ast (d - 0.42 Xu)		
		$= 0.87 \times 500 \times 2200 (450 - 0.42 \times 70.88)$		
		$= 402.16 \text{ x } 10^{\circ} \text{ N-mm}$	01	
		Mu = 402.16 KN-m		
		State the conditions of formation of flanged beams & state		
	b)	effective flange width for T & L beam.		
	Ans.	Is code recommends the following two provisions for beam spanning		
		parallel to slab to act as a flanged beam,		
		1) Transverse reinforcement (perpendicular to beam) is required to be provided at the top in flanged portion for a length equal to I/I on each		
		side of beam. L= Span of slab.	01	
		2) Transverse reinforcement > 60% of main reinforcement at mid span		
		of slab.	01	
		3) The slab shall cast integrally with the web or the web and slab shall	UI	
		be effectively bonded together in any other manner.		
		The effective width of the flange may be taken as following in no case		04
		greater than the width of the web plus half the sum of the clear		
		distance to the adjacent beam on the either side.	01	
		a) For T beam		
		$b_{f} = \frac{L_{o}}{6} + b_{w} + 6 D_{f}$	01	
		b) For L beam	VI	
		$b_f = \frac{Lo}{12} + b_w + 3D_f$		

Que.	Sub.	Model Answers	Marks	Total
No. 3	Que.	where.		Marks
_		$b_f = effective$ width of flange		
		l_0 = distance between points of zero moment in the beam		
		$b_w = breath of web$		
		D_{f} = thickness of flange		
		b = actual width of flange.		
	c)	Define development length & state factors affecting development		
		length.		
	Ans.	Development Length:		
		Development length is defined as the length of the bar required on either side of the section to develop the required stress in steel at that section through bond.		
		OR	02	
		Development length is an embedded length of the bar required to		
		develop the design stress in reinforcement at the critical section		
		Factors affecting development length:		
		1. Grade of steel.	1/	
		2. Grade of concrete.	72 mark	
		3. Diameter of bar.	each	
		4. Design bond stress.		
	d)	Diameter of a steel bar is 20 mm, steel Fe 415 grade and design		
		bond stress is 1.2 MPa for plain bars in tension, calculate the		
		development length for bar inn compression.		
		Given:		
	Ans.	$\Phi = 20$ mm		
		$f_{ck} = 20 \text{ N/mm}^2$		
		$f_y = 415 \text{N/mm}^2$		
		Bond stress, $\tau_{bd} = 1.2 \text{ N/mm}^2$		

Que.	Sub.		Maulas	Total
No.	Que.	Model Answers	Marks	Marks
3		Development length for bar in compression		
		$Ld = \frac{0.87 \text{ fy } \Phi}{4 \text{ Tbd}}$	02	
		TUDU		
		For Fe 500 steel value of τ_{bd} shall be increased by 60% and for		
		bar in compression, the value of bond stress for bar in tension shall be		04
		increased by 25%		
		$Ld = \frac{0.87 \times 415 \times 20}{0.87 \times 415 \times 20}$	02	
		4x1.6x1.25x1.2	02	
		$L_d = 752.1875 \text{ mm}$		
	e)	Design a rectangular column with following data:		
		Factored load = 3500 kN, concrete M 20, Steel Fe 415,		
	Ang	Unsupported length = 4.0 m. Assume 1 % steel.		
	Alls.	(Note: Answer may vary according to shape of column assumed)		
		Given:		
		$P_{u} = 3500 \text{ kN}$		
		L = 4 m = 4000 mm		
		$F_{ck} = 20 \text{ N/mm}^2$		
		$F_y = 415 \text{ N/mm}^2$		
		Step 1)		
		To find Size of column		
		$P_u = (0.4 f_{ck} A_c) + (0.67 f_y A_{sc})$		
		Assume 1% of steel in column		
		Area of steel, $A_{sc} = 0.01 A_g$		
		Area of concrete $A_c = A_{g} - A_{sc}$		
		$A_{\rm c} = 0.99 A_{\rm g}$		
		$3500 \times 10^3 = (0.4 \times 20 \times 0.99 A_g) + (0.67 \times 415 \times 0.01 A_g)$		
		$A_g = 327.087 \times 10^3 \text{ mm}^2$	01	
		Assume $b = 400 \text{ mm}$		

