Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and Communication Skills.)
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by the candidate and those in the model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and the model answer.
6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 1	a) (i) Ans.	Attempt any THREE of the following: State any four assumptions made in design for the limit. State method. Following are the assumptions made in design for the limit - a)Plane section normal to the axis remain plain after bending b)The maximum strain in concrete at the outermost compression fiber is taken as 0.0035 in bending c)The relationship between compressive stress distribution in concrete may be assumed to be rectangle, trapezoid, parabola or any other shape which results in prediction of strength. d)The tensile strength of concrete is ignored. e)The stresses in the reinforcement are derived from representative stress - strain curve for the type of steel used. f)The maximum strain in tension reinforcement in the section at failure shall not be less than: (fy $\left./\left(1.15 \mathrm{E}_{\mathrm{s}}\right)\right)+0.002$ Where fy - Characteristic strength of steel E_{s} - Modulus of elasticity of steel g)The maximum compressive strain in concrete in axial compression is taken as 0.002 h) the maximum compressive strain at highly compressed extreme fibre in concrete subjected to axial compression and bending when there is no tension on the section shall be 0.0035 minus 0.75 times the strain at least compressed extreme fibre	1 Mark each (any Four)	12

\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
Que. \\
No.
\end{tabular} \& Sub. Que. \& Model Answers \& Marks \& \begin{tabular}{l}
Total \\
Marks
\end{tabular} \\
\hline Q. 1 \& \begin{tabular}{l}
b \\
(i) \\
Ans. \\
(ii) \\
Ans.
\end{tabular} \& \begin{tabular}{l}
Attempt any ONE of the following : \\
Find the moment of resistance \(M_{u}\) for a beam \(300 \times 600 \mathrm{~mm}\), effective provided with \(\mathbf{3}\) bars of 16 mm diameter and 2 bars of 12 mm diameter on tension side. M20\&Fe500 are used.
\[
\begin{aligned}
\mathrm{b} \& =300 \mathrm{~mm} \\
\mathrm{~d} \& =600 \mathrm{~mm} \\
\text { fck } \& =20 \mathrm{~N} / \mathrm{mm}^{2} \\
\text { Ast } \& =3 \times \pi / 4 \times 16^{2}+2 \times \pi / 4 \times 12^{2} \\
= \& 829.38 \mathrm{~mm}^{2}
\end{aligned}
\] \\
Solution
\[
\begin{aligned}
\mathrm{X}_{\mathrm{u}} \& =(0.87 \mathrm{fy} \text { Ast }) /(0.36 \text { fck.b) } \\
\& =(0.87 \times 500 \times 829.38) /(0.36 \times 20 \times 300) \\
\& =\mathbf{1 6 7 . 0 3} \mathbf{~ m m} \\
\mathrm{X}_{\mathrm{u}} \max \& =0.46 \mathrm{~d} \\
\& =0.46 \times 600=276 \mathrm{~mm}
\end{aligned}
\] \\
As \(X_{u}<X_{u \max }\), Section is under reinforced.
\[
\begin{aligned}
\mathrm{M}_{\mathrm{u}} \& =0.87 \mathrm{fy} \text { Ast }(\mathrm{d}-0.42 \mathrm{Xu}) \\
\& =0.87 \times 500 \times 829.38[600-0.42(167.03)] \\
\& =191.158 \times 10^{6} \mathrm{Nmm}=191.158 \mathrm{KNm}
\end{aligned}
\] \\
Calculate depth and area of steel at mid span of a simply supported beam over as clear span 6 m . The beam is carrying all inclusive load 20 KN/m. Assume 300 mm bearings. Use M20 and Fe500 \\
Given
\[
\begin{aligned}
\& \mathrm{l}=6 \mathrm{~m} \\
\& \mathrm{~L}_{\mathrm{e}}=6+0.3 / 2+0.3 / 2=6.3 \mathrm{~m} \\
\& \mathrm{w}=20 \mathrm{kN} / \mathrm{m} \\
\& \text { fck }=20 \mathrm{~N} / \mathrm{mm}^{2} \\
\& \text { fy }=500 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
\] \\
Solution \\
1) \(M=w L_{e}{ }^{2} / 8\)
\[
\begin{aligned}
\& =\left(20 \times 6.3^{2}\right) / 8 \\
\& =99.225 \mathrm{KNm}
\end{aligned}
\] \\
2) Factored moment \(\quad \mathbf{M}_{d}=\gamma_{f} \times M\)
\[
=1.5 \times 99.225
\]
\[
=148.8375 \mathrm{kNm}
\] \\
3) \(M_{u} \lim =0.133\) fck b d \({ }^{2}\) \\
4)Assume \(b=d / 2\) \\
Equating \(\mathrm{M}_{\mathrm{u}} \lim\) to \(\mathrm{M}_{\mathrm{d}}\) \\
0.133 fck b d \({ }^{2}=148.83 \times 10^{6}\) \\
\(0.133 \times 20 \mathrm{x}(\mathrm{d} / 2) \mathrm{x} \mathrm{d}^{2}=148.83 \times 10^{6}\) \\
\(d^{3} \times 1.33=148.83 \times 10^{6}\) \(\mathrm{d}^{3}=111908270.7\) \\
\(\mathrm{d}=481.89 \mathrm{~mm}\) say 490 mm
\end{tabular} \& 1
1
3
3
1
1
1
1
1 \& 6

6

\hline
\end{tabular}

| $\begin{array}{c}\text { Que. } \\ \text { No. }\end{array}$ | $\begin{array}{c}\text { Sub. } \\ \text { Que. }\end{array}$ | Model Answers |
| :---: | :---: | :---: | :---: | :---: |\quad Marks \(\left.\begin{array}{c}Total

