

_____ Page No: 1 /26

Subject: Design of RCC Structures -

Subject Code: 17604

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and Communication Skills.)
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by the candidate and those in the model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and the model answer.
- 6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Que. No.	Sub.	Model Answers	Marks	Total Marks
Q.1	Que. a)	Attempt any <u>THREE</u> of the following:		12 Narks
	(i)	State any four assumptions made in design for the limit. State		
		method.		
	Ans.	Following are the assumptions made in design for the limit –		
		a)Plane section normal to the axis remain plain after bending		
		b)The maximum strain in concrete at the outermost compression fiber		
		is taken as 0.0035 in bending		
		c)The relationship between compressive stress distribution in concrete		
		may be assumed to be rectangle, trapezoid, parabola or any other		
		shape which results in prediction of strength.		
		d)The tensile strength of concrete is ignored.	1	
		e)The stresses in the reinforcement are derived from representative	Mark	
		stress – strain curve for the type of steel used.	each	4
		f)The maximum strain in tension reinforcement in the section at	(any	
		failure shall not be less than:	Four)	
		$(fy /(1.15 E_s)) + 0.002$		
		Where fy – Characteristic strength of steel		
		E_s – Modulus of elasticity of steel		
		g)The maximum compressive strain in concrete in axial compression		
		is taken as 0.002		
		h) the maximum compressive strain at highly compressed extreme		
		fibre in concrete subjected to axial compression and bending when		
		there is no tension on the section shall be 0.0035 minus 0.75 times the		
		strain at least compressed extreme fibre		

Subject & Code: Design of RCC Structures (17604)

--

Subject & Code: Design of RCC Structures (17604)

Page No. 3 /26

Que.Sub.No.Que.	N	Iodel Answers		Marks	Total Marks
Q.1 a) (iii) Ans.	State the partial factor of sa	afety for steel and	concrete		
	Material	Limit	state of		
		collapse	serviceability	2 Mark	
	Concrete	1.5	1.0	for	4
	Steel	1.15	1.0	each	
(iv)	State various losses in prest percentage loss for post ten Losses in prestressing: imp	sioned member.			
Ans.	i) Due to ii) Due to iii) Due to iv) Due to v) Due to	elastic shortening creep of concrete shrinkage of concre creep in steel - 39 frictional loss slip at anchorages	of concrete – 1% - 5% rete - 6%	1 Mark each (any four)	4
(v) Ans.	State any three ductile deta Requirement for longitudinal 1) The top as well as least two bars throu 2) The maximum ster not exceed P _{max} = 0 3) The positive steel a half the negative st (Note : Any other members considered)	reinforcement in f bottom reinforceme ighout the member el ratio on any face 0.025 at a joint face must reel at that face.	lexural members: ent shall consist of at length e at any section, shall be at least equal to	4	4

Subject & Code: Design of RCC Structures (17604)

Page No. 4 /26

Que. No.	Sub.	Model Answers	Marks	Total Marks
Q.1	Que.	Attempt any <u>ONE</u> of the following :		6
V.1	(i)	Find the moment of resistance M_u for a beam 300 x 600 mm,		Ŭ
		effective provided with 3 bars of 16 mm diameter and 2 bars of 12		
		mm diameter on tension side. M20 & Fe500 are used.		
	Ans.	b = 300 mm		
		d = 600 mm		
		$fck = 20 \text{ N/mm}^2$		
		$Ast = 3 \times \pi/4 \times 16^2 + 2 \times \pi/4 \times 12^2$		
		$= 829.38 \text{ mm}^2$	1	
		Solution		
		$X_u = (0.87 \text{ fy Ast})/(0.36 \text{ fck.b})$		
		$= (0.87 \times 500 \times 829.38)/(0.36 \times 20 \times 300)$		
		= 167.03 mm	1	6
		$X_{u} \max = 0.46d$		
		$= 0.46 \times 600 = 276 \text{ mm}$	1	
		As $X_u < X_{u \max}$, Section is under reinforced.		
		$M_u = 0.87$ fy Ast (d - 0.42 Xu)		
		$= 0.87 \times 500 \times 829.38 [600 - 0.42(167.03)]$	3	
		$= 191.158 \times 10^{6} \text{ Nmm} = 191.158 \text{ KNm}$		
	Ans.	inclusive load 20 KN/m. Assume 300 mm bearings. Use M20 and Fe500 Given $1 = 6m$ $L_e = 6 + 0.3/2 + 0.3/2 = 6.3 m$ w = 20 kN/m $fck = 20 N/mm^2$ $fy = 500 N/mm^2$ Solution	1	
		1) $M = w L_e^2/8$		
		$= (20 \times 6.3^2) / 8$	1	
		= 99.225 KNm	-	
		2) Factored moment $M_d = \gamma_f x M$		
		= 1.5 x 99.225	1	
		= 148.8375 kNm	L	
		3) $M_u \lim = 0.133$ fck b d ²		
		4)Assume $\mathbf{b} = \mathbf{d}/2$		
		Equating M_u lim to M_d		
		0.133 fck b d 2 = 148.83 x 10 ⁶	1	
		$0.133 \ge 20x (d/2) \ge d^2 = 148.83 \ge 10^6$	1	
		$d^3 \ge 1.33 = 148.83 \ge 10^6$		
		$d^3 = 111908270.7$		
		d = 481.89 mm say 490 mm	1	1

Subject & Code: Design of RCC Structures (17604)