Subject: Design of RCC Structures

Que.	Sub.	Model Answers	Marks	Total Marks
<u> </u>	Que.	(Students may assume any other value of 'b' according the 'd' will		IVIAIKS
		changed)		
		$Ag 327.087 \times 10^3$		
		$D = \frac{b}{b} = \frac{1}{400} = 817.71 \text{ mm} = 820 \text{ mm}$	01	04
		Step 2)		
		Check for minimum eccentricity		
		$e_{min} = L/500 + D/30 \text{ OR } 20 \text{mm}$ whichever is greater		
		=4000/500+820/30		
		$e_{min} = 35.33 \text{ mm OR } 20 \text{ mm whichever is greater}$		
		$e_{min} = 35.33 \text{ mm}$		
		$e_{max} = 0.05D$		
		0.05D = 0.05 X 820 = 41 mm		
		e_{min} 35.33mm < e_{max} 41 mmok for minimum eccentricity.		
		Provide size of column = $400 \text{ mm x} 820 \text{ mm}$		
		$A_{sc} = 0.01 \text{ Ag}$	01	
		$= 0.01 \times 400 \times 820$	01	
		$A_{sc} = 3282 \text{ mm}^2$		
		Provide 8 bars of 20 mm ϕ bar and 2 bars of 25 mm ϕ		
		A_{scprod} . = 8x314.15 + 2 x 490.87 = 3494.94 mm ² > 3282 mm ² ok		
		$\% Pt = \frac{3494.24}{400 \times 820} \times 100 = 1.06\%$		
		$\text{%Pt}_{\text{min}} = 0.18\% \text{~~Pt} = 1.06 \text{~~Pt}_{\text{max}} = 6\%$		
		Step 3)Lateral Ties		
		Diameter of ties = $\frac{1}{4}$ X diameter of longitudinal steel bar.		
		$= \frac{1}{4} \times 25$		
		= 6.25 mm		
		So, provide 8 mm dia. lateral ties.		
		Pitch should not be greater than		
		i) Least lateral dimensions of column i.e. 400mm.		
		ii) 16 x dia. of longitudinal steel =16 x ϕ =16 x 20 = 320 mm		
		iii) 300mm	01	
		(Select minimum of above values)	VI	
		Therefore provide lateral ties $8mm \phi @ 300mm c/c$		

Subject: Design of RCC Structures

Que.	Sub.	Model Answers	Marks	Total
No.	Que.	Attomat any THDEE .	wiarks	Marks
Q4	Aj	Attempt any THREE:		12
	a)	State methods of prestressing and explain in brief any one.		
	Ans.	i)Pre-Tensioning		
		1.Hoyer system		
		ii)Post-Tensioning		
		1. Freyssinet system	02	
		2. Magnel system		
		3. Leonhardt system		
		4. Lee-McCall system		
		5. Gifford-Udall system		04
				04
		Hoyer system:		
		This system is generally used for mass production. The end abutments		
		are kept sufficient distance apart, and several members are cast in a		
		single line. The shuttering is provided at the sides and between the	02	
		members This system is also called the Long Line Method. The		
		following figure is a schematic representation of the Hover system		
		The end abutments have to be sufficiently stiff and have good		
		foundations		
		A series of moulds		
		Prestressing bed		
		Schematic representation of Hoyer system		
		(Note: Any one of above method should be considered)		

