

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

## WINTER-18 EXAMINATION

#### Model Answer

**Subject Name: Chemical Reaction Engineering** 

Subject Code:

17562

Page **1** of **27** 

#### Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.

2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.

3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.

4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.

5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.

6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.

7) For programming language papers, credit may be given to any other program based on equivalent concept.



MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

## WINTER-18 EXAMINATION

#### **Model Answer**

Subject Name: Chemical Reaction Engineering

Subject Code:

17562

Page **2** of **27** 

| Q   | Sub | Answer                                                                                 | Marks    |
|-----|-----|----------------------------------------------------------------------------------------|----------|
| No. | Q   |                                                                                        |          |
|     | No. |                                                                                        |          |
| 1A  |     | Attempt any THREE                                                                      | 12       |
| 1A  | a   | Factors affecting the rate of a chemical reaction :                                    | 1 mark   |
|     |     | 1. In homogeneous system temperature, pressure and composition are the                 | each for |
|     |     | variables.                                                                             | any four |
|     |     | 2. In heterogeneous system, since more than one phase is involved, material            | factors. |
|     |     | have to move from phase to phase during reaction, hence the rate of mass               |          |
|     |     | transfer is important.                                                                 |          |
|     |     | 3. rate of heat transfer                                                               |          |
|     |     | 4. Catalyst                                                                            |          |
|     |     | 5. Nature of reactants                                                                 |          |
|     |     | 6. Surface area available.                                                             |          |
|     |     | 7. Intensity of light if reaction is light sensitive.                                  |          |
| 1A  | b   | Gibb's free energy:                                                                    |          |
|     |     | Gibb's free energy is the energy actually available to do useful work. It              | 2        |
|     |     | predicts the feasibility and equilibrium conditions for chemical reactions at          |          |
|     |     | constant temperature and pressure.                                                     |          |
|     |     | Feasibility of a chemical reaction from Gibbs free energy change:                      |          |
|     |     | At chemical equilibrium $\Delta G^0 = 0$ . For a chemical reaction at equilibrium at a |          |
|     |     | given temperature & pressure, the free energy must be minimum.                         | 2        |
|     |     | If $\Delta G^0 < 0$ i.e. it is negative, the reaction can take place spontaneously     |          |
|     |     | (reaction is possible under the given set of conditions).For spontaneous               |          |



(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

# WINTER-18 EXAMINATION

## Model Answer

Subject Name: Chemical Reaction Engineering

Subject Code:

17562

Page **3** of **27** 

|    |   | reaction, there should be decrease in Gibb's free energy change.                       |     |
|----|---|----------------------------------------------------------------------------------------|-----|
|    |   | If $\Delta G^0$ is positive ,the reaction cannot take place under the given conditions |     |
| 1A | c | Definition:                                                                            |     |
|    |   | Fractional change in volume $\varepsilon_A$ :                                          |     |
|    |   | It is defined as the change in volume of the system between no conversion              | 1.5 |
|    |   | and complete conversion of reactant A.                                                 |     |
|    |   | Fractional conversion x <sub>A</sub> :                                                 |     |
|    |   | Fractional conversion $x_A$ of reactant A is defined as the fraction of A that is      | 1.5 |
|    |   | converted into product.                                                                |     |
|    |   | Mathematical expression:                                                               |     |
|    |   | $\varepsilon_{\rm A} = \frac{V_{XA=1}-V_{XA=0}}{V_{XA=0}}$                             | 1   |
| 1A | d | Space time:                                                                            |     |
|    |   | It is the time required to process one reactor volume of feed measured at              | 1   |
|    |   | specified condition.                                                                   |     |
|    |   | $\tau = \frac{1}{s} = \frac{C_{A0} v}{F_{A0}}$                                         |     |
|    |   | Unit                                                                                   | 1   |
|    |   | Unit is unit of time ( seconds, minute, etc)                                           | 1   |
|    |   | Space velocity                                                                         |     |
|    |   | It is the number of reactor volume of feed at specified conditions which can           |     |
|    |   | be treated in unit time.                                                               | 1   |
|    |   | $\mathbf{S} = \frac{1}{\tau} = \frac{F_{A0}}{C_{A0V}}$                                 |     |
|    |   | Unit                                                                                   |     |
|    |   | Unit is $time^{-1}$ ( $second^{-1}$ , $minute^{-1}$ etc)                               | 1   |
|    |   |                                                                                        |     |



(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

## WINTER-18 EXAMINATION

#### Model Answer

Subject Name: Chemical Reaction Engineering

Subject Code:

17562

Page **4** of **27** 

| 1B |   | Attempt any ONE                                                                                      | 6 |
|----|---|------------------------------------------------------------------------------------------------------|---|
| 1B | a | Differential method of analysis of data                                                              |   |
|    |   | 1)Assume a mechanism and from it obtain a rate equation of the form                                  |   |
|    |   | $-r_A = \frac{-dC_A}{dt} = kf(c)$                                                                    |   |
|    |   | 2) From experiment obtain concentration-time data and plot them.                                     |   |
|    |   | 3) Draw a smooth curve through this data.                                                            |   |
|    |   | 4) Determine the slope of this curve at suitably selected concentration                              |   |
|    |   | values. These slopes $\left(\frac{-dC_A}{dt}\right)$ are the rates of reaction at these composition. |   |
|    |   | 5) Evaluate $f(c)$ for each composition.                                                             |   |
|    |   | 6) Plot $\frac{-dC_A}{dt}$ vs $f(c)$ for each composition. If we get a straight line through         | 4 |
|    |   | origin; the rate equation is consistent with the data. If not, then another rate                     |   |
|    |   | equation should be tested.                                                                           |   |
|    |   | $C_{A} -R_{A}$ $C_{A};Slope(-d_{CA})$ $C_{A};Slope(-d_{CA})$ $F(c)$                                  |   |
|    |   | Merits (any one):                                                                                    | 1 |
|    |   | 1. It is useful for testing more complicated rate equations.                                         | 1 |
|    |   | 2. It can be used to evolve or develop the rate equation to fit the data                             |   |



(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

### WINTER-18 EXAMINATION

Page 5 of 27

#### Model Answer

Subject Name: Chemical Reaction EngineeringSubject Code:17562

|    |   | Demerits (any one):                                                            | 1  |
|----|---|--------------------------------------------------------------------------------|----|
|    |   | 1. Differential method is not that much easy, is complicated & time            |    |
|    |   | consuming.                                                                     |    |
|    |   | 2. It is used only when more accurate & large amount of data are               |    |
|    |   | available.                                                                     |    |
| 1B | b | Arrhenius equation                                                             |    |
|    |   | The temperature dependency of the reaction rate constant k, is given by        |    |
|    |   | $\mathbf{k} = \mathbf{k}_0 \boldsymbol{e}_{RT}^{-E}$                           |    |
|    |   | Where $k_0$ - frequency factor or pre exponential factor                       | 3  |
|    |   | E - activation energy in J/ mol or cal/ mol                                    |    |
|    |   | R – universal gas constant                                                     |    |
|    |   | T – temperature in Kelvin                                                      |    |
|    |   | $T_1 = 400 \text{ K}$                                                          |    |
|    |   | $T_2 = 500 K$                                                                  |    |
|    |   | $k_2 = 10 k_1$                                                                 |    |
|    |   | From Arrhenius law                                                             |    |
|    |   | $\ln\frac{k_2}{k_1} = \frac{-E}{R} \left(\frac{1}{T_2} - \frac{1}{T_1}\right)$ | 2  |
|    |   | $\ln 10 = (-E / 1.987) * (\frac{1}{500} - \frac{1}{400}) = 2.52 * 10^{-4}E$    | 1  |
|    |   | E = 9150.47 cal                                                                | 1  |
| 2  |   | Attempt any TWO                                                                | 16 |
| 2  | a | Derivation for temperature dependency of rate constant from collision          |    |
|    |   | theory                                                                         |    |
|    |   | The collision rate of molecules in a gas is found from the kinetic theory of   |    |
|    |   | gases.                                                                         |    |
|    |   | For the bimolecular collision of like molecules A,                             |    |



(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

### WINTER-18 EXAMINATION

#### **Model Answer**

Subject Name: Chemical Reaction Engineering

Subject Code:

17562

Page **6** of **27** 

| $Z_{AA} = \sigma_A^2 n_A^2 \sqrt{\frac{4\pi kT}{M_A}}$                                                                                                                            |   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| $= \sigma_{\rm A}^2 \frac{N^2}{10^6} \sqrt{\frac{4\pi kT}{M_A}} C_{\rm A}^2 \dots (i)$                                                                                            |   |
| = number of collisions of A with A / sec.cm <sup><math>3</math></sup>                                                                                                             |   |
| Where $\sigma$ = diameter of molecule, cm                                                                                                                                         |   |
| M = (molecular weight) / N, mass of a molecule, gm                                                                                                                                |   |
| N = Avogadro's number                                                                                                                                                             |   |
| $C_A$ = concentration of A, mol / liter                                                                                                                                           |   |
| $n_A = NC_A / 10^3$ , number of molecules of A / cm <sup>3</sup>                                                                                                                  |   |
| k = Boltzmann constant                                                                                                                                                            |   |
| For the bimolecular collision of unlike molecules in a mixture of A and B,                                                                                                        |   |
| kinetic theory gives                                                                                                                                                              |   |
| $Z_{AB} = \left\{ \left( \left. \sigma_A + \left. \sigma_B \right) \right. / 2 \right\} \right.^2 n_A n_B \sqrt{8\pi kT \left( \frac{1}{M_A} + \frac{1}{M_B} \right)}$            |   |
| $= \{ (\sigma_{\rm A} + \sigma_{\rm B}) / 2 \}^{2} \frac{N^{2}}{10^{6}} \sqrt{8\pi kT \left(\frac{1}{M_{A}} + \frac{1}{M_{B}}\right)} C_{\rm A} C_{\rm B} \dots \dots \dots (ii)$ | 4 |
| If every collision between reactant molecules results in the transformation                                                                                                       |   |
| of reactants into product, these expressions give the rate of bimolecular                                                                                                         |   |
| reactions. The actual rate is much lower than that predicted and this                                                                                                             |   |
| indicates that only a small fraction of all collisions result in reaction. This                                                                                                   |   |
| suggests that only those collisions that involve energies in excess of a given                                                                                                    |   |
| minimum energy E lead to reaction. From the Maxwell distribution law of                                                                                                           |   |
| molecular energies the fraction of all bimolecular collisions that involves                                                                                                       |   |
| energies in excess of this minimum energy is given approximately by $e^{-E/RT}$                                                                                                   |   |
| where $E >> RT$ .                                                                                                                                                                 |   |



(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

## WINTER-18 EXAMINATION

| ame: | Chemi | ical Reaction Engineering Subject Code:                                                                                                                                             | 17562 |                           |
|------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------------------|
|      |       |                                                                                                                                                                                     |       | Page <b>7</b> of <b>2</b> |
|      |       | Thus the rate of reaction is given by                                                                                                                                               |       |                           |
|      |       | $-\mathbf{r}_{\mathrm{A}} = -\frac{1}{V} \frac{dN_{A}}{dt} = \mathbf{k} \ \mathbf{C}_{\mathrm{A}} \mathbf{C}_{\mathrm{B}} \ \dots \dots (\mathrm{i}\mathrm{i}\mathrm{i}\mathrm{i})$ |       | 2                         |
|      |       | = ( collision rate, mole / liter.sec)* (fraction of                                                                                                                                 |       |                           |
|      |       | collision involving energies in excess of E )                                                                                                                                       |       |                           |
|      |       | $= Z_{AB} \frac{10^3}{N} e^{-E/RT}$                                                                                                                                                 |       |                           |
|      |       | $= \{ (\sigma_{A} + \sigma_{B}) / 2 \}^{\frac{2}{N}} \sqrt{8\pi kT \left(\frac{1}{M_{A}} + \frac{1}{M_{B}}\right)} e^{-E/RT} C_{A} C_{B} \dots (iv)$                                |       | 2                         |
|      |       | Comparing iii and iv, $\mathbf{k} \propto T^{1/2} e^{-\mathbf{E} / \mathbf{R}T}$                                                                                                    |       | 2                         |
| 2    | b     | Data:                                                                                                                                                                               |       |                           |
|      |       | Reactor is Mixed flow reactor                                                                                                                                                       |       |                           |
|      |       | $X_{\rm A} = 0.5$                                                                                                                                                                   |       |                           |
|      |       | Reaction $A \rightarrow R$                                                                                                                                                          |       |                           |
|      |       | $-r_A = \mathbf{k} \ C_A^2$                                                                                                                                                         |       |                           |
|      |       | The performance equation of MFR is                                                                                                                                                  |       |                           |
|      |       | $\frac{V}{F_{A0}} = \frac{X_A}{(-r_A)}$                                                                                                                                             |       | 2                         |
|      |       | $\frac{V}{F_{A0}} = \frac{X_A}{(\mathrm{k}\ C_A^2)}$                                                                                                                                |       |                           |
|      |       | $C_A = C_{A0}(1 - X_A)$                                                                                                                                                             |       |                           |
|      |       | $\frac{V}{F_{A0}} = \frac{X_A}{(k C_A^2)} = \frac{.(0.5)}{k C_{A0}^2 (1 - 0.5)^2}$                                                                                                  |       |                           |
|      |       | $\frac{V}{F_{A0}} = -\frac{2}{k.c_{A0}^2}$                                                                                                                                          |       |                           |