Page No. 5 /26

Que. No.	Sub.	Model Answers	Marks	Total Marks
Q.1	Que. b)	Assume $d' = 40 \text{ mm}$		IVIAIKS
Q.1		$D = d + d^2 = 490 + 40 = 530 \text{ mm}$		
	(i)	Therefore $b = 490 / 2 = 245 \text{ mm}$		
		5) $P_{t \text{ lim}} = Ast/bd \times 100$		
		$= 0.038 \text{ fck (for Fe}_{500}) = 0.038 \text{ x } 20$		
		$= 0.056$ kK (101 $1 c_{500}$) $= 0.056$ X 20 = 0.76%	1	6
		= 0.76% Ast = 0.76 bd/100		
			1	
		$= 0.76 \text{ x } 245 \text{ x } 490/100$ $= 912.38 \text{ mm}^2$	1	
		Therefore Ast = 912.38 mm ² < Ast _{min} = 0.85 bd/f _y = (0.85 x 245 x 400)/($500 - 204.085 - 2$		
		$490)/500 = 204.085 \text{ mm}^2$ ok		
		Assuming 20 mm ϕ bars to be used,		
		No. of bars = 912.38 / ($\pi/4 \ge 20^2$) = 2.90 say 3 Nos		
		Provide 3 bars of 20 mm dia with area = 942.48 mm^2		
Q.2		Attempt any <u>TWO</u> of the following.		16
	a)	A one way slab is to be designed for an effective span 3.3 m . The		-
		super imposed load including finishing is 4 KN/m ² . Taking		
		modification factor 1.2.Design the slab. Sketch c/s of slab showing		
		reinforcement details. Use concrete M20 and steel Fe 415.		
	A	Given : Span=3.3 m, L.L.+F.F.= 4 KN/m^2 , M.F.=1.2		
	Ans.	(Note : Answer may vary according to cover and bar diameter		
		assumed.)		
		1.Design Constant -		
		$fy = 415 \text{ N/mm}^2$		
		fy = 413 N/mm ² fck =20 N/mm ²		
		$Xu_{max} = 0.48d$		
		$Mu_{,lim} = 0.138 fck b d^2$		
		2. Estimation of slab thickness,		
		d = span/(20 x M. F)		
		Therefore, $d = 3300/(20 \times 1.2)$		
		= 137.5 mm		
		Assuming 10 mm Ø main bars and nominal cover as 20 mm		
		$D = d + d_c + \emptyset/2$		
		= 137.5 + 20 + 10/2	1	
		= 162.5 mm	1	
		Say D = 165 mm		
		Therefore $d_{avail} = D - d_c - \emptyset/2$		
		= 165 - 20 - 10/2		
		= 163 - 20 - 10/2 = 140 mm		
		- 140 11111		

Subject & Code: Design of RCC Structures (17604)

Page No. 6 /26

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q.2	$\frac{\sqrt{ac.}}{a}$	3. Effective span:		TTUTUTKS
		$L_e = 3.3 m$ (given)		
		4. Load calculations: (considering 1 m wide strip)		
		Self wt. of slab $= 1 \times 1 \times 0.165 \times 25 = 4.125$	1	
		Wt of F.F & L.L. = 1 x 1 x 4 = 4		
		Total load, $w = 8.125 \text{ kN/m}$		8
		Therefore factored load, $w_d = \Upsilon_f x w$		
		$= 1.5 \times 8.125$		
		= 12.1875 kN/m		
		5. Factored (design) max B. M. : $M_d = (w_d \ge l_e^2)/8$	1	
		$= (12.1875 \times 3.3^2) / 8$	1	
		$= (12.1875 \times 5.5)78$ = 16.59 KNm		
		6. Required overall depth and effective depth:		
		Equating M_u , lim to M_d		
		$0.138 \text{ fck b } d^2 = M_d$		
		$0.138 \ge 20 \ge 1000 \text{ d}^2 = 16.59 \ge 10^6$		
		d = 77.53 mm	1	
		$d_{available} = 140 \text{ mm} > d_{reqd}$ Hence OK.	1	
		Provide $D = 165 \text{mm}$ and $d_{available} = 140 \text{mm}$		
		7. Area of main steel		
		Ast = 0.5 fck / fy $\left[1 - \left(\sqrt{1 - \frac{4.6 Md}{(fck b d^2)}}\right)\right] b d$		
		$=\frac{0.5\times20}{415}[1-\sqrt{1-\frac{4.6\times16.59\times10^{6}}{20\times1000\times140^{2}}}]\times1000\times140$	1	
		$= 346.13 \text{ mm}^2$		
		Spacing of main reinforcement		
		a) $S_{10} = (1000 \text{ A } \text{Ø})/\text{Ast}$		
		$-\frac{1000\times\frac{\pi}{4}\times10^2}{}$		
		$=\frac{4}{346.13}$	1	
		= 226.91 say 225 mm c/c		
		Spacing = 225 mm c/c		
		b) $3d = 3 \times 140 = 420 \text{ mm}$		
		c) 300 mm		
		Ast provided = $(1000 \text{ A} \emptyset)/5$		
		= (1000 x 78.54)/225		
		$= 349.06 \text{ mm}^2$		

Subject & Code: Design of RCC Structures (17604)

Page No. 7 /26

Que. No.	Sub. Que.	Model Answers	Marks	Tota Marl
).2	\mathbf{a}	8. Area and spacing of distribution steel:	1	Ivial
C		Ast _{min} =Ast _d = $0.15/100$ b D (mild steel is used) = $(0.15/100) \times 1000 \times 165$ = 247.5 mm ²		
		Spacing of 6 mm \emptyset M. S. distribution bars,= min of a,b,c	1	
		a)S _d = $[(A \not O d)/(Ast d)] \times b$		
		$= (28.27/247.5) \times 1000$		
		= 114.22 mm say 110 mm c/c		
		b) spacing, $S = 5d = 5 \times 140 = 700 \text{ mm}$		
		c) 450 mm spacing = 114.22 mm ≈ 110 mm		
		Therefore As $S_d < S_{dmax}$		
		Provide 6 mm $Ø$ distribution bars @ 110 mm c/c		
		9. Reinforcement details:		
	b)	Distribution stee) $fmm \notin @ 110 \ Q_c$ $fmm \notin @ 10 \ Q_c$ $fmm \notin @ 225 \ Q_c$ $c/s \ of \ slab \ showing \ reinforcement \ details$. Design a simply supported two way slab over a room 4.8 m x 4.0 m effective, subjected to UDL 5 kN/m ² (inclusive of self wt.) Use M20 and Fe 415. Draw reinforcement detail check for shear may not be given. Take $a_x = 0.084$ and $a_y = 0.059$	1	
	Ans.	(Note- Answer may vary depending upon assumption of MF, diameter		
		of bar & cover) 1. Given: 4.8 m x 4 m effective, two way slab		
		$w = 5 \text{ kN/m}^2$ (inclusive of self wt)		
		$fck = 20 N/mm^2$		
		fy = 415 N/mm ²		
		$\alpha_{\rm x}=0.084$		
		$\alpha_{\rm y}=0.059$		
		2. Design constants :		
		For Fe 415, Mu $_{lim} = 0.138$ fck b d ²		

Subject & Code: Design of RCC Structures (17604)