Subject: Design of RCC Structures

Que.	Sub.	Model Answers	Marks	Total
No.	Que.	Calculate load carrying canacity of column 300 mm in diameter	WICINS	Marks
4.	U)	reinforced with 4- 16mm ϕ and 6-12mm ϕ bars use M20 concrete		
		and Fe 415 steel.		
	Ans.	Given data :		
		Size of column = 230×230 mm		
		$A_{sc} = 4x (\pi/4) x (16)^2 + 6 x (\pi/4) x (12)^2$		
		$= 804.24 + 678.58 \text{ mm}^2$		
		$=1482.82 \text{ mm}^2$		
		$f_{ck} = 20 \text{ N/mm}^2$		
		$f_y = 415 \text{ N/mm}^2$		
		To find, load carrying capacity of column, P		
		Step 1 :		
		Gross area = Ag = $(\pi/4) \times 300^2$	01	
		$Ag = 70685.83 \text{ mm}^2$		
		Step 2 :		
		Area of steel, $A_{sc} = 1482.82 \text{ mm}^2$	01	
		Step 3 :		04
		Area of concrete, $A_c = A_g - A_{sc}$	01	
		$A_c = 69203 \text{ mm}^2$	01	
		Step 4 :		
		Ultimate load carrying capacity, Pu		
		$P_u = [0.4 \text{ x } f_{ck} \text{ x } A_c] + [0.67 \text{ x } f_y \text{ x } A_{sc}]$	01	
		= [0.4 x 20 x 69203] + [0.67 x 415 x 1482.82]	01	
		$P_u = 965.92 \text{ x } 10^3 \text{ N} = 965.92 \text{ kN}$		

Que.	Sub. Que	Model Answers	Marks	Total Marks
110.	<u>v</u> ue. c)	Define:	 	101uins
	Ans.	 (i) Characteristic strength and (ii) Characteristic load. i) Characteristic Strength Characteristic Strength means that value of the strength of the material below which not more than 5% of the test results are expected to fall. ii) Characteristic Load Characteristic Load means that value of load which has 95% probability of not being exceeded during the life of the structure. 	02 02	04
	d) Ans.	 State four situations where doubly reinforced section are preferred. 1) When the singly reinforced beams need considerable depth to resist large bending moment, it becomes necessary to provide doubly reinforced section. 2) When the size of rectangular beam cross-section is limited because of architectural reasons or practical reasons then it becomes necessary. 3) When the sections are subjected to reversal of bending moment. 4) When it is required to reduce the long-term deflection, it becomes necessary to provide doubly reinforced section. 5) When a beam is continuous overall several supports; the beam is subjected to alternate sagging also it becomes necessary to provide doubly reinforced section. 	01 mark each (any four)	04

Que.	Sub.	Model Answers	Marka	Total
No.	Que.	Solvo ony ONE :	IVIAINS	Marks
	a)	A R. C. beam 230x450mm effective is subjected to a working moment of 150 kN-m calculate area of steel I tension and compression zone. Use M 200 concrete and Fe415 steel. (Assume d' =45mm, and for d'/d=0.1, f_{sc} = 353 MPa)		00
	Ans.	Given data,		
		b = 230 mm $d = 450 mm$		
		M = 150 KN.m $d' = 30 mm$		
		$f_{ck} = 20 \text{ N/mm}^2$ $f_y = 415 \text{ N/mm}^2$		
		$f_{sc} = 353 \text{ N/mm}^2$		
		To find, $A_{sc} = ?$ and $A_{st} = ?$		
		$M_u=1.5M=1.5x150=225$ KN.m		
		Step 1		
		To find Xumax,		
		$X_{umax} = 0.48d$ for fe 415		
		$= 0.48 \ge 450$	01	
		$X_{umax} = 216 \text{ mm}$		
		Step 2		
		To find M _{ulim} (M _{u1})		
		$M_{\rm ulim} = = 0.138 \ f_{\rm ck} \ bd^2$ for fe415		
		$M_{\rm ulim} = 0.138 \text{ x } 20 \text{ x } 230 \text{ x } 450^2$	01	
		$M_{ulim} = 128.547 \times 10^6 \text{ N-mm}$	VI	
		Step 3		
		find M _{u2}		
		$M_{u2} = M_u - M_{ulim}$		
		$M_{u2} = 225 - 128.54$	0.1	
		$Mu_2 = 96.46 \text{ KN.m}$	01	