Marks\end{array}\right]\)

Que. No.	Sub. Que.	Model Answers	Marks	$\begin{gathered} \hline \text { Total } \\ \text { Marks } \\ \hline \end{gathered}$
Q. 2	a)	3. Effective span: $\mathrm{L}_{\mathrm{e}}=3.3 \mathrm{~m} \text { (given) }$ 4. Load calculations: (considering 1 m wide strip) $\text { Self wt. of slab }=1 \times 1 \times 0.165 \times 25=4.125$ Wt of F.F \& L.L. $=1 \times 1 \times 4=4$ Total load, $\mathrm{w}=8.125 \mathrm{kN} / \mathrm{m}$ Therefore factored load, $\mathrm{w}_{\mathrm{d}}=\Upsilon_{\mathrm{f}} \mathrm{x}$ w $\begin{aligned} & =1.5 \times 8.125 \\ & =12.1875 \mathrm{kN} / \mathrm{m} \end{aligned}$ 5. Factored (design) max B. M.: $\begin{aligned} \mathrm{M}_{\mathrm{d}} & =\left(\mathrm{w}_{\mathrm{d}} \times \mathrm{l}_{\mathrm{e}}^{2}\right) / 8 \\ & =\left(12.1875 \times 3.3^{2}\right) / 8 \\ & =16.59 \mathrm{KNm} \end{aligned}$ 6. Required overall depth and effective depth: Equating M_{u}, \lim to M_{d} $0.138 \text { fck b d}{ }^{2}=\mathrm{M}_{\mathrm{d}}$ $0.138 \times 20 \times 1000 \mathrm{~d}^{2}=16.59 \times 10^{6}$ $\mathrm{d}=77.53 \mathrm{~mm}$ $\mathrm{d}_{\text {available }}=140 \mathrm{~mm}>\mathrm{d}_{\text {reqd }} \quad \text { Hence OK. }$ Provide $D=165 \mathrm{~mm}$ and $\mathrm{d}_{\text {available }}=140 \mathrm{~mm}$ 7. Area of main steel $\begin{aligned} \text { Ast } & =0.5 \text { fck } / \text { fy }\left[1-\left(\sqrt{\left.1-\frac{4.6 \mathrm{Md}}{(\text { fok bd }} \mathrm{d}\right)}\right)\right. \\ & =\frac{0.5 \times 20}{415}\left[1-\sqrt{1-\frac{4.6 \times 16.59 \times 10^{6}}{20 \times 1000 \times 140^{2}}}\right] \times 1000 \times 140 \\ & =346.13 \mathrm{~mm}^{2} \end{aligned}$ Spacing of main reinforcement a) $\mathrm{S}_{10 \varnothing}=(1000 \mathrm{~A} \emptyset) / \mathrm{Ast}$ $\begin{aligned} & =\frac{1000 \times \frac{\pi}{4} \times 10^{2}}{346.13} \\ & =226.91 \text { say } 225 \mathrm{~mm} \mathrm{c} / \mathrm{c} \end{aligned}$ Spacing $=225 \mathrm{~mm} \mathrm{c} / \mathrm{c}$ b) $3 \mathrm{~d}=3 \times 140=420 \mathrm{~mm}$ c) 300 mm $\begin{aligned} \text { Ast provided } & =(1000 \mathrm{~A} \emptyset) / 5 \\ & =(1000 \times 78.54) / 225 \\ & =349.06 \mathrm{~mm}^{2} \end{aligned}$	1 1 1	8

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 2	a)	8. Area and spacing of distribution steel: $\begin{aligned} & \text { Ast }_{\min }=\text { Ast }_{\mathrm{d}}=0.15 / 100 \mathrm{~b} \mathrm{D} \quad \text { (mild steel is used) } \\ & =(0.15 / 100) \times 1000 \times 165 \\ & =247.5 \mathrm{~mm}^{2} \end{aligned}$ Spacing of $6 \mathrm{~mm} \emptyset \mathrm{M}$. S. distribution bars, $=\min$ of $\mathrm{a}, \mathrm{b}, \mathrm{c}$ a) $S_{d}=[(A$ Ø d) $/($ Ast d) $] \times b$ $=(28.27 / 247.5) \times 1000$ $=114.22 \mathrm{~mm}$ say $110 \mathrm{~mm} \mathrm{c} / \mathrm{c}$ b) spacing, $S=5 \mathrm{~d}=5 \times 140=700 \mathrm{~mm}$ c) 450 mm spacing $=114.22 \mathrm{~mm} \approx 110 \mathrm{~mm}$ Therefore As $\mathrm{S}_{\mathrm{d}}<\mathrm{S}_{\mathrm{dmax}}$ Provide 6 mm Ø distribution bars @ $110 \mathrm{~mm} \mathrm{c} / \mathrm{c}$ 9. Reinforcement details: c/s of slab showing reinforcement details. Designa simply supported two way slab over a room 4.8 mx 4.0 m effective, subjected to UDL $5 \mathrm{kN} / \mathrm{m}^{2}$ (inclusive of self wt.) Use M20 and Fe 415. Draw reinforcement detail check for shear may not be given. Take $\alpha_{x}=0.084$ and $\alpha_{y}=0.059$ (Note- Ans wer may vary depending upon assumption of MF, diameter of bar \& cover) 1. Given: 4.8 mx 4 m effective, two way slab $\begin{aligned} & \mathrm{w}=5 \mathrm{kN} / \mathrm{m}^{2}(\text { inclusive of self } \mathrm{wt}) \\ & \mathrm{fck}=20 \mathrm{~N} / \mathrm{mm}^{2} \\ & \text { fy }=415 \mathrm{~N} / \mathrm{mm}^{2} \\ & \alpha_{x}=0.084 \\ & \alpha_{y}=0.059 \end{aligned}$ 2. Design constants : For $\mathrm{Fe} 415, \mathrm{Mu}_{\text {lim }}=0.138$ fck b d ${ }^{2}$	1	