Page No. 8 /26

Que.	Sub.	Model Answers	Marks	Total
No.	Que.	3. Estimation of slab thickness		Marks
Q.2	b)	Assume $MF = 1.4$		
		Therefore $d = span/(20 \times 1.4)$ = 4000/(20 × 1.4)		
		$= 4000/(20 \times 1.4)$ = 142.86 mm sour 150 mm		
		= 142.86 mm say 150 mm	1	
		Assuming 10 mm Ø main bars, & $c = 20$ mm,		
		$D = d + c + (\emptyset/2)$		
		= 150 + 20 + (10/2)		
		= 175 mm		
		4. Effective span :		
		$L_{xe} = 4000$ mm,		
		$L_{ye} = 4800 \text{ mm}$	1	
		Consider 1 m wide strip		
		Load : $w_{given} = 5 \text{ KN/m}^2$		
		w = 1 x 1 x 5 = 5 kN/m		
		factored load = $w_d = 1.5 \times 5 = 7.5 \text{ KN/m}$		
		5. Factored B. M :		
		$\alpha_{\rm x} = 0.084$		
		$\alpha_{\rm y} = 0.059$		
		$\mathbf{M}_{\mathrm{xd}} = \boldsymbol{\alpha}_{\mathrm{x}} \cdot \mathbf{w}_{\mathrm{d}} \cdot \mathbf{L}_{\mathrm{xe}}$	1	
		$= 0.084 \text{ x} 7.5 \text{ x} 4^2$		
		= 10.08 KNm		
		$M_{yd} = \alpha_{y} \cdot w_{d} \cdot L_{xe}^2$		
		$= 0.059 \text{ x } 7.5 \text{ x } 4^2$		
		= 7.08 kNm		
		6. Effective depth of slab:		
		$0.138 \text{ fck } bd^2 = M_{xd}$		
		$0.138 \times 20 \times 1000 \text{ d}^2 = 10.08 \times 10^6$	1	
		$d_{reqd} = 60.43 \text{ mm} < (d_{available} = 150 \text{ mm})$ Hence OK	I	
		7. Area and spacing of steel		
		Ast _x = 0.5fck/fy $[1 - \sqrt{1 - (\frac{4.6Mxd}{fck.bd2})}] bd$		
		$= \frac{0.5 \times 20}{415} \left[1 - \sqrt{1 - \left(\frac{4.6 \times 10.08 \times 10^6}{20 \times 1000 \times 150 \times 150}\right)} \right] \times 1000 \times 150$		
		= 191.278mm ²		

Subject & Code: Design of RCC Structures (17604)

Que. No.	Sub. Que	Model Answers	Marks	Total Marks
Q.2	Que. b)	Select 8 mm Ø bars,Spacing = min of a,b,c		IVIAIKS
		a) $S_x = [(\pi/4x8^2x \ 1000)/\ 191.27] = 262.76$ say mm say 260 mm		
		$S_x = 260 \text{ mm c/c}$		
		b) $3 d = 3 \times 150 = 450 \text{mm}$		
		c) 300 mmOK		
		Spacing = 260mmc/c		
		$d' = d - \emptyset = 150 - 8 = 142 \text{ mm}$		
		$Ast_{y} = \frac{0.5 \times f_{ck}}{f_{y}} \left[1 - \sqrt{1 - \left(\frac{4.6 \times M_{yd}}{f_{ck}bd^{2}}\right)} \right] \times bd'$ $= \frac{0.5 \times 20}{415} \left[1 - \sqrt{1 - \left(\frac{4.6 \times 7.08 \times 10^{6}}{20 \times 1000 \times 142 \times 142}\right)} \right] \times 1000 \times 142$	2	
		$= 141.07 \text{ mm}^2$		
		$Ast_{min} = (0.12/100) b D$		0
		$= (0.12/100) \times 1000 \times 175$		8
		$= 210 \text{ mm}^2$		
		Ast_x calculated is very less.	1	
		Take Ast _x & Ast _y = 210 mm ²		
		Therefore, Spacing of 8 mm dia. Bars,		
		$S_{X} = S_{Y} = \frac{\frac{\pi}{4} \times 8^{2} \times 1000}{Ast_{\min}}$		
		$S_x = S_y = (50.26 \times 1000)/210$		
		= 239.33 mm say 230 mm c/c (< 3d or 300 mm) OK		
		Provide $8mm \not O$ @ 230 mm c/c in both directions Reinforcement details:		
		Kennorcement details:		
		8 mm Ø		
		@230 mm 4c		
			1	
		4800 Smm#@	1	
		230 mm 42		
		PLAN 4000		
		(· · · · · · · · · · · · · · · · · · ·		
		· ·		
		230 mm c/c 230 mm c/c		
		Cls of two way slab along X-oxis		
		Note: (15 along Y-axis is same as steel provided is		
		same on both sides.		
		and the second sec	1	1

Subject & Code: Design of RCC Structures (17604)

Subject & Code: Design of RCC Structures (17604)

```
Page No. 11 /26
```

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q.3	Que.	Attempt any <u>FOUR</u> of the following.		16 Niarks
Q. 5	a)	State the IS specification for effective flange width of T and L beam.		10
	Ans:	The effective width of the flange may be taken as following in no case		
		greater than the width of the web plus half the sum of the clear distance		
		to the adjacent beam on the either side.		
		a) For T beam		
		$b_f = lo/6 + b_w + 6 D_f$	2	
		b) For L beam		
		$b_{f} = l_{o}/12 + b_{w} + 3D_{f}$	2	4
		where, $b_f = l_0/12 + b_w + 3D_f$	-	-
		$b_f = effective width of flange$		
		l_0 = distance between points of zero moment in the beam		
		$b_w = breath of web$		
		D_{f} = thickness of flange		
		b = actual width of flange.		
	b)	Find the moment of resistance of T beam with the following data:		
	b)	\mathbf{b}_{f} = 1200 mm, \mathbf{D}_{f} =120 mm , \mathbf{b}_{w} = 300 mm , d = 500 mm, steel on		
		tension side = 5 bars of 20 mm diameter bars		
		(Note-answer may vary depending upon assumption of concrete		
	Ans:	and steel grade)		
		Given - $b_f = 1200 \text{mm}$		
		$D_{f} = 120 mm$		
		$b_w = 300 \text{mm}$		
		d =500mm		
		Ast = 5 x $\pi/4$ x 20 ² = 1570.79 mm ²		
		To find = $Mu = ?$		
		Step1 –		
		To find $X_u=?$		
		$x_u = \frac{0.87 f_y Ast}{0.36 f_{ck} b_f}$		
		$x_{u} = \frac{1}{0.36 f_{cb} b_{f}}$		
			1	
		$x_u = \frac{0.87 \times 415 \times 1570.79}{0.36 \times 20 \times 1200}$		
		Xu = 65.64mm		
		Step2 - To find X _{umax} ?		
		$X_{\text{umax}} = 0.479 \text{ X d}$		
		= 0.479 X 500		
		$X_{umax} = 239.5 \text{mm}$		
		$A_{umax} = 259.5 \text{ mm}$ As, Xu < Xumax, so, beam is under reinforced.	1	
		$A_{3}, A_{4} > A_{4}$		