Subject: Design of RCC Structures

Que. No.	Sub. Oue.	Model Answers	Marks	Total Marks
4		Step 4		
		To find , A _{sc} and A _{st2}		06
		$i)M_{u2} = A_{sc} (f_{sc} - f_{cc}) (d - d')$		
		$f_{sc} = 353 \text{ N/mm}^2 \dots$ given		
		$f_{cc} = 0.45 f_{ck} = 0.45 x 20 = 9 \text{ N/mm}^2$		
		96.46 x $10^6 = A_{sc} (353 - 9) (450 - 45)$		
		$96.46 \ge 10^6 = 139.32 \ge 10^3 A_{sc}$		
		$A_{sc} = 692.36 \text{ mm}^2$	01	
		$ii)M_{u2} = 0.87f_y A_{st2} (d-d')$		
		$96.46 \ge 10^6 = 0.87 \ge 415 \ge A_{st2} (450 - 45)$		
		$96.46 \ge 10^6 = 146.22 \ge 10^3 A_{st2}$		
		$Ast_2 = 659.66 \text{ mm}^2$		
		Step 5		
		$A_{sc}(f_{sc} - f_{sc}) = A_{st_2} \times 0.87 f_y$	01	
		$692.36(353-9) = A_{st2} \times 0.87 \times 415$		
		$A_{st2} = 659.66mm^2$		
		$A_{st1} = \frac{pt \lim k k d}{100} = \frac{0.048 \times 20 \times 230 \times 450}{100}$		
		$A_{\rm stl} = 993.6mm^2$		
		$A_{st1} + A_{st2} = 659.66 + 993.6 = 1653.26 mm^2$	01	

Model Answer: Summer 2017

Subject: Design of RCC Structures

Que.	Sub.			Total
No.	Que.	Model Answers	Marks	Marks
4	b) Ans.	Fine the moment of resistance of a beam 230mm x 450mm deep reinforced with 4-16mm diameter bars in tension zone and 2- 12mm diameter bars in compression zone. Assume effective cover of 40mm.		
	1 11.50	Given data :-		
		b = 230 mm		
		D = 450 mm		
		$d = D - d^2 = 450 - 40 = 410 mm$		
		d' = 40 mm		
		$A_{sc} = 2x \ (\pi/4)x12^2 = 226.19 \text{mm}^2$		
		$A_{st} = 4x \ (\pi/4)x16^2 = 804.24 \ mm^2$		
		$f_{ck} = 20 \text{ N/mm}^2$		
		$f_y = 415 \text{ N/mm}^2$		
		Step 1 – To find Xu max		
		$X_{umax} = 0.48 \text{ d}$ for Fe415		
		$= 0.48 \ge 410$	01	
		= 196.8 mm		
		Step 2 - To find actual Xu,		
		$Ast_2 = \frac{(Fsc - Fcc)Asc}{0.87fy}$		
		$Fcc= 0.45 fck = 0.45 x20 = 9 N/mm^2$		
		fsc is depend on d'/d ratio	01	
		$\frac{d'}{d} = \frac{40}{410} = 0.0975$		
		d'/d .05 0.10 0.15 0.20		
		fsc 355 352 342 329		
		$\frac{d'}{d}$ Fsc		
		0.5 355		
		0.10 352		
		(Note : Given data is insufficient any suitable value of 'fsc' assumed		
		should be considered)		