Que. No.	Sub. Que.	Model Answers	Marks	$\begin{gathered} \hline \text { Total } \\ \text { Marks } \\ \hline \end{gathered}$
Q. 2	b)	3. Estimation of slab thickness Assume $\quad \mathrm{MF}=1.4$ Therefore $\mathrm{d}=\operatorname{span} /(20 \times 1.4)$ $\begin{aligned} & =4000 /(20 \times 1.4) \\ & =142.86 \mathrm{~mm} \text { say } 150 \mathrm{~mm} \end{aligned}$ Assuming $10 \mathrm{~mm} \emptyset$ main bars, $\& \mathrm{c}=20 \mathrm{~mm}$, $\begin{aligned} D & =d+c+(\emptyset / 2) \\ & =150+20+(10 / 2) \\ & =175 \mathrm{~mm} \end{aligned}$ 4. Effecftive span : $\begin{aligned} & \mathrm{L}_{\mathrm{xe}}=4000 \mathrm{~mm}, \\ & \mathrm{~L}_{\mathrm{ye}}=4800 \mathrm{~mm} \end{aligned}$ Consider 1 m wide strip Load: $\begin{aligned} \mathrm{w}_{\text {given }} & =5 \mathrm{KN} / \mathrm{m}^{2} \\ \mathrm{w} & =1 \times 1 \times 5=5 \mathrm{kN} / \mathrm{m} \end{aligned}$ factored load $=w_{d}=1.5 \times 5=7.5 \mathrm{KN} / \mathrm{m}$ 5. Factored B. M : $\begin{aligned} \alpha_{\mathrm{x}} & =0.084 \\ \alpha_{\mathrm{y}} & =0.059 \\ \mathrm{M}_{\mathrm{xd}} & =\alpha_{\mathrm{x}} \cdot \mathrm{w}_{\mathrm{d} .} . \mathrm{L}_{\mathrm{xe}} \\ & =0.084 \times 7.5 \times 4^{2} \\ & =10.08 \mathrm{KNm} \\ \mathrm{M}_{\mathrm{yd}} & =\alpha_{\mathrm{y}} . \mathrm{w}_{\mathrm{d} .} . \mathrm{L}_{\mathrm{xe}}{ }^{2} \\ & =0.059 \times 7.5 \times 4^{2} \\ & =7.08 \mathrm{kNm} \end{aligned}$ 6. Effective depth of slab: $\begin{gathered} 0.138 \text { fck bd }{ }^{2}=\mathrm{M}_{\mathrm{xd}} \\ 0.138 \times 20 \times 1000 \mathrm{~d}^{2}=10.08 \times 10^{6} \\ \mathrm{~d}_{\text {reqd }}=60.43 \mathrm{~mm}<\left(\mathrm{d}_{\text {available }}=150 \mathrm{~mm}\right) \text { Hence OK } \end{gathered}$ 7. Area and spacing of steel $\begin{aligned} & \text { Ast }_{\mathrm{x}}=0.5 \mathrm{fck} / \mathrm{fy}\left[1-\sqrt{1-\left(\frac{4.6 \mathrm{Mxd}}{\text { fck.bd2 }}\right)}\right] b d \\ & =\frac{0.5 \times 20}{415}\left[1-\sqrt{1-\left(\frac{4.6 \times 10.08 \times 10^{6}}{20 \times 1000 \times 150 \times 150}\right)}\right] \times 1000 \times 150 \\ & \quad=191.278 \mathrm{~mm}^{2} \end{aligned}$	1	

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 2	b)	Select 8 mm Ø bars,Spacing $=\min$ of a,b,c a) $\mathrm{S}_{\mathrm{x}}=\left[\left(\pi / 4 \times 8^{2} \mathrm{x} 1000\right) / 191.27\right]=262.76$ say mm say 260 mm $S_{x}=260 \mathrm{~mm} \mathrm{c} / \mathrm{c}$ b) $3 \mathrm{~d}=3 \times 150=450 \mathrm{~mm}$ c) 300 mm \qquad OK Spacing $=\mathbf{2 6 0 m m c} / \mathrm{c}$ $\mathrm{d}^{\prime}=\mathrm{d}-\emptyset=150-8=142 \mathrm{~mm}$ $A s t_{y}=\frac{0.5 \times f_{c k}}{f_{y}}\left[1-\sqrt{1-\left(\frac{4.6 \times M_{y d}}{f_{c k} b d^{2}}\right)}\right] \times b d^{\prime}$ $=\frac{0.5 \times 20}{415}\left[1-\sqrt{1-\left(\frac{4.6 \times 7.08 \times 10^{6}}{20 \times 1000 \times 142 \times 142}\right)}\right] \times 1000 \times 142$ $=141.07 \mathrm{~mm}^{2}$ Ast $_{\text {min }}=(0.12 / 100) \mathrm{bD}$ $=(0.12 / 100) \times 1000 \times 175$ $=210 \mathrm{~mm}^{2}$ Ast $_{x}$ calculated is very less. Take Ast ${ }_{x} \&$ Ast $_{y}=210 \mathrm{~mm}^{2}$ Therefore, Spacing of 8 mm dia. Bars, $\begin{align*} & S_{X}=S_{Y}=\frac{\frac{\pi}{4} \times 8^{2} \times 1000}{A s t_{\text {min }}} \\ & \begin{aligned} \mathrm{S}_{\mathrm{x}}=\mathrm{S}_{\mathrm{y}} & =(50.26 \times 1000) / 210 \\ & =239.33 \mathrm{~mm} \text { say } 230 \mathrm{~mm} \mathrm{c} / \mathrm{c}(<3 \mathrm{~d} \text { or } 300 \mathrm{~mm}) . \end{aligned} \end{align*}$ Provide 8 mm Ø@ 230 mm c c in both directions Reinforcement details: C/s of two way slab along x-axis Note: C/s along x-axis is same as steel provided is same on both sides.	2	8