(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

## WINTER-18 EXAMINATION

| Subject Name: ( | Chemi | ical Reaction Engineering Subject Code:                                                                                                                                                                                                                                                                       | 17562                      |
|-----------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
|                 |       |                                                                                                                                                                                                                                                                                                               | Page <b>8</b> of <b>27</b> |
|                 |       | $K = \frac{2.F_{A0}}{VC_{A0}^2}  \dots 1$                                                                                                                                                                                                                                                                     | 2                          |
|                 |       | Now the original reactor is replaced by PFR of equal size                                                                                                                                                                                                                                                     |                            |
|                 |       | $\frac{V}{F_{A0}} = \int_{0}^{X_{A}} \frac{dX_{A}}{-r_{A}}$<br>But $-r_{A} = k C_{A}^{2}$ and $C_{A} = C_{A0}(1 - X_{A})$<br>$\frac{V}{T_{A}} = \int_{0}^{X_{A}} \frac{dX_{A}}{x_{A}} = \int_{0}^{X_{A}} \frac{dX_{A}}{x_{A}^{2}} \frac{dX_{A}}{x_{A}^{2}} \frac{dX_{A}}{x_{A}^{2}} \frac{dX_{A}}{x_{A}^{2}}$ |                            |
|                 |       | $F_{A0} = \frac{1}{KC_{A0}^2} * \frac{X_A}{1 - X_A}$                                                                                                                                                                                                                                                          |                            |
|                 |       | Substituting the value of K from equation 1                                                                                                                                                                                                                                                                   | 2                          |
|                 |       | $\frac{V}{F_{A0}} = \frac{VC_{A0}^2 X_A}{2F_{A0}C_{A0}^2(1 - X_A)}$ $2 = \frac{X_A}{(1 - X_A)}$ $2 - 2X_A = X_A;  2 = 3 X_A;$                                                                                                                                                                                 | 2                          |
|                 |       | $X_A = 2 / 3 = 0.667$<br>Conversion in PFR will be 66.7%                                                                                                                                                                                                                                                      |                            |
| 2               | c     | Methods of catalyst Preparation:                                                                                                                                                                                                                                                                              | 2 marks                    |
|                 |       | 1. Precipitation                                                                                                                                                                                                                                                                                              | each for                   |
|                 |       | 2. Gel formation                                                                                                                                                                                                                                                                                              | explaining                 |
|                 |       | 3. Simple mixing                                                                                                                                                                                                                                                                                              | the                        |
|                 |       | 4. Impregnation method                                                                                                                                                                                                                                                                                        | methods                    |
|                 |       | <b>1.Precipitation method</b> :<br>This method produces catalyst in porous form. It consists of adding a                                                                                                                                                                                                      | with eg                    |
|                 |       | precipitating agent to the solution of the desired component. The                                                                                                                                                                                                                                             |                            |
|                 |       | precipitation is followed by washing, drying, calcinations & activation(or                                                                                                                                                                                                                                    |                            |



(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

## WINTER-18 EXAMINATION

| Page<br>pretreatment)<br>Eg. Magnesium oxide catalyst is prepared by this method. It is prepared by | 9 of <b>27</b> |
|-----------------------------------------------------------------------------------------------------|----------------|
| pretreatment)Eg. Magnesium oxide catalyst is prepared by this method. It is prepared by             |                |
| Eg. Magnesium oxide catalyst is prepared by this method. It is prepared by                          |                |
|                                                                                                     |                |
| precipitating MgCO <sub>3</sub> from magnesium nitrate solution by adding sodium                    |                |
| carbonate.The magnesium carbonate precipitate is washed, dried & calcined                           |                |
| to obtain magnesium oxide.                                                                          |                |
| <b>2.Gel formation:</b> If the precipitate formed in the above method is colloidal,                 |                |
| then gel is formed.                                                                                 |                |
| Eg Catalyst containing silica and alumina are suitable for gel formation                            |                |
| because their precipitates are colloidal in nature.                                                 |                |
| 3. Simple mixing: Some porous materials are obtained by mixing the                                  |                |
| components with water, milling to the desired grain size, drying and                                |                |
| calcining. Such materials may be ground and sieved to obtain the particle                           |                |
| size.                                                                                               |                |
| Eg Mixed Mg and Ca oxide catalyst is prepared by this method                                        |                |
| 4. Impregnation method:                                                                             |                |
| This method is used for the preparation of expensive catalysts like platinum,                       |                |
| palladium, silver etc. A catalyst carrier provides a means of obtaining a                           |                |
| large surface area with a small amount of catalyst. The steps in the                                |                |
| preparation of a catalyst impregnated on a carrier include evacuating the                           |                |
| carrier, contacting the carrier with the impregnating solution, removing the                        |                |
| excess solution, drying, calcining and activation.                                                  |                |
| Eg Nickel catalyst is prepared on alumina by soaking the evacuated alumina                          |                |
| particles with nickel nitrate solution, draining to remove the excess solution                      |                |
| and heating in an oven to decompose the nitrate to nickel oxide. The final                          |                |
| step is activation in which nickel oxide is reduced to nickel.                                      |                |