Subject: Design of RCC Structures

Que.	Sub.	Model Answers	Marks	Total
No. 4	Que.	r(352 - 355) 1		Marks
•		$Fsc = \left[\frac{(0.1 - 0.05)}{(0.1 - 0.05)} \times (0.9075 - 0.05)\right] + 355$		06
		$fsc = 352.15 \text{ N/mm}^2$	01	
		$Ast_2 = \frac{(352.15-9)x226.19}{2.02} = 214.97 \text{ mm}^2$	-	
		$Ast_1 = Ast_2 Ast_2$		
		$= 804 \ 24 - 214 \ 97$		
		$= 589.27 \text{ mm}^2$	01	
		Step 3 Find Xu		
		0.87 fy <i>Ast</i> ₁		
		$X_u = \frac{1}{0.36 \text{ fck b}}$		
		$x = \frac{0.87 \times 415 \times 589.27}{100}$		
		0.36x20x230	01	
		$X_u = 128.47 mm$		
		Xu < Xu max the section is Under reinforced		
		Step 4 Moment of Resistance		
		$M_{u} = 0.87 \times f_{y} \times A_{st} \times (d - 0.42X_{u}) + (f_{sc} - f_{cc}) \times A_{sc} (d - d')$	01	
		$M_{u} = 0.87 \times 415 \times 589.27 \times (410 - 0.42 \times 128.47) + (352.15 - 9) \times 226.19(410 - 40)$	01	
		$M_u = 104.468 \times 10^{-6} N - mm$		
		$M_u = 104.468kN - m$		
F				16
5.	a)	Attempt any TWO:		
		A doubly reinforced beam section 230mm x 40mm effective		
	Ans.	carries a factored moment of 175 kN-m. fine the area of steel.		
		Required if M 20concrte and Fe 500 are used. Assume d'=50mm		
		and σ_{sc} =353 N/mm ² .		
		Given :		
		b = 230mm $d = 450mm$ (effective)		
		Md = 175kN - m		
		$M20 FeS00 FeK = 20N / mm$ $f_V = 500N / mm$		
		Step 1)		
		To find x _{umax}		
		$x_{u\max} = 0.46d$		
		$= 0.46 \times 450$	01	
		=207mm		

Subject: Design of RCC Structures

Que.	Sub.	Model Answers	Marks	Total Marks
<u> </u>	Que.	Step 2)		IVIAIKS
-		To find Mater		
		$M = 0.133 f b d^2$		
		$= 0.133 \times 20 \times 230 \times 450^{2}$		
		= 123.89 k N.m	01	
		Step = 3)		
		To find A _{st}		
		$Pt_{\text{lim}} = 0.038 \times f_{ck} = 0.038 \times 20 = 0.76$		
		$A = Pt_{lim} \times bd$		
		$A_{st_1} = \frac{100}{100}$		
		$=\frac{0.76 \times 230 \times 450}{100}$		
			01	
		$A_{st_1} = 786.6mm^2$		
		Step = 4		
		$Mu_{2} = Md - Md.$		
		=175-123.89		
		= 51.11kN - m	01	
		Step = 5)		
		To find Asc		
		$Mu_2 = Asc(fsc - fcc)(d - d')$		
		$51.11 \times 10^6 = Asc(353 - 0.45 \times f_{ck}) \times (450 - 50)$		
		$51.11 \times 10^6 = Asc(353 - 0.45 \times 20) \times (450 - 50)$		
		$Asc = 371.44mm^2$	01	
		To find Ast		
		$C_{\mu} = T_{\mu}$		
		$Asc(fsc - fcc) = Ast_{2} \times 0.87 \times 500$	01	
		$371.44(353 - 0.45 \times 20) = Ast_2 \times 0.87 \times 500$	Ŭ.	
		$Ast_{2} = 293.74mm^{2}$	01	
		$total Ast = Ast_1 + Ast_2$	UI	
		= 786.6 + 293.74		
		$=1080.34mm^{2}$	01	