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 2	c) i) Ans: ii) Ans:	Draw detailed diagram showing reinforcement details in case of cantilever slab Draw detailed diagram showing reinforcement details in case of dog legged staircase Fig. Dog legged staircase (Note- 2 marks for sketch and 2 marks for labeling)	4	4

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 3	a) Ans: b) Ans:	Attempt any FOUR of the following. State the IS specification for effective flange width of T and L beam. The effective width of the flange may be taken as following in no case greater than the width of the web plus half the sum of the clear distance to the adjacent beam on the either side. a) For T beam $b_{f}=10 / 6+b_{w}+6 D_{f}$ b) For L beam $\mathrm{b}_{\mathrm{f}}=\mathrm{l}_{0} / 12+\mathrm{b}_{\mathrm{w}}+3 \mathrm{D}_{\mathrm{f}}$ where, $\mathrm{b}_{\mathrm{f}}=$ effective width of flange $\mathrm{l}_{0}=$ distance between points of zero moment in the beam $b_{\mathrm{w}}=$ breath of web $\mathrm{D}_{\mathrm{f}}=$ thickness of flange $\mathrm{b}=$ actual width of flange. Find the moment of resistance of T beam with the following data: $b_{f}=\mathbf{1 2 0 0} \mathrm{mm}, D_{f}=\mathbf{1 2 0} \mathbf{~ m m}, b_{w}=\mathbf{3 0 0} \mathbf{~ m m}, d=500 \mathrm{~mm}$, steel on tension side $=5$ bars of 20 mm diameter bars (Note-answer may vary depending upon assumption of concrete and steel grade) Given - $\mathrm{b}_{\mathrm{f}}=1200 \mathrm{~mm}$ $\mathrm{D}_{\mathrm{f}}=120 \mathrm{~mm}$ $\mathrm{b}_{\mathrm{w}}=300 \mathrm{~mm}$ $\mathrm{d}=500 \mathrm{~mm}$ $\text { Ast }=5 \times \pi / 4 \times 20^{2}=1570.79 \mathrm{~mm}^{2}$ To find $=\mathrm{Mu}=$? Step1 - To find $\mathrm{X}_{\mathrm{u}}=$? $\begin{aligned} & x_{u}=\frac{0.87 f_{y} A s t}{0.36 f_{c k} b_{f}} \\ & x_{s}=\frac{0.87 \times 415 \times 1570.79}{0.36 \times 20 \times 1200} \end{aligned}$ $\mathrm{Xu}=65.64 \mathrm{~mm}$ Step2 - To find $\mathrm{X}_{\text {umax }}$? $\mathrm{X}_{\text {umax }}=0.479 \mathrm{X} \mathrm{d}$ $=0.479 \text { X } 500$ $X_{\text {umax }}=239.5 \mathrm{~mm}$ As, Xu < Xumax, so, beam is under reinforced.	22^{2}	16

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 3	b) c) Ans	Step 3- to find $\mathbf{M u =}$? $\begin{aligned} \mathrm{Mu} & =\mathrm{Tu} \times \mathrm{Zu} \\ & =0.87 \times \text { fy } \times \text { Ast }(\mathrm{d}-0.42 \mathrm{Xu}) \\ & =0.87 \times 415 \times 1570.79(500-0.42 \times 65.64) \\ & =567.13 \times 10^{3}(472.44) \\ & =267.93 \times 10^{6} \mathrm{~N}-\mathrm{mm} \\ \mathbf{M u} & =\mathbf{2 6 7 . 0 9 3} \mathbf{K N}-m \end{aligned}$ Find developement length of 20 mm diameter bar in tension and compression. Assume M20 concrete and Fe 500 grade steel. Use $\mathrm{Z}_{\mathrm{dd}}=1.2 \mathrm{~N} / \mathrm{mm}^{2}$ Given data $-\phi=20 \mathrm{~mm}$ $\begin{aligned} & \text { fck }=20 \mathrm{~N} / \mathrm{mm}^{2} \\ & \text { fy }=500 \mathrm{~N} / \mathrm{mm}^{2} \end{aligned}$ Bond stress $=Z_{b d}=\tau_{\mathrm{bd}}=1.2 \mathrm{~N} / \mathrm{mm}^{2}$ To find L_{d} for 20 mm dia. bar in tension and compression. a) Development length for bar in tension $L_{d}=\frac{0.87 f_{y} \phi}{4 T_{b d}}$ For Fe 500 steel value of $\tau_{\text {bd }}$ shall be increased by 60%. $\begin{aligned} \tau_{\mathrm{bd}} & =1.2 \times 1.6=1.92 \mathrm{~N} / \mathrm{mm}^{2} \\ L_{d} & =\frac{0.87 \times 500 \times 20}{4 \times 1.92} \\ \mathrm{~L}_{\mathrm{d}} & =1132.81 \mathrm{~mm} \end{aligned}$ b) Development length for bar in compression For bar in compression, the value of bond stress for bar in tension shall be increased by 25% $\begin{aligned} \tau_{\mathrm{bd}} & =1.6 \times 1.2 \\ & =2.4 \mathrm{~N} / \mathrm{mm}^{2} \\ L_{d} & =\frac{0.87 \times 500 \times 20}{4 \times 2.4} \\ & =906.25 \mathrm{~mm} \end{aligned}$	2	$4{ }^{4}$