Subject & Code: Design of RCC Structures (17604)

Page No. 12 /26

Que.	Sub.			Total
Que. No.	Que.	Model Answers	Marks	Marks
Q.3	b)	Step 3- to find Mu=?		
		$Mu = Tu \times Zu$		
		=0.87 x fy x Ast (d -0.42 Xu)		4
		=0.87 x 415 x 1570.79 (500 -0.42 x 65.64)	2	
		$= 567.13 \times 10^3 (472.44)$		
		$=267.93 \times 10^{6} \text{ N-mm}$		
		Mu = 267.093 KN-m		
	C)	Find developement length of 20 mm diameter bar in tension and compression. Assume M20 concrete and Fe 500 grade steel. Use Z_{bd} = 1.2 N/mm ²		
	Ans	Given data $-\phi=20$ mm		
		$fck = 20 \text{ N/mm}^2$		
		$fy = 500 N/mm^2$		
		Bond stress = $Z_{bd} = \tau_{bd} = 1.2 \text{ N/mm}^2$		
		To find L_d for 20 mm dia. bar in tension and compression.		
		a) Development length for bar in tension		
		$0.87 f_y \phi$		
		$L_d = rac{0.87 f_y \phi}{4T_{bd}}$	•	
		For Fe 500 steel value of τ_{bd} shall be increased by 60%.	2	
		$\tau_{bd} = 1.2 \text{ x } 1.6 = 1.92 \text{ N/mm}^2$		
		$L_d = \frac{0.87 \times 500 \times 20}{4 \times 1002}$		
		$L_d = \frac{4 \times 1.92}{4 \times 1.92}$		
		$L_d = 1132.81 \text{ mm}$		
		b) Development length for bar in compression		4
		For bar in compression, the value of bond stress for bar in tension		
		shall be increased by 25%		
		$\tau_{bd} = 1.6 \text{ x } 1.2$		
		= 2.4N/mm ²	2	
		$L_d = \frac{0.87 \times 500 \times 20}{4 \times 2.4}$		
		$L_d = \frac{4 \times 2.4}{4 \times 2.4}$		
		= 906.25 mm		

ıbje	<u>ct & Co</u>	de: Design of RCC Structures (17604)	Page N	[o. 13 /
ue. [o.	Sub. Que.	Model Answers	Marks	Tota Mark
).3	d)	State I.S. specification for minimum shear reinforcement		
	Ans	minimum shear reinforcement in form of stirrup shall be provided		
		such that,	2	
		$A_{sv}/$ (b x S_v) \geq 0.4/ 0.87 f_y	<u> </u>	
		Where, A_{sv} = total cross section area of stirrups legs effective in shear		
		$S_v =$ stirrups spacing along the length of the member	2	4
		b = breadth of beam or web of flanged beam		
		F_y = characteristic strength of stirrup reinforcement in N/mm ²		
		which shall not be taken greater than $415N/mm^2$.		
	e)	Design a R.C column to carry an axial working load 400 kN.The		
		effective length of column is 2.5 m. check the column for min		
		eccentricity. Use M20 and Fe 415 grades of concrete and steel.		
	Ans.	(Note: answer may vary according to shape of column assumed)		
		Given data- $P = 400 \text{ kN}$		
		$L_{eff.} = 2.5 \text{ m} = 2500 \text{mm}$		
		$F_{ck} = 20 \text{ N/mm}^2$		
		$F_y = 415 \text{ N/mm}^2$		
		Step 1- To find factored load		
		$P_u = 1.5 P$		
		= 1.5 X 400	1/2	
		= 600 kN		
		Step 2- Assume 1% of steel in column		
		Area of steel, $A_{sc} = 0.01 \text{ Ag}$		
		Area of concrete $A_c = Ag-Asc$	1/2	
		$A_c = 0.99 Ag$, -	
		Step3- To find Ag		
		Pu = (0.4fck x Ac) + (0.67 fy x Asc)		
		$600X \ 10^3 = (\ 0.4 \ x \ 20 \ x \ 0.99 \text{Ag}) + (\ 0.67 \ x \ 415 \ x \ 0.01 \text{Ag})$		
		$Ag = 56072.14 \text{ mm}^2$		
		$Ag = 56.07 \text{ X} 10^3 \text{mm}^2$		
		Assuming square shape,		
		Each side = $\sqrt{56.07 \times 10^3}$	1	
		$=236.79 \text{ m} \approx 240 \text{ mm}$	1	

Subject & Code: Design of RCC Structures (17604)

Que.	Sub.	Model Answers	Marks	Total
No.	Que.	Step 4: Check for minimum eccentricity		Marks
Q.3	e)	$e_{min} = L/500 + D/30$ OR 20mm whichever is greater		
	• • •	$e_{min} = 1/300 + D/30$ OK 2011111 whichever is greater = 2500/500 + 240/30		
		$e_{min} = 13 \text{mm}$ OR 20mm whichever is greater $e_{min} = 20 \text{ mm}$		
		$e_{min} < 0.05D$ 0.05D - 0.05 X 240 - 12 mm		
		$0.05D = 0.05 \times 240 = 12 \text{ mm}$	1	
		But, e_{min} is more than 0.05 D So.check for minimum eccentricity is not satisfy.	I	
		So, increase the dimension say 320mm X 320 mm		
		Now, $e_{\min} = (2500/500 + 320/30)$		
		e _{min} =15.67 mmm		
		and $0.05D = 0.05 \times 320$		4
		D = 16 mm		
		$e_{min,} < 0.05D$		
		15.67 mm < 16mm ok for minimum eccentricity.		
		Revised size of column = 320 mm x 320 mm		
		Asc = 0.01 Ag		
		= 0.01 X 320 X 320		
		$Asc= 1024 \text{ mm}^2$		
		Provide 4 bars of 20 mm ϕ bar.		
		Step 5= Lateral ties		
		Diameter of ties = $\frac{1}{4}$ X diameter of longitudinal steel bar = $\frac{1}{4}$ X 20		
		= 5 mm		
		But $\phi < 6 \text{ mm}$		
		So, provide 6mm dia. lateral ties.		
		Pitch should not be grater than	1	
		i) Least lateral dimensions of column i.e. 320mm.		
		ii) 16 x dia. of longitudinal steel =16 x ϕ		
		$16 \times 20 = 320 \text{ mm}$		
		iii) 300mm		
		(Select minimum of above values)		
		Therefore, provide lateral ties 6mm ϕ @ 300mm c/c.		