Que.	Sub.	Model	Answei	rs		Marks	Total
No.	Que.	A heam 250mm x 415 mm effec	tive de	nth is re	vinforced with 4 bars		Marks
0		of 16mm dia of grad Eq. 415. The shear farms of the summart is 00.					
		LN Desire the shear winforces			or the support is 90		
		KN. Design the shear reinforcen		se wi zu	concrete and o min		
		dia. vertical stirrups of Fe 415 s	teel.				
		%Pt.	0.5	0.75			
		$\tau_{\rm c}$ (MPa)	0.48	0.56			
	Ans.						
	1 11150	Given data:					
		$b=250mm$ $f_y=415N/mm^2$					
		$d=415 \text{mm} \qquad f_{ck}=20 \text{N/mm}^2$					
		4 bars 16mm φ					
		V=90kN					
		Ast= $4 \times \frac{\pi}{4} \times 16^2 = 804.25 \text{mm}^2$					
		Stirrups 6 mm φ					
		Step 1)					
		To calculate factored shear force					
		Vu=V×1.5					
		=90×1.5					
		=135kN				01	
		Step 2) To coloulate choor stragg($-$)					
		To calculate shear stress(t_v)					
		$\tau_v = \frac{vu}{bd} = \frac{133 \times 10}{230 \times 415} = 1.3 \text{ N/}$	/mm ²				
		τ_{cmax} =2.8N/mm ² for M	20 concr	ete		01	
		<i>Step</i> 3)					
		Calculate pt%, Ast, τ_c					
		$pt = \frac{Ast}{bd} \times 100 = \frac{804.25}{250 \times 415} \times 100 =$	0.78				
		pt = 0.78					
		pt τ_c				01	
		1.0 0.62				VI	
		(Note: Given data is insufficien	t. Anv s	suitable	value of τ_{a} assumed		
		should be considered)			······································		
		······································					

Subject: Design of RCC Structures

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
5		$pt_1 = 0.75$ $\tau_{c1} = 0.56$		
		$pt_2 = 1.0$ $\tau_{c2} = 0.62$		08
		$pt = 0.78$ then τ_c		00
		$\tau_{c} = \tau_{c1} + \frac{(\tau_{c2} - \tau_{c1})}{(pt_{2} - pt_{1})} \times (pt - pt_{1})$		
		$\tau_c = 0.56 + \frac{(0.62 - 0.56)}{(1.0 - 0.75)} \times (0.78 - 0.75)$		
		$\tau_c = 0.57 N / mm^2$		
		$\tau_v = 1.3N / mm^2 > \tau_c = 0.57N / mm^2$	01	
		Shear reinforcement is required		
		Store (1)		
		Step 4)		
		Vus=Vu- τ bd	01	
		$-135 \times 10^3 \ 0.57 \times 230 \times 415$		
		$=133 \times 10^{-0.37 \times 230 \times 413}$ =80 593kN		
		=80593N	01	
		As bent up bars are not provided	01	
		Vusv=Vus=80593N		
		Provide 6mm ϕ two legged vertical stirrups		
		Step 5)		
		Spacing(Sv)= $\frac{0.8/f_yAsv.d}{V}$		
		νusv		
		$0.87 \times 415 \times 2 \times \frac{\pi}{4} \times 6^2 \times 415$		
		<u>80593</u>	01	
		$Sv=105.13 \approx 100 \text{mm c/c}$		
		$Sv_{\text{min}} = \frac{0.87f_y Asv}{1000} = \frac{0.87 \times 415 \times 2 \times \frac{\pi}{4} \times 6^2}{1000}$	01	
		$0.4b$ 0.4×230		
		$Sv_{\min} = 221.92 \approx 220mm$		
		$Sv_{max} = 0.75a \ or \ 500$		
		$Sv_{max} = 0.75 \times 415$ Or 500		
		$Bv_{max} = 511.2507$ 500 Provide 6mm / two leaged vertical stirrups @ 100mmc/c		
		ψ rovide omm ψ two legged vertical stirrups ψ roomme/e.		