Subject \& Code: Design of RCC Structures (17604)
Page No. 13 /26

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 3	d) Ans e) Ans.	State I.S. specification for minimum shear reinforcement minimum shear reinforcement in form of stirrup shall be provided such that, $\mathrm{A}_{\text {sv }} /\left(\mathrm{b} \times \mathrm{S}_{\mathrm{v}}\right) \geq 0.4 / 0.87 \mathrm{f}_{\mathrm{y}}$ Where, $\mathrm{A}_{\mathrm{sv}}=$ total cross section area of stirrups legs effective in shear $\mathrm{S}_{\mathrm{v}}=$ stirrups spacing along the length of the member $\mathrm{b}=$ breadth of beam or web of flanged beam $F_{y}=$ characteristic strength of stirrup reinforcement in $\mathrm{N} / \mathrm{mm}^{2}$ which shall not be taken greater than $415 \mathrm{~N} / \mathrm{mm}^{2}$. Designa R.C column to carry an axial working load 400 kN .The effective length of column is 2.5 m . check the column for min eccentricity. Use M20 and Fe 415 grades of concrete and steel. (Note: answer may vary according to shape of column assumed) Given data- $\mathrm{P}=400 \mathbf{k N}$ $\begin{gathered} \mathrm{L}_{\text {eff. }}=2.5 \mathrm{~m}=2500 \mathrm{~mm} \\ \mathrm{~F}_{\mathrm{ck}}=20 \mathrm{~N} / \mathrm{mm}^{2} \\ \mathrm{~F}_{\mathrm{y}}=415 \mathrm{~N} / \mathrm{mm}^{2} \end{gathered}$ Step 1- To find factored load $\begin{aligned} \mathrm{P}_{\mathrm{u}} & =1.5 \mathrm{P} \\ & =1.5 \mathrm{X} 400 \\ & =600 \mathbf{k N} \end{aligned}$ Step 2- Assume 1% of steel in column Area of steel, $\mathrm{A}_{\mathrm{sc}}=0.01 \mathrm{Ag}$ Area of concrete $\mathrm{A}_{\mathrm{c}}=\mathrm{Ag}$ - Asc $\mathrm{A}_{\mathrm{c}}=0.99 \mathrm{Ag}$ Step3- To find $\mathbf{A g}$ $\begin{aligned} & \mathrm{Pu}=(0.4 \text { fck } \times \mathrm{Ac})+(0.67 \text { fy x Asc }) \\ & 600 \times 10^{3}=(0.4 \times 20 \times 0.99 \mathrm{Ag})+(0.67 \times 415 \times 0.01 \mathrm{Ag}) \\ & \mathrm{Ag}=56072.14 \mathrm{~mm}^{2} \\ & \mathrm{Ag}=56.07 \times 10^{3} \mathrm{~mm}^{2} \end{aligned}$ Assuming square shape, Each side $=\sqrt{ } 56.07 \times 10^{3}$ $=236.79 \mathrm{~m} \approx 240 \mathrm{~mm}$	2	4

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 3	e)	Step 4: Check for minimum eccentricity $\mathrm{e}_{\min }=\mathrm{L} / 500+\mathrm{D} / 30$ OR 20 mm whichever is greater $=2500 / 500+240 / 30$ $\mathrm{e}_{\min }=13 \mathrm{~mm}$ OR 20 mm whichever is greater $\mathrm{e}_{\mathrm{min}}=20 \mathrm{~mm}$ $\mathrm{e}_{\text {min }}<0.05 \mathrm{D}$ $0.05 \mathrm{D}=0.05 \times 240=12 \mathrm{~mm}$ But, $\mathrm{e}_{\text {min }}$ is more than 0.05 D So.check for minimum eccentricity is not satisfy. So, increase the dimension say 320 mm X 320 mm Now, $\mathrm{e}_{\text {min }}=(2500 / 500+320 / 30)$ $\mathrm{e}_{\min }=15.67 \mathrm{mmm}$ and $0.05 \mathrm{D}=0.05 \times 320$ $\begin{array}{r} \mathrm{D}=16 \mathrm{~mm} \\ \mathrm{e}_{\mathrm{min},}<0.05 \mathrm{D} \end{array}$ $15.67 \mathrm{~mm}<16 \mathrm{~mm} . \ldots$. ok for minimum eccentricity. Revised size of column $=320 \mathrm{~mm} \times 320 \mathrm{~mm}$ $\begin{aligned} \text { Asc } & =0.01 \mathrm{Ag} \\ & =0.01 \mathrm{X} \mathrm{320} \mathrm{X} \mathrm{320} \\ \text { Asc } & =1024 \mathrm{~mm}^{2} \end{aligned}$ Provide 4 bars of $20 \mathrm{~mm} \phi$ bar. Step 5= Lateral ties Diameter of ties $=1 / 4 \mathrm{X}$ diameter of longitudinal steel bar $\begin{aligned} & =1 / 4 \times 20 \\ & =5 \mathrm{~mm} \end{aligned}$ But $\phi<6 \mathrm{~mm}$ So, provide 6 mm dia. lateral ties. Pitch should not be grater than i) Least lateral dimensions of column i.e. 320 mm . ii) $16 \times$ dia. of longitudinal steel $=16 \times \phi$ $16 \times 20=320 \mathrm{~mm}$ iii) 300 mm (Select minimum of above values) Therefore, provide lateral ties $6 \mathrm{~mm} \phi$ @ $300 \mathrm{~mm} \mathrm{c} / \mathrm{c}$.	1	4