Subject & Code: Design of RCC Structures (17604)

Page No. 15 /26

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q.4	a) i) Ans	Attempt any <u>THREE</u> of the following. Write any four advantages of prestressed concrete . 1. Prestressed member is more durable.Prestressed concrete beams are generally free from cracks as high grade concrete is		12
		 used. 2. Fatigue strength is considerably higher than that of normal reinforced concrete. 3. Deformations of such structure are significantly smaller than reinforced concrete structure. 4. Prestressed concrete is economical for high spans and heavily loaded structural members. 5. Considerable reduction in dead load of structure. 6. Smaller section can be used with prestressed systems. Larger depths in compression are available in flexural due to pre compression. 7. Prestressed concrete is resilient, deformation due to overloading are recovered. 	1 Mark each (any four)	4
	ii) Ans-	Define limit states and state types of various limit states. Limit state may be defined as ,the acceptable limit for safety and serviceability of structure before failure occurs. Types of limit states-	2	
		 Limit state of collapse a. Flexure b. Shear c. torsion Limit state serviceability 	1	4
		a. Deflection b. cracking	1	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (IS O/IEC - 27001 - 2005 Certified) **Model Answer: WINTER 2016**

Subject & Code: Design of RCC Structures (17604)

Page No. 16 /26

Que. iii)	Model Answers	Marks	Marks
— Ш)		, ,	
Ans:	 State two situations where doubly reinforced section is preferred. 1) When the singly reinforced beams need considerable depth to resist large bending moment, it becomes necessary to provide doubly reinforced section. 2) When the size of rectangular beam cross-section is limited because of architectural reasons or practical reasons then it becomes necessary. 3) When the sections are subjected to reversal of bending moment. 4) When it is required to reduce the long-term deflection, it becomes necessary to provide doubly reinforced section. 5) When a beam is continuous overall several supports; the beam is subjected to alternate sagging also it becomes necessary to provide doubly reinforced section. 	2 Marks each (any two)	4
iv)	Calculate working load carrying capacity of column 230 x 230 mm. provided with 4 bars of 16 mm diameter . Use M 20 concrete and Fe 415 steel Ans: Given data : Size of column = 230 x 230mm $Asc = \frac{4\frac{\pi}{4}(16)^2}{Asc} = 804.24mm^2$ fck = 20 N/mm ² fv=415 N/mm ²		
	To find, working load carrying capacity of column = P = ? <u>Step 1</u> : Gross area = Ag = $230x230$ = 52900 mm^2	1	
	Step 2 : Area of steel, Asc = 804.24 mm^2	1	
	$= 52.095 \text{ x } 10^{3} \text{ mm}^{2}$ <u>Step 4</u> : Ultimate load carrying capacity, Pu Pu = [0.4 . fck . Ac] + [0.67 . fy . Asc] = [0.4 x 20 x 52.095 x 10 ³] + [0.67 x 415 x 804.24] Pu = 640.38 x 10 ³ N = 640.38 kN	1	4
	(Working load carrying capacity) $P = \frac{P_u}{\gamma_f}$ $P = \frac{640.38}{1.5} = 426.92kN$	1	
		resist large bending moment, it becomes necessary to provide doubly reinforced section. 2) When the size of rectangular beam cross-section is limited because of architectural reasons or practical reasons then it becomes necessary. 3) When the sections are subjected to reversal of bending moment. 4) When it is required to reduce the long-term deflection, it becomes necessary to provide doubly reinforced section. 5) When a beam is continuous overall several supports; the beam is subjected to alternate sagging also it becomes necessary to provide doubly reinforced section. iv) Calculate working load carrying capacity of column 230 x 230 mm provided with 4 bars of 16 mm diameter . Use M 20 concrete and Fe 415 steel Ans: Given data : Size of column = 230 x 230mm $\frac{4 \frac{\pi}{4} (16)^2}{\text{Asc}} = \frac{4 \frac{\pi}{4} (16)^2}{\text{Asc}} = 804.24 \text{mm}^2$ fck = 20 N/mm ² fck = 20 N/mm ² To find, working load carrying capacity of column = P = ? Step 1: Gross area = Ag = 230x230 = 52900 mm ² Step 2: Area of steel, Asc = 804.24 mm ² Step 3: Area of concrete, Ac =Ag - Asc = 52.095 x 10 ³ mm ² Step 4: Ultimate load carrying capacity, Pu Pu = [0.4. fck . Ac] + [0.67. fy . Asc] = [0.4 x 20 x 52.095 x 10 ³ 1] + [0.67 x 415 x 804.24] Pu = 640.38 x 10 ³ N = 640.38 kN (Working load carrying capacity) P= $\frac{P_u}{\gamma_f}$	resist large bending moment, it becomes necessary to provide doubly reinforced section. 2) When the size of rectangular beam cross-section is limited because of architectural reasons or practical reasons then it becomes necessary. 3) When the sections are subjected to reversal of bending moment. 4) When it is required to reduce the long-term deflection, it becomes necessary to provide doubly reinforced section. 5) When a beam is continuous overall several supports: the beam is subjected to alternate sagging also it becomes necessary to provide doubly reinforced section. iv) Calculate working load carrying capacity of column 230 x 230 mm. provided with 4 bars of 16 mm diameter . Use M 20 concrete and Fe 415 steel Ans: Given data : Size of column = 230 x 230mm $\frac{4 \frac{\pi}{4} (16)^2}{\text{Asc} = \frac{4 \pi}{4} (16)^2}$ $Asc = \frac{4 \frac{\pi}{4} (16)^2}{\text{Asc} = -804.24 \text{ mm}^2}$ To find, working load carrying capacity of column = P = ? Step 1 : Gross area = Ag = 230x230 = 52900 mm^2 Step 2 : Area of steel, Asc = 804.24 mm^2 Step 3 : Area of concrete, Ac = Ag - Asc = 52.095 x 10 ³ mm ² Step 4 : Ultimate load carrying capacity, Pu Pu = [0.4, fk A. Ac] + [0.67 · fy . Asc] = [0.4 x 20 x 52.095 x 10 ³] + [0.67 x 415 x 804.24] Pu = 640.38 x 10 ³ N = 640.38 kN (Working load carrying capacity) P= $\frac{P_n}{\gamma_T}$