Subject: Design of RCC Structures

Que.	Sub.	Model Answers	Marks	Total
No.	Que.	Design of D.C. as house for the solid following data	IVIGINS	Marks
5	C)	Design on R.C. column looting with lonowing data.		
		Size of column = 400mm x 400mm		
		Safe bearing capacity = 1200 kN/m^2		
		Concrete M20 and steel Fe 415 is used.		
		Calculate depth of footing from B.M criteria.		
		No shear check is required.		
	Ans.	Given-		
		Size of column – 400mm X 400 mm		
		Safe bearing capacity of soil = 200 kN/m^2		
		Load on column is 1200 kN		
		$f_{ck} = 20 \text{ N/mm}^2$		
		$fy=415 \text{ N/mm}^2$		
		Step 1 :		
		Ultimate S.B.C (q_u)= 2 X 200= 400 kN/m ²		
		Step 2 :	01	
		Size of footing-		
		$W_U = W X \tilde{Y}_f = 1200 X 1.5 = 1800 kN$		
		$A_{f} = 1.05 X W_{U} / q_{u}$	01	
		= 1.05 X 1800/400		
		$=4.725 \text{ m}^2$		
		$I = B = \sqrt{AF} = \sqrt{4.725} = 2.173 \text{m} = \text{say } 2.20 \text{m}$		
		Adopt footing of size 2.20m X 2.20m	01	
		Step 3 :		
		Upward soil pressure		
		$p = W_u/(L X B) = 1800/(2.2 X 2.2) = 371.90 \text{ KN/m}^2$		
			01	

Subject: Design of RCC Structures

Que.	Sub.	Model Answers	Marks	Total
No.	Que.	Sten 4 ·	IVIGINS	Marks
5		Depth for flexure		
		2.2.m 2.2.m 2.2.m	01	
		Let $X_1 = Y_1$ = projection beyond column		
		= (2.2 - 0.4) / 2 = 0.9		
		$M_x = M_y = 1 \times X_1 \times p \times (X_1/2)$		
		$M_x = M_y = 1 \times 0.9 \times 371 \times (0.9/2)$		08
		= 150.62 KNm		
		$d_{reqd} = \sqrt{Mx/q.fck.b}$		
		$d_{reqd} = \sqrt{(150.62 \times 10^6 / 0.138 \times 20 \times 1000)}$		
		= 233.61 mm say 240 mm.		
		Adopt cover of 80 mm	01	
		D= 240+80= 320 mm	01	
		Step 5 :		
		$Ast = \frac{0.5f_{ck}}{f_{y}} \left[1 - \sqrt{1 - \frac{4.6 \times M_{u}}{f_{ck}bd^{2}}} \right] bd$		
		$Ast = \frac{0.5 \times 20}{415} \left[1 - \sqrt{1 - \frac{4.6 \times 150.62 \times 10^6}{20 \times 1000 \times 240^2}} \right] 1000 \times 240$		
		$Ast = 2132.120mm^2$		
		Using 16 mm diameter		
		Spacing, $S_x = S_y = 1000 \text{ x A}$ ø/ Ast		
		$= 1000 \text{ X} (\pi/4) \text{ X } 16^2 / 2132.120$	Λ1	
		= 94.30 mm say 90 mm c/c	UI	
		Provide 16 mm ø @ 90 mm c/c both way		

Sub. Code: - 17604

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
5		Step 6 :		
		Development length-		
		$L_{d} = (0.87 f_{y} \ge 0) / (4 \tau_{bd})$		
		= (0.87 X 415 X 16) / (4 X 1.2 X 1.6)		
		= 752.187 mm say 760 mm		
		This length is available from face of column.		
		Provide 350mm depth near the face of column and reduce depth of footing 150mm at the edge.		
		SECTION SECTION A A A A A A A A A A A A A	01	

Que.	Sub.	Model Answers			Marks	Total
No.	Que.				TVIUIKS	Marks
0.	a)	Differentiative reference to		10		
	Ans.		Under reinforced section	Over reinforced Section		
		Area Of Steel	Less compared to over reinforced section.	More compared to under reinforced section.	04	04
			Ast < Ast max.	Ast > Ast max.		
		Neutral Axis	Xu < Xumax	Xu > Xumax		
		Moment	Mu = Tu.z	Mu = Cu.z		
		of resistance	=0.87 fy Ast(d-0.42xu)	=0.36 fck b xu(d-0.42xu)		
	b)	Write IS s reinforceme	specification of minimun nt for an axially loaded o	n eccentricity and transverse column.		
	Ans.	IS specificati	ion for e_{\min} . & transverse s	steel		
		Minimum e	ccentricity: -			
		$e_{min} = Lo/500 + D/30$ Or 20 mm whichever is greeter				
		Lo= unsupported Length				
		D=lateral dimension				
		Transverse	reinforcement: -			
		I) Pitch - following.	The spacing of the link sh	hould not exceed the least of the		04
		1. The least lateral dimension of column.				
		2. Sixteen times the diameter of the smallest longitudinal bar.				
		3. 300n	nm			