Que. No.	Sub. Que.	Model Answers	Marks	$\begin{gathered} \hline \text { Total } \\ \text { Marks } \end{gathered}$
Q. 4	a) i) Ans ii) Ans-	Attempt any THREE of the following. Write any four advantages of prestressed concrete . 1. Prestressed member is more durable.Prestressed concrete beams are generally free from cracks as high grade concrete is used. 2. Fatigue strength is considerably higher than that of normal reinforced concrete. 3. Deformations of such structure are significantly smaller than reinforced concrete structure. 4. Prestressed concrete is economical for high spans and heavily loaded structural members. 5. Considerable reduction in dead load of structure. 6. Smaller section can be used with prestressed systems. Larger depths in compression are available in flexural due to pre compression. 7. Prestressed concrete is resilient, deformation due to overloading are recovered. Define limit states and state types of various limit states. Limit state may be defined as ,the acceptable limit for safety and serviceability of structure before failure occurs. Types of limit states- 1. Limit state of collapse a. Flexure b. Shear c. torsion 2. Limit state serviceability a. Deflection b. cracking	1 Mark each (any four) 2 1 1	12

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 4	iii) Ans: iv)	State two situations where doubly reinforced section is preferred. 1) When the singly reinforced beams need considerable depth to resist large bending moment, it becomes necessary to provide doubly reinforced section. 2) When the size of rectangular beam cross-section is limited because of architectural reasons or practical reasons then it becomes necessary. 3) When the sections are subjected to reversal of bending moment. 4) When it is required to reduce the long-term deflection, it becomes necessary to provide doubly reinforced section. 5) When a beam is continuous overall several supports; the beam is subjected to alternate sagging also it becomes necessary to provide doubly reinforced section. Calculate working load carrying capacity of column 230×230 mm . provided with $\mathbf{4}$ bars of $\mathbf{1 6} \mathrm{mm}$ diameter. Use M 20 concrete and Fe 415 steel Ans: Given data : $\begin{aligned} & \text { Size of column }=230 \times 230 \mathrm{~mm} \\ & \begin{aligned} \text { Asc } & =4 \frac{\pi}{4}(16)^{2} \\ & =804.24 \mathrm{~mm}^{2} \\ \text { fck } & =20 \mathrm{~N} / \mathrm{mm}^{2} \\ \text { fy } & =415 \mathrm{~N} / \mathrm{mm}^{2} \end{aligned} \end{aligned}$ To find, working load carrying capacity of column $=\mathrm{P}=$? Step 1: Gross area $=\mathrm{Ag}=230 \times 230$ $=52900 \mathrm{~mm}^{2}$ Step 2 : Area of steel, Asc $=804.24 \mathrm{~mm}^{2}$ Step 3: Area of concrete, $\mathrm{Ac}=\mathrm{Ag}$ - Asc $=52.095 \times 10^{3} \mathrm{~mm}^{2}$ Step 4 : Ultimate load carrying capacity, Pu $\begin{aligned} \mathrm{Pu} & =[0.4 . \text { fck. Ac }]+[0.67 . \text { fy } . \text { Asc }] \\ & =\left[0.4 \times 20 \times 52.095 \times 10^{3}\right]+[0.67 \times 415 \times 804.24] \\ \mathrm{Pu} & =640.38 \times 10^{3} \mathrm{~N}=640.38 \mathrm{kN} \end{aligned}$ (Working load carrying capacity) $\mathrm{P}=\frac{\boldsymbol{P}_{u}}{\gamma_{\mathrm{f}}}$ $\mathrm{P}=\frac{640.38}{1.5}=426.92 k N$	2 Marks each (any two) 1 1 1	$4{ }^{4}$

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 4	b i) Ans:	Attempt any ONE of the following - A doubly reinforced beam $300 \mathrm{~mm} \times 500 \mathrm{~mm}$ effective is reinforced with $1035 \mathrm{~mm}^{2}$ at 25 mm below top edge and $1840 \mathrm{~mm}^{2}$ above bottom edge. Take M 20 concrete and Steel Fe 415. Find moment of resistance $\left(M_{u}\right)$. Use $f_{s c}=355 \mathrm{~N} / \mathrm{mm}^{2}$ and neglect $\sigma_{c c}$ $\begin{aligned} \text { Given data }:-\mathrm{b} & =300 \mathrm{~mm} \\ \mathrm{~d} & =500 \mathrm{~mm} \\ \mathrm{~d} & =25 \mathrm{~mm} \\ \text { Asc } & =1035 \mathrm{~mm}^{2} \\ \text { Ast } & =1840 \mathrm{~mm}^{2} \\ \text { fck } & =20 \mathrm{~N} / \mathrm{mm}^{2} \\ \text { fy } & =415 \mathrm{~N} / \mathrm{mm}^{2} \end{aligned}$ Step 1 - To find $\underline{X_{u}}$ max $\begin{aligned} \mathrm{Xu}_{\max } & =0.479 \mathrm{~d} \ldots \ldots . . \text { for Fe } 415 \\ & =0.479 \times 500=239.5 \mathrm{~mm} \end{aligned}$ Step 2-To find actual Xu , $\begin{aligned} f_{c c} & =\sigma_{c c}=0 \\ \text { Ast }_{2} & =\frac{\left(f_{s c}-f_{c c}\right) A s c}{0.87 f_{Y}} \\ & \begin{aligned} \text { As }_{2} & =\frac{(355-0) 1035}{0.87 \times 415} \\ & =1017.656 \mathrm{~mm}^{2} \end{aligned} \end{aligned}$ $\mathrm{Ast}_{1}=\mathrm{Ast}-\mathrm{Ast}_{2}$ $\begin{aligned} & =1840-1017.656=822.344 \mathrm{~mm}^{2} \\ & \quad x_{u}=\frac{0.87 f_{y} A s t}{0.36 f_{c k} b_{f}} \\ & x_{u}=\frac{0.87 \times 415 \times 822.344}{0.36 \times 20 \times 300}=137.457 \end{aligned}$ $\mathrm{As}, \mathrm{Xu}<$ Xumax \quad section is under- reinforced. Step 3-To find moment of resistance, $\begin{aligned} & M u=0.87 f_{y} \operatorname{Ast}(d-0.42 u)+\left(f_{s c}-f_{c c}\right) \operatorname{Asc}\left(d-d^{\prime}\right) \\ & M u=0.87 \times 415 \times 822.344(500-0.42 \times 137.457)+(355-0) \times 1035(500-25) \\ & M u=305.83 \times 10^{6} \mathrm{Nmm} \\ & M u=305.83 \mathrm{KNm} \end{aligned}$	1 1 1 1 1 1 2	6