Subject & Code: Design of RCC Structures (17604)

Page No. 17 /26

Que.	Sub.			Total
No.	Que.	Model Answers	Marks	Marks
Q.4	b i)	Attempt any <u>ONE</u> of the following – A doubly reinforced beam 300 mm x 500 mm effective is reinforced with 1035 mm ² at 25 mm below top edge and 1840 mm ² above bottom edge. Take M 20 concrete and Steel Fe 415. Find moment of resistance (M _u). Use f_{sc} = 355 N/mm ² and neglect σ_{cc}		6
	Ans:	Given data :- b = 300 mm d = 500 mm d' = 25 mm Asc = 1035 mm ² Ast = 1840 mm ² fck = 20 N/mm ² fy = 415 N/mm ² <u>Step 1</u> - To find <u>Xu max</u> Xu _{max} = 0.479 dfor Fe415 = 0.479 x 500 = 239.5 mm	1	
		Step 2 - To find actual Xu, $f_{cc} = \sigma_{cc} = 0$ $Ast_2 = \frac{(f_{sc} - f_{cc})Asc}{0.87f_Y}$ $Ast_2 = \frac{(355 - 0)1035}{0.87 \times 415}$	1	6
		$= 1017.656 \text{ mm}^{2}$ $Ast_{1} = Ast - Ast_{2}$ $= 1840-1017.656 = 822.344 \text{ mm}^{2}$ $0.87 f_{y}Ast$	1	
		$x_{u} = \frac{0.87 f_{y} Ast}{0.36 f_{ck} b_{f}}$ $x_{u} = \frac{0.87 \times 415 \times 822.344}{0.36 \times 20 \times 300} = 137.457$ As, Xu < Xumax section is under- reinforced.	1	
		<u>Step 3</u> - To find moment of resistance, $Mu = 0.87 f_y Ast(d - 0.42u) + (f_{sc} - f_{cc})Asc(d - d')$ $Mu = 0.87 \times 415 \times 822.344(500 - 0.42 \times 137.457) + (355 - 0) \times 1035(500 - 25)$ $Mu = 305.83 \times 10^6 Nmm$ Mu = 305.83KNm	2	

Subject & Code: Design of RCC Structures (17604)

Que. Sub.	Model Answers	Marks	Tota
No. Que		muno	Mark
Q.4 b) ii)	A beam 250 mm x 600mm effective is subjected to a factored moment of 300 KNm. Assume d' = 30 mm and M15 and Fe 415 , Find area of compression steel and tension $f_{sc} = 355 \text{ N/mm}^2$ and neglect σ_{cc}		
Ans.	Given data, b = 250mm $d = 600mmMu = 300 \text{ KN.m} d^{'} = 30mmfck = 15 \text{ N/mm}^2 fy = 415 \text{ N/mm}^2fsc = 355 \text{ N/mm}^2To find, Asc = ? and Ast = ?$		
	Step 1 – To find Xu _{max} , $Xu_{max} = 0.479d$ for fe 415 $= 0.479 \times 600$ $Xu_{max} = 287.4 \text{ mm}$		
	$\begin{aligned} & \textbf{Step 2} - \textbf{To find } \textbf{Mu}_{lim} \\ & \textbf{Mu}_{lim} = 0.138 \text{ fck } \textbf{bd}^2 & \text{for fe415} \\ & \textbf{Mu}_{lim} = 0.138 \text{ x } 15 \text{ x } 250 \text{ x } 600^2 \\ & \textbf{Mu}_{lim} = \textbf{186.3 x } \textbf{10}^6 \text{ N-mm} \end{aligned}$	1	
	Step 3 – find Ast ₁ from Pt _{lim} , Pt _{lim} = 0.048fck = 0.048 x 15 = 0.72% for M15 & fe415 $Ast_1 = \frac{Pt_{lim}bd}{100}$ $Ast_1 = \frac{0.72 \times 250 \times 600}{100}$	1	6
	$100 \\ Ast_1 = 1080 \text{ mm}^2$	1	
	Step 4 – $Mu_1 = Mu - Mu_{lim}$ = 300x 10 ⁶ – 186.3x 10 ⁶ = 113.7 x 10 ⁶ N-mm Step 5 – To find , Asc = ? $Mu_1 = Asc (fsc - fcc) (d - d^1)$	1	
	fsc = 3555 N/mm ² given $\sigma_{cc} = fcc = should be neglected as per given \sigma_{cc} = fcc = 0113.7 x 106 = Asc (355 - 0) (600 - 30)113.7 x 106 = 202.35 x 103 x Asc$		
	$Asc = \frac{113.7 \times 10^{6}}{202.35 \times 10^{3}}$ Asc = 561.89 mm ²	1	
	$Asc = 561.89 \text{ mm}^2$		

Subject & Code: Design of RCC Structures (17604)

Page No. 19 /26

	~ 1			
Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q.4	ii)	<u>Step 6</u> – To find Ast ₂ = ? Asc (fsc – fcc) = Ast ₂ x 0.87 x 415 561.89 (355 – 0) = Ast ₂ x 0.87 x 415 $Ast_2 = \frac{199.47 \times 10^3}{361.05}$ Ast ₂ = 552.47 mm ²	1	
		Total Ast = Ast ₁ + Ast ₂ = $1080 + 552.47 = 1632.47 \text{ mm}^2$	1	
Q.5	a)	Attempt any <u>TWO</u> of the following: Determine the ultimate moment capacity of beam b = 280mm, d = 500 mm d' = 50mm, Asf= 2450 mm ² , Asc = 400 mm ² , fsk = 30 N/ mm ² , fy= 415, fsc= 355 N/ mm ²		16
	Ans.		1	
		Step 2 fsc= 355 N/mm ² fcc = 0Given Step 3 Ast ₂ = (fsc-fcc) Asc/ 0.87 x fy = $(355-0) \times 400/ 0.87 \times 415$ = 393.297 mm ² Ast ₁ = Ast- Ast ₂ = 2450-393.297 = 2056.703 mm ²	3	8
		$\begin{aligned} & \textbf{Step 4 Xu_1= 0.87fy Ast1/0.36fck b} \\ &= 0.87x \ 415x 2056.703/0.36x 30x 280 \\ &= 245.559 \ \text{mm} \\ & \text{Xu1 greater than Xu max the section is over reinforced} \\ & \text{Mu= } M_u \ \text{lim } + M_{u2} \\ & \text{Mu= } 0.138 \ \text{fck x bd}^2 + [(\text{fsc } - \text{fcc}) \text{Asc}(\text{d-d'})] \\ &= 0.138x 30x 280x 500^2 + (355 - 0)x 400x (500 - 50) \\ &= 353.7x \ 10^6 \ \text{N.mm} = 353.7 \ \text{KNm} \end{aligned}$	4	