Que. No.	Sub. Oue.	Model Answers	Marks	Total Marks
6	Que.	II) Diameter of link		TTUIK
		 The diameter of the link should be at least one fourth of the longitudinal steel. In any case the links should not be less than 6mm in diameter. 	01	
		3. Largest diameter of condition 1 and 2.		
	c)	What is minimum and maximum percentage of tension steel that should be provided in flanged beam as per IS specification.		
	Ama	As per IS 456:2000 Clause No. 26.5.1.1		
	Ans.	Min. % of Tension Steel Max. % of Tension Steel		
		It shall be not less than - It shall not exceed $(0.04bD)$		
		$A_{S}/bd = 0.85 / Iy$ Hence $A = (0.85 x h x d) / fy$	04	04
		Where $h = Breadth of web of Flanged heam$		
		d = Effective Depth		
	հ			
		find limiting moment of resistance (Nu) of a 1 beam with following data, $bf=1500$ mm, $bw=230$ mm, $Asf=2200$ mm ² .		
		concrete M 20 & Fe 415 steel.		
	Ans.	Circu		
		Given - hf = 1500		
		bf = 1500mm		
		bw = 230mm		
		a = 750 mm		
		$D_{j} = 120mm$		
		Asf = 2200mm		
		M 20 and Fe415		
		Step 1) 10 find Xumax		
		xumax = 0.48d	01	
		$-0.48 \times /30$	01	
		-550.4mm		
		Consider Asi-Asi 0.97 for Act 0.97 VA15 V2200		
		$Xu = \frac{0.87 \text{ Iy Ast}}{0.36 \text{ fck bf}} = \frac{0.87 \text{ A} 413 \text{ A} 2200}{0.36 \text{ X} 20 \text{ X} 1500}$	01	04
		Xu = 73.54mm		04
		Xu < Df	Δ1	
		Neutral axis within the flange	UI	

Subject: Design of RCC Structures

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Que. No. 6	Sub. Que. e) Ans.	Model Answers Mu= $0.87f_y$. $A_{st} (d - 0.42X_u)$ Mu = $0.87 \times 415 \times 2200 \times (730 - 0.42 \times 73.54)$ Mu = $555.313 \times 10^6 N - mm$ Mu = $555.313 \times 10^6 N - mm$ Mu = $555.313 \times N - m$ Calculate the area of longitudinal, steel for short circular column of dia. 300mm with eff. Length 5.0m to carry a factored load of 1000kN. Use M20 concrete & Fe 500 steel. Given : $D = 300mm$ $L_{eff} = 5.0m = 5000mm$ $Pu = 1000kN$. M20 And Fe-500 For circular column $Ag = \frac{\pi}{4} \times D^2$ $Ag = \frac{\pi}{4} \times 300^2$ $Ag = 70.69 \times 10^3 mm^2$ $Ag = Asc + Ac$ $Ac = Ag - Asc$ $Ac = (70.69 \times 10^3 - Asc)$ $Pu = 0.45 fckAc + 0.67 fyAsc$ $1000 \times 10^3 = 0.45 \times 20 \times (70.69 \times 10^3 - Asc) + 0.67 \times 500 \times Asc$ $Asc = 1115.92mm^2$	Marks 01 01 01 01 01 01	Total Marks
		$1000 \times 10^{3} = 0.45 \times 20 \times (70.69 \times 10^{3} - Asc) + 0.67 \times 500 \times Asc$ $Asc = 1115.92mm^{2}$	01	