(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

#### WINTER-18 EXAMINATION

#### **Model Answer**

Subject Name: Chemical Reaction Engineering

Subject Code:

17562

Page **10** of **27** 

|   |   | Any other appropriate preparation method should also be given due                                                    |    |
|---|---|----------------------------------------------------------------------------------------------------------------------|----|
|   |   | consideration                                                                                                        |    |
| 3 |   | Attempt any FOUR                                                                                                     | 16 |
| 3 | a | Number of moles $(n) = 2$                                                                                            |    |
|   |   | $V_1 = 801$                                                                                                          |    |
|   |   | $V_2 = 140 l$                                                                                                        |    |
|   |   | $T_1 = 50^0 C = 323 K$                                                                                               |    |
|   |   | $T_2 = 200^0 C = 473 K$                                                                                              |    |
|   |   | $C_v = 7.8 \text{ cal} / \text{mol K}$                                                                               |    |
|   |   | $\Delta \mathbf{S} = \mathbf{n} \mathbf{C}_{\mathbf{V}} \ln \frac{T_2}{T} + \mathbf{n} \mathbf{R} \ln \frac{V_2}{V}$ | 2  |
|   |   | $\Delta S = 2 \times 7.8 \times \ln (473/323) + 2 \times 1.987 \times \ln (140/80) = 8.1744 \text{ cal / K}$         | 2  |
| 3 | b | Integrated form of rate expression for zero order reaction                                                           |    |
|   |   | Rate equation is $-r_A = -\frac{dC_A}{dt} = C_{A0}\frac{d_{xA}}{dt} = k$                                             |    |
|   |   | In terms of concentration                                                                                            |    |
|   |   | $-\frac{dC_A}{dt} = \mathbf{k}$                                                                                      |    |
|   |   | Integrating between appropriate limits                                                                               | 2  |
|   |   | $\int_{CA_0}^{CA} - \mathrm{dCA} = \mathrm{k} \int_0^t dt$                                                           |    |
|   |   | $C_{A0} - C_A = kt$ for $t < \frac{c_{A0}}{k}$                                                                       |    |
|   |   |                                                                                                                      |    |
|   |   |                                                                                                                      |    |
|   |   |                                                                                                                      |    |
|   |   |                                                                                                                      |    |
|   |   |                                                                                                                      |    |
|   |   |                                                                                                                      |    |



MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

## WINTER-18 EXAMINATION





(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

## WINTER-18 EXAMINATION

| Subject Name: Ch | nemical Reac                                               | tion Engineering                                                                                                       | Subject Code:                                                    | 17562 |                             |
|------------------|------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-------|-----------------------------|
|                  |                                                            |                                                                                                                        |                                                                  |       | Page <b>12</b> of <b>27</b> |
|                  | At equil $(r \mu_R + s)$                                   | ibrium there is no Gibb's<br>$\mu_S$ ) -(a $\mu_A$ + b $\mu_B$ ) = 0                                                   | free energy change, $\Delta G = 0$                               |       | 2                           |
|                  | $(r \mu_R + s)$<br>But $\mu_i =$<br>Therefore              | $\mu_{S} = (a \ \mu_{A} + b \ \mu_{B})$<br>= $\mu_{i}^{0} + RT \ lnp_{i}$<br>re $r(\ \mu_{B}^{0} + RT \ lnp_{B}) + si$ | $(\mu_{s}^{0} + RT \ln p_{s}) = a(\mu_{A}^{0} + RT \ln p_{A}) +$ |       |                             |
|                  |                                                            | rs                                                                                                                     | $b(\mu_B^0 + RT \ln p_B)$                                        |       |                             |
|                  | RT ln $\left(\frac{p}{p}\right)$                           | $\frac{\frac{R}{a}}{\frac{p_S}{p_B}} = (a \ \mu_A^0 + b \ \mu_B^0)$                                                    | $-(r \mu_{\rm R}^0 + s \mu_{\rm S}^0)$                           |       |                             |
|                  |                                                            | $= - (\Delta G \text{ product} -$ $= - \Delta G \text{ reaction.}$                                                     | · $\Delta$ G reactant)                                           |       | 2                           |
|                  | $\ln \left(\frac{p_R^r}{p_A^a} \frac{p_S^s}{p_B^b}\right)$ | $-\Delta G reaction = \frac{-\Delta G reaction}{RT}$ Bu                                                                | t $\left(\frac{p_R^r p_S^s}{p_A^a p_B^b}\right) = \mathbf{K}_p$  |       |                             |
| 2                | Therefor                                                   | $re \Delta G = - RT \ln K_p$                                                                                           |                                                                  |       | - montr                     |
| 5                | points):                                                   | rison between elementar                                                                                                | y and non elementary reaction ( 4                                |       | each                        |
|                  | Sr no.                                                     | <b>Elementary reactions</b>                                                                                            | Non-elementary reactions                                         |       |                             |
|                  | 1                                                          | These are single steps reactions.                                                                                      | These are multistep reactions.                                   |       |                             |
|                  | 2                                                          | Simple in nature                                                                                                       | Complex in nature                                                |       |                             |
|                  | 3                                                          | Order of each reactant<br>is identical with<br>stoichiometric<br>coefficient of that<br>species                        | Not identical.                                                   |       |                             |
|                  | 4                                                          | For these reactions, order must be an                                                                                  | Order may be an integer or fraction value.                       | al    |                             |



(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

#### WINTER-18 EXAMINATION

#### **Model Answer**

Subject Name: Chemical Reaction Engineering

Subject Code:

17562

Page **13** of **27** 

|    |   | integer                                                                   |    |  |  |  |  |
|----|---|---------------------------------------------------------------------------|----|--|--|--|--|
|    |   |                                                                           |    |  |  |  |  |
|    |   | 5 If $2A \rightarrow R$ , the rate law For nonelementary reaction         |    |  |  |  |  |
|    |   | is $2B \rightarrow S$ , the rate law may be                               |    |  |  |  |  |
|    |   |                                                                           |    |  |  |  |  |
|    |   | $-r_{\rm A} = kC_{\rm A}^2 \qquad -r_{\rm B} = kC_{\rm B}^{\alpha}$       |    |  |  |  |  |
|    |   | Where $\propto \neq 2$                                                    |    |  |  |  |  |
|    |   | $6 \qquad Ex C_2H_5OH + \qquad Ex. H_2 + Br_2 \rightarrow 2HBr$           |    |  |  |  |  |
|    |   | $CH_3COOH \rightarrow$                                                    |    |  |  |  |  |
|    |   | $CH_3COOC_2H_5 + H_2O$                                                    |    |  |  |  |  |
| 3  | e | Steps involved in solid catalyzed gas phase reactions                     | 4  |  |  |  |  |
|    |   | 1. Diffusion of the reactant from bulk fluid phase to external surface of |    |  |  |  |  |
|    |   | catalyst                                                                  |    |  |  |  |  |
|    |   | 2. Diffusion of reactant tfrom pour mouth into catalyst pores             |    |  |  |  |  |
|    |   | 3. Adsorption of reactant into catalyst surface                           |    |  |  |  |  |
|    |   | 4. Chemical reaction to form product                                      |    |  |  |  |  |
|    |   | 5. Deadsorption of product                                                |    |  |  |  |  |
|    |   | 6. Diffusion of deadsorped product from interior of catalyst pores to     |    |  |  |  |  |
|    |   | surface                                                                   |    |  |  |  |  |
|    |   | 7. Diffusion of product to the bulk of fluid phase                        |    |  |  |  |  |
| 4A |   | Attempt any THREE                                                         | 12 |  |  |  |  |
| 4A | a | Derivation of integrated rate expression for irreversible second order    |    |  |  |  |  |
|    |   | reaction $2A \rightarrow Products:$                                       |    |  |  |  |  |
|    |   | $2A \rightarrow \text{product}$                                           |    |  |  |  |  |
|    |   | In terms of concentration                                                 |    |  |  |  |  |
|    |   |                                                                           |    |  |  |  |  |