Subject & Code: Design of RCC Structures (17604)

Page No. 20 /26

Que.	Sub.			Model	Answers			N	Marks	Total
No.	Que.	Design (b)				- 6 0	h *			Marks
Q.5	b)	Design the shear 30 KN/m udl h						r		
		The reinforcem								
		M 20 grade an								
		P	1.0	1.25	1.5	1.25	2.0]		
		$ au_{ m c}$	0.6	0.64	0.68	0.71	0.71			
	Ans:	Given						-		
		Span= 8m w=			00 mm					
		D=610 mm C)mm						
		6 bar, 25 mm di		5 NI /2						
		$fck = 20 \text{ N/mm}^2$ Step 1	IY= 41	5 N/mm						
		d = D -	cover							
		= 610								
		= 580	mm							
		Step 2								
			$\pi/4 \ge 25^2$	2						
		= 2943	5.24 mm ²							
		Step 3								
		W = W	Xγ _f							
			30 x1.5						1	
		= 45 1	KN/m							0
		Design shear for								8
		Factured $V_u = ($		2						
			(45x8)/2							
		= .	180 KN							
		Step 4								
		Nominal shear s	stress							
		$z_v = Vu/b$	-							
			$10^3 / 300 x$	580					1	
		= 1.034		ON (2)					I	
		z_c max for	M20=2.	ð N/mm²						
		Step 5								
		-	/bd x 100						1	
			45.24/300)x580)x	100					
		= 1.6		,						
		From following	table find	-						
		Pt%	۲c		$pt_1 = 1.5$		$z_{c1} = 0.68$			
		1.5			$pt_1 = 1.5$		$c_{c1} = 0.71$			
		$\begin{array}{c} 1.7\\ \zeta_{c} = \zeta_{c1} + (($			pt = 1.69					
		$z_{c} = z_{c1} + ((z_{c1} + z_{c1})) + (z_{c1} + z_{c1}) + (z_{c$					5)			
		= 0.03 + = 0.703 N/r				a (1.07- 1.	-)		2	
				N/mm ² >	$c_{\rm c} = 0.703$	N/mm ²				
		shear reinforcen			-					

Subject & Code: Design of RCC Structures (17604)

Page No. 21 /26

Que.	Sub.			Total
No.	Que.	Model Answers	Marks	Marks
Q.5	b)	Step 6 Shear force for which shear reinforcement is required Vus = Vu - ζ_c bd		
		= $180x10^{3} - 0.703x300x580$ = 57678 N As bent up bars are not provided	1	
		Vusv = Vus = 57678 N Provide 2- legged 8 mm dia stirrups		
		Step 7 Spacing = 0.87 fy Asv d / Vusv = $0.87x415x2x(\pi/4) \times 8^2 \times 580/57678$ = 364.993 mm		8
		$S_{v\min} = \frac{0.87 f_y Asv}{0.4b}$ Sv min = 0.87 x415 x 2 (\pi/4) x 8 ² / 0.4x300 = 302.46 mm	2	
		Sv max = 0.75d or 300mm = 0.75 X 580mm or 300mm = 435 or 300mm Sv= min of above values= 300mm Provide 2-legged 8mm dia. Stirrups @ 300mm c/c		
	c)	Design a RC column footing with following data: Size of column – 400mm x 400 mm Safe bearing capacity of soil – 200 kN/m ² Load on column – 1200 kN Use M20 and Fe 415 steel. Check for punching shear and one way		
	Ans.	shear need not be given Given- Size of column – 400mm X 400 mm Safe bearing capacity of soil = 200 kN/m^2 Load on column is 1200 kN $f_{ck}= 20N/mm^2$ fy= 415 N/mm ²		
		Step 1- Ultimate S.B.C (q_u)= 2 X 200= 400 kN/m ²		
		Step 2- Size of footing- $W_U = W X \tilde{Y}_f = 1200 X 1.5 = 1800 kN$ $A_f = 1.05 X W_U / q_u$ = 1.05 X 1800/400 $= 4.725 m^2$	1	
		L=B= $\sqrt{AF} = \sqrt{4.725} = 2.173$ m = say 2.20m		

Subject & Code: Design of RCC Structures (17604)

Page No. 22 /26

Que.	Sub.	Model Answers	Marks	Total
No. Q.5	Que.	Adopt footing of size 2.20m X 2.20m		Marks
Q.3	C)	Step 3-		
		Upword soil pressure		
		$p = W_u/(L X B) = 1800/(2.2 X 2.2) = 371.90 \text{ KN/m}^2$	1	
		Step 4 –		
		Depth for flexure		
		Let $X_1 = Y_1$ = projection beyond column		
		(2.2-0.4)/2 = 0.9		
		$M_x = M_y = 1 \times X_1 \times p \times (X_1/2)$		
		$= 1 \times 0.9 \times 371 \times (0.9/2)$	2	
		150.62 KN/m		
		$d_{reqd} = \sqrt{Mx/q.fckb}$		
		$d_{reqd} = \sqrt{(150.62 \times 10^6 / 0.138 \times 15 \times 1000)}$		
		=269.74 mm say 270mm.		
		Adopt cover of 80 mm		
		D=270+80=350mm		
		Step 5 –		
		Ast = 0.5Fck/ Fy X $\left[1 - \sqrt{1 - \frac{4.6Mu}{Fck \times bd^2}}\right]bd$		
		$\begin{bmatrix} 4.6 \times 150.62 \times 10^6 \end{bmatrix}$		8
		Ast=Ast =(0.5 X 15)/ 415 X $\left[1 - \sqrt{1 - \frac{4.6 \times 150.62 \times 10^6}{15 \times 1000 \times 270^2}}\right] 1000 \times 270$	2	ð
		$=1925.936 \text{ mm}^2$		
		Using 16 mm diameter		
		Spacing, $S_x = S_y = 1000 \text{ x A} \text{ // Ast}$		
		$= 1000 \text{ X} (\pi/4) \text{ X} 16^2 / 1926$		
		= 104.39 mm say 100 mm c/c		
		Provide 16 mm ø @ 100 mm c/c both way		
		Step 6 –		
		Development length_		
		$L_{d} = (0.87 f_{y} x \sigma) / (4 \tau_{bd})$		
		= (0.87 X 415 X 16) / (4 X 1.2 X 1.6)	1	
		= 752.187 mm say760 mm	1	
		This length is available from face of column.		
		Provide 350mm depth near the face of column and reduce depth of		
		footing 150mm at the edge.		