\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{aligned}
\& \hline \text { Que. } \\
\& \text { No. } \\
\& \hline
\end{aligned}
\] \& Sub. Que. \& Model Answers \& Marks \& \begin{tabular}{l}
Total \\
Marks
\end{tabular} \\
\hline Q. 4 \& \begin{tabular}{l}
b) \\
ii) \\
Ans.
\end{tabular} \& \begin{tabular}{l}
A beam \(250 \mathrm{~mm} \times 600 \mathrm{~mm}\) effective is subjected to a factored moment of 300 KNm . Assume \(\mathrm{d}^{\prime}=\mathbf{3 0} \mathrm{mm}\) and M15 and Fe 415 ,Find area of compression steel and tension \(f_{s c}=355 \mathrm{~N} / \mathrm{mm}^{2}\) and neglect \(\sigma_{\text {cc }}\) \\
Given data,
\[
\begin{array}{ll}
\mathrm{b}=250 \mathrm{~mm} \& \mathrm{~d}=600 \mathrm{~mm} \\
\mathrm{Mu}=300 \mathrm{KN} \cdot \mathrm{~m} \& \mathrm{~d}=30 \mathrm{~mm} \\
\mathrm{fck}=15 \mathrm{~N} / \mathrm{mm}^{2} \& \mathrm{fy}=415 \mathrm{~N} / \mathrm{mm}^{2} \\
\mathrm{fsc}=355 \mathrm{~N} / \mathrm{mm}^{2} \&
\end{array}
\] \\
To find, Asc \(=\) ? and Ast \(=\) ? \\
Step 1 - To find \(\mathbf{X u}_{\text {max }}\), \\
\(\mathrm{Xu}_{\max }=0.479 \mathrm{~d} \ldots \ldots . .\). for fe 415
\[
=0.479 \times 600
\]
\[
\mathrm{Xu}_{\max }=287.4 \mathrm{~mm}
\]
\[
\begin{aligned}
\& \text { Step 2 - To find } \mathbf{M u} \mathbf{u}_{\text {lim }} \\
\& \mathrm{Mu}_{\text {lim }}=0.138 \mathrm{fck} \mathrm{bd}^{2} \\
\& \mathrm{Mu}_{\text {lim }}=0.138 \times 15 \times 250 \times 600^{2} \text { for fe415 } \\
\& \mathbf{M u}_{\text {lim }}=\mathbf{1 8 6 . 3 \times 1 0 ^ { 6 }} \mathbf{N}-\mathbf{m m}
\end{aligned}
\] \\
Step 3 - find Ast from \(_{1} \mathrm{Pt}_{\text {lim }}\), \\
\(\mathrm{Pt}_{\text {lim }}=0.048 \mathrm{fck}=0.048 \times 15=0.72 \%\) for M15 \& fe415 \\
\(A s t_{1}=\frac{P t_{\text {lim }} b d}{100}\) \\
\(A s t_{1}=\frac{0.72 \times 250 \times 600}{100}\) \\
Ast \(_{1}=\mathbf{1 0 8 0} \mathbf{~ m m}^{2}\)
\[
\begin{aligned}
\text { Step } 4-\mathrm{Mu}_{1} \& =\mathrm{Mu}-\mathrm{Mu}_{\mathrm{lim}} \\
\& =300 \times 10^{6}-186.3 \times 10^{6} \\
\& =113.7 \times 10^{6} \mathrm{~N}-\mathrm{mm}
\end{aligned}
\] \\
Step 5_- To find , Asc = ?
\[
\begin{aligned}
\& \mathrm{Mu}_{1}=\text { Asc }(\mathrm{fsc}-\mathrm{fcc})\left(\mathrm{d}-\mathrm{d}^{1}\right) \\
\& \mathrm{fsc}=3555 \mathrm{~N} / \mathrm{mm}^{2} \ldots \ldots \text { given } \\
\& \sigma_{\mathrm{cc}}=\mathrm{fcc}=\text { should be neglected as per given } \\
\& \sigma_{\mathrm{cc}}=\mathrm{fcc}=0 \\
\& 113.7 \times 10^{6}=\text { Asc }(355-0)(600-30) \\
\& 113.7 \times 10^{6}=202.35 \times 10^{3} \times \text { Asc }
\end{aligned}
\]
\[
A s c=\frac{113.7 \times 10^{6}}{202.35 \times 10^{3}}
\]
\[
\text { Asc }=561.89 \mathrm{~mm}^{2}
\]
\end{tabular} \& 1