(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

#### WINTER-18 EXAMINATION





(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

### WINTER-18 EXAMINATION

#### Model Answer

Subject Name: Chemical Reaction Engineering

Subject Code:

17562

Page **15** of **27** 

| Fluidized bed Fixed bed                                                            | each |
|------------------------------------------------------------------------------------|------|
| (i) Recovery Catalyst loss is there, Catalyst loss is not                          |      |
| units so recovery units are there, so recovery                                     |      |
| required units are not required                                                    |      |
| (ii) Catalyst Easily done Difficult                                                |      |
| regeneration                                                                       |      |
| (iii) Can maintain Difficult to maintain                                           |      |
| isothermal isothermal conditions                                                   |      |
| condition:                                                                         |      |
| (iv) size of Can use small size of Cannot use very small                           |      |
| catalyst catalyst size of catalyst                                                 |      |
| because of plugging                                                                |      |
| and high pressure                                                                  |      |
| drop                                                                               |      |
|                                                                                    |      |
| 4A c <b>Half life period</b> : Half life period is the time required to reduce the | 1    |
| concentration of the reactant to half of its original value                        | 1    |
| Mathematical expression:                                                           |      |
| For first order chemical reaction( $n=1$ ) the half life is independent of initial |      |
| concentration of the reactant & is calculated as                                   |      |
| 0.693                                                                              | 1    |
| $t_{1/2} = \frac{1}{k}$                                                            | -    |
| k=rate constant of chemical reaction                                               |      |
| For chemical reaction with $n \neq 1$ , half life is                               |      |



(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

#### WINTER-18 EXAMINATION

#### Model Answer

**Subject Name: Chemical Reaction Engineering** Subject Code: 17562 Page 16 of 27  $t_{1/2} = \left(\frac{2^{n-1}-1}{k'(n-1)}\right) C_{A_0}^{1-n}$ 1 Where t 1/2=half life period  $C_A o =$  Initial concentration of reactant A 1 n= Order of reaction, k' = Rate constant of reaction. Relation between K<sub>p</sub> and K<sub>v</sub>(derivation) 4Ad Consider the reaction  $aA + bB \rightarrow rR + sS$  $K_{p} = (p_{R}^{r} \cdot p_{S}^{s}) / (p_{A}^{a} \cdot p_{B}^{b})$ But  $p_A = P \cdot y_A$  Where  $p_A$  - partial pressure of A, P- total pressure 2  $y_A$  – mole fraction of A.  $K_{p} = (p_{R}^{r} \cdot p_{S}^{s}) / (p_{A}^{a} \cdot p_{B}^{b})$  $= \{(Py_R)^r . (Py_S)^s\} / \{(Py_A)^a . (Py_B)^b\}$  $= (y_{R}^{r} \cdot y_{S}^{s}) / (y_{A}^{a} \cdot y_{B}^{b}) \cdot P^{(r+s+...)-(a+b+...))}$  $K_p = K_y \cdot P^{\Delta n}$  where  $K_y = (y_R^r \cdot y_S^s) / (y_A^a \cdot y_B^b)$  and 2  $\Delta n = (r + s + ...) - (a + b + ...)$  is the difference in the number of moles of product and reactant 4BAttempt any ONE 6 4B1.5 marks **Types of intermediates in non- chain reaction:** a 1. Free radicals. Free atoms or larger fragments of stable molecules for each which contain one or more unpaired electrons are called free radicals. The point unpaired electron is designated by a dot in the chemical symbol for the substance. Eg. CH<sub>3</sub>  $C_2 \dot{H}_5$ 2. Ions and polar substances. Electrically charged atoms, molecules or fragments of molecules such as Na<sup>+</sup>, OH<sup>-</sup> , NH4<sup>+</sup>are called ions. They