Subject & Code: Design of RCC Structures (17604)

Page No. 23 /26

Subject & Code: Design of RCC Structures (17604)

Page No. 24 /26

Que.	Sub.	Model Answers	Marks	Total
No. Q.6	Que.	Attempt any <u>FOUR of the following:</u>		Marks 16
~··	a)	Draw stress strain diagram for doubly reinforced section in LSM.		10
		State meaning of each term shown in diagram.		
	Ans:			
		wHERE 0.45fck		
		0.035		
		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	
		b Strain Stress		
		Where,		4
		b = width of section section		4
		d = effective depth of section		
		$x_u = Depth of neutral axis$	2	
		A_{st} = area of steel at tension side A_{sc} = Area of steel at compression side		
		C_{u1} = Compression force 1		
		$C_{u2} = Compression force 2$		
		T = tension force d' = effective cover to compression rainforcement		
		d' = effective cover to compression reinforcement		
	b)	Calculate effective flange width for a T –beam for following details: c/c distance between support = 8 m		
		Slab thickness = 120mm		
		c/c distance between beams4.2 m		
		width of rib = 300mm effective depth = 580 mm		
		width of support = 400 mm		
	Ange	c/c distance between supports -8 m		
	Ans:	Slab thickness= 120mm		
		c/c distance between beams =4.2m		
		width of rib=300mm		
		effective depth=580mm		
		width of support=400mm		
	1		1	

Subject & Code: Design of RCC Structures (17604)

Page No. 25 /26

Que. b) c) Ans:	Effective width of flange (b_f) bf = (lo/6) + bw +6Df = (8000/6) + 300 + (6 x 120) $= 2553.33mm^2$ OR c/c distance between beam = 4200mm whichever is less. $b_f = 2353.333mm$ or 4200mm. $b_f = 2353.33mm$ State the IS specification for pitch and diameter of lateral ties 1) IS specification for pitch a) The spacing of the link should not exceed the least of the	4	Marks 4
c)	bf = (lo/6) + bw +6Df = (8000/6) + 300 + (6 x 120) = 2553.33mm ² OR c/c distance between beam = 4200mm whichever is less. bf = 2353.333mm or 4200mm. bf = 2353.33mm State the IS specification for pitch and diameter of lateral ties 1) IS specification for pitch	4	4
	$= (800/6) + 300 + (6 \times 120)$ = 2553.33mm ² OR c/c distance between beam = 4200mm whichever is less. b _f = 2353.333mm or 4200mm. b _f = 2353.33mm State the IS specification for pitch and diameter of lateral ties 1) IS specification for pitch	4	4
	$= 2553.33 \text{mm}^2$ OR c/c distance between beam = 4200mm whichever is less. b_f = 2353.333 \text{mm} or 4200 \text{mm.} b_f = 2353.33 mm State the IS specification for pitch and diameter of lateral ties 1) IS specification for pitch	4	4
	$\label{eq:cc} \begin{array}{l} & \mbox{OR} \\ \mbox{c/c distance between beam} = 4200 \mbox{mm whichever is less.} \\ \mbox{b}_{f} = 2353.333 \mbox{mm or } 4200 \mbox{mm.} \\ \mbox{b}_{f} = 2353.33 \mbox{mm mm} \end{array}$ State the IS specification for pitch and diameter of lateral ties 1) IS specification for pitch		
	b _f = 2353.333mm or 4200mm. b _f = 2353.33mm State the IS specification for pitch and diameter of lateral ties 1) IS specification for pitch		
	b _f = 2353.333mm or 4200mm. b _f = 2353.33mm State the IS specification for pitch and diameter of lateral ties 1) IS specification for pitch		
	 b_f= 2353.33mm State the IS specification for pitch and diameter of lateral ties 1) IS specification for pitch 		
	1) IS specification for pitch		
Ans:	1) IS specification for pitch		
	following.	2	
	i) The least lateral dimension of column.	4	
			4
		2	
		2	
Л			
d)	• • • • • • • • • • • • • • • • • • • •		
Ans:			
		2	
			4
		1	
	c)Eccentricity		
	i. $e_{\min.=}(Lo/500) + (D/30)$ but should not more than 20 mm		
	Lo = unsupported length		
	D = lateral diamension		
	$e_{max=}=0.05D$		
ŀ	d) Ans:	 Ans: a) Longitudinal reinforcement Minimum percentage of steel = 0.8% of Ag Maximum percentage of steel = 6% of Ag Minimum diameter of bar=12mm Minimum number of bars For rectangular column=4 For circular column=6 Maximum spacing of bar=300 mm b)Cover Minimum cover=40mm C)Eccentricity e_{min.} = (Lo/500) + (D/30) but should not more than 20 mm Lo = unsupported length D = lateral diamension 	bar. iii) 300mm 2) IS specification for diameter of lateral ties a) The diameter of the links should be at least one fourth of the longitudinal steel 2 b) In any case the links should not be less than 6mm in diameter. Largest diameter of a and b 2 d) State IS specification for longitudinal reinforcement ,cover and eccentricity in axially loaded column. L.S. specification for 2 Ans: 1. Minimum percentage of steel = 0.8% of Ag 2 3. Minimum diameter of bar=12mm 4. Minimum number of bars 2 4. Minimum number of bars For circular column=4 For circular column=6 5. Maximum spacing of bar=300 mm b)Cover i) Minimum cover=40mm 1 1 Lo = unsupported length D = lateral diamension 1

Subject & Code: Design of RCC Structures (17604)

Page No. 26 /26