1
1
1
1
1 \& 6

\hline
\end{tabular}

			Marks	Total Marks

Que. No.	Sub. Que.	Model Answers	Marks	$\begin{gathered} \hline \text { Total } \\ \text { Marks } \end{gathered}$
Q. 5	c)	Adopt footing of size 2.20 m X 2.20 m Step 3- Upword soil pressure $\mathrm{p}=\mathrm{W}_{\mathrm{u}} /(\mathrm{LXB})=1800 /(2.2 \times 2.2)=371.90 \mathrm{KN} / \mathrm{m}^{2}$ Step 4 - Depth for flexure Let $\mathrm{X}_{1}=\mathrm{Y}_{1}=$ projection beyond column $150.62 \mathrm{KN} / \mathrm{m}$ $\begin{aligned} d_{\text {reqd }} & =\sqrt{M x / q \cdot f c k \cdot b} \\ d_{\text {reqd }} & =\sqrt{\left(150.62 \times 10^{6} / 0.138 \times 15 \times 1000\right)} \\ & =269.74 \mathrm{~mm} \text { say } 270 \mathrm{~mm} . \end{aligned}$ Adopt cover of 80 mm $\mathrm{D}=270+80=350 \mathrm{~mm}$ Step 5 - Using 16 mm diameter Spacing, $\begin{aligned} \mathrm{S}_{\mathrm{x}}=\mathrm{S}_{\mathrm{y}} & =1000 \times \text { Aø/ Ast } \\ & =1000 \mathrm{X}(\pi / 4) \times 16^{2} / 1926 \\ & =104.39 \mathrm{~mm} \text { say } 100 \mathrm{~mm} \mathrm{c} / \mathrm{c} \end{aligned}$ Provide $16 \mathrm{~mm} \emptyset @ 100 \mathrm{~mm} \mathrm{c} / \mathrm{c}$ both way Step 6 - Development length- $\begin{aligned} \mathrm{L}_{\mathrm{d}} & =\left(0.87 \mathrm{f}_{\mathrm{y}} \times \varnothing\right) /\left(4 \tau_{\mathrm{bd}}\right) \\ & =(0.87 \mathrm{X} 415 \mathrm{X} 16) /(4 \times 1.2 \times 1.6) \\ & =752.187 \mathrm{~mm} \text { say } 760 \mathrm{~mm} \end{aligned}$ This length is available from face of column. Provide 350 mm depth near the face of column and reduce depth of footing 150 mm at the edge.	22^{2}	8

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 6	a) Ans: b) Ans:	Attempt any FOUR of the following: Draw stress strain diagram for doubly reinforced section in LSM. State meaning of each term shown in diagram. Where, $\mathrm{b}=$ width of section section $d=$ effective depth of section $\mathrm{x}_{\mathrm{u}}=$ Depth of neutral axis $\mathrm{A}_{\mathrm{st}}=$ area of steel at tension side $\mathrm{A}_{\mathrm{sc}}=$ Area of steel at compression side $\mathrm{C}_{\mathrm{u} 1}=$ Compression force 1 $\mathrm{C}_{\mathrm{u} 2}=$ Compression force 2 $\mathrm{T}=$ tension force $d^{\prime}=$ effective cover to compression reinforcement Calculate effective flange width for a \mathbf{T}-beam for following details: c / c distance between support $=\mathbf{8} \mathbf{~ m}$ Slab thickness $=120 \mathrm{~mm}$ c / c distance between beams 4.2 m width of rib $=300 \mathrm{~mm}$ effective depth $=580 \mathrm{~mm}$ width of support $=400 \mathrm{~mm}$ c/c distance between supports -8 m Slab thickness= 120 mm c / c distance between beams $=4.2 \mathrm{~m}$ width of rib $=300 \mathrm{~mm}$ effective depth $=580 \mathrm{~mm}$ width of support $=400 \mathrm{~mm}$	2	16

Que. No.	$\begin{aligned} & \text { Sub. } \\ & \text { Que. } \end{aligned}$	Model Answers	Marks	Total Marks
Q. 6	Ans.	Explain in detail the concept of under reinforced, over reinforced and balanced section. Draw related diagram. Under reinforced section- When the percentage of steel provided in section is less than pt limit Then section is known as under reinforced section. $\mathrm{Xu}<\mathrm{Xumax}$ The under reinforced section are preferred because the failure takes place by yielding of steel which is gradual type of failure and is proceeded by widening of crack and significant increase in deflection, hence necessary precautions can be taken before collapse take place. Over reinforced section- When the percentage of steel provided in section is more than pt limit. Then section is known as over reinforced section. Xu > Xumax The failure of an over reinforced section takes place by crushing of concrete alone and therefore sudden failure occurs without any signs.Therefore these sections are not allowed as per IS code. Balanced Section- in balanced section $\begin{aligned} & \mathrm{P}_{\mathrm{t}}=\mathrm{P}_{\text {tlim. }} \\ & \mathrm{X}_{\mathrm{u}}=\mathrm{X}_{\mathrm{umax}} \end{aligned}$ When the ratio of steel in concrete in a section in such that maximum strain in steel and maximum strain in concrete reach their maximum value simultaneously, the section is referred to as balanced section or critical section.	1	4