(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

## WINTER-18 EXAMINATION

| Name: Cho | emical Reaction Engineering               | Subject Code:                         | 17562   |                     |
|-----------|-------------------------------------------|---------------------------------------|---------|---------------------|
|           |                                           |                                       |         | Page <b>17</b> of 2 |
|           | may act as intermediates in reac          | tion.                                 |         |                     |
|           | 3. Molecules: Consider the cons           | ecutive reaction                      |         |                     |
|           | $A \rightarrow R \rightarrow S$           |                                       |         |                     |
|           | This is a multiple reaction. If the       | product R is highly reactive, its     |         |                     |
|           | concentration in the reaction mix         | ture can become too small to measu    | ire. In |                     |
|           | such a situation, R is not observe        | ed and can be considered to be a reac | tive    |                     |
|           | intermediate.                             |                                       |         |                     |
|           | 4. Transition complexes. The coll         | lision between reactant molecules re  | sult in |                     |
|           | a wide distribution of energies an        | nong the individual molecules. This   | can     |                     |
|           | result in strained bonds, unstable        | form of molecules or unstable assoc   | iation  |                     |
|           | of molecules which can then either        | er decompose to give products or by   | further |                     |
|           | collision return to molecules in th       | he normal state. Such unstable forms  | are     |                     |
|           | called transition complexes.              |                                       |         |                     |
| 4B t      | <b>Relation between conversion an</b>     | nd equilibrium constant for second    | l order |                     |
|           | reversible reaction                       |                                       |         |                     |
|           | Reaction is $A + B \leftrightarrow R + S$ |                                       |         |                     |
|           | Let 1 mole of A and 1 mo                  | ble of B is present initially.        |         |                     |
|           | $x_A$ mole of A reacts                    | s at equilibrium                      |         |                     |
|           | P is the total pressure                   | е.                                    |         |                     |
|           | When 1 mole of A reacts, 1mole            | e of B also reacts. Then 1mole of R   | and 1   | 2                   |
|           | mole of S is produced                     |                                       |         |                     |
|           |                                           |                                       |         |                     |
|           |                                           |                                       |         |                     |
|           |                                           |                                       |         |                     |
|           |                                           |                                       |         |                     |
|           |                                           |                                       |         |                     |



(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

### WINTER-18 EXAMINATION

#### **Model Answer**

Subject Name: Chemical Reaction Engineering

Subject Code:

17562

Page **18** of **27** 

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | А                                                                     | В                            | R                    | S                    | Total |    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------|----------------------|----------------------|-------|----|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                       |                              |                      |                      | moles |    |
| Moles present<br>initially                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                     | 1                            | -                    | -                    |       |    |
| Moles reacted /<br>produced at<br>equilibrium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | X <sub>A</sub>                                                        | x <sub>A</sub>               | X <sub>A</sub>       | x <sub>A</sub>       |       | 2  |
| Moles present at equilibrium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1- x <sub>A</sub>                                                     | 1- x <sub>A</sub>            | x <sub>A</sub>       | X <sub>A</sub>       | 2     |    |
| Mole fraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1- x <sub>A</sub> /2                                                  | $1 - x_A/2$                  | x <sub>A</sub> / 2   | x <sub>A</sub> / 2   |       |    |
| Partial pressure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | P(1- x <sub>A</sub> )<br>/2                                           | P(1- x <sub>A</sub> )<br>/ 2 | P x <sub>A</sub> / 2 | P x <sub>A</sub> / 2 |       |    |
| $K_{p} = \frac{P\left(\frac{X_{A}}{2}\right)F}{P\left(\frac{1-X_{A}}{2}\right)F}$ $K_{p} (1-x_{A})^{2} = x_{A}^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\frac{p\left(\frac{X_A}{2}\right)}{p\left(\frac{1-X_A}{2}\right)} =$ | $\frac{x_A^2}{(1-x_A)^2}$    |                      |                      |       |    |
| $K_p (1-2x_A + x_A^2) =$<br>$K_p - 2 K_p x_A + K_p$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $= x_A^2$ $x_A^2 = x_A^2$                                             |                              |                      |                      |       |    |
| $(K_{p} - 1) x_{A}^{2} - 2 K_{p}$ $x_{A} = \frac{2K_{P} \pm \sqrt{(4K_{P} + $ | $x_{A} + K_{p} = 0$ $b^{2} - 4(K_{P} - 1)$ $k_{P} - 1)$               | ) <i>K</i> <sub>P</sub> )    |                      |                      |       | 2  |
| Attempt any TWO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                       |                              |                      |                      |       | 16 |



(ISO/IEC - 27001 - 2005 Certified)

#### WINTER-18 EXAMINATION

#### Model Answer

**Subject Name: Chemical Reaction Engineering** 

Subject Code:

17562

Page **19** of **27** 

Given: 5 а  $C_{A0} = 1 \text{ mol/l}$  $X_A = 0.80$  when t = 8 min.  $X_A = 0.90$  when t = 18 min Let us first assume reaction is of zero order. The integrated equation for zero order reaction in terms of fractional conversion is  $C_{A0}X_A = kt$ Case 1) Where  $X_A = 0.80$  when t = 8 min. 2 1\*0.8 = k\*8 $k = 0.1 \text{ (min)}^{-1} \text{(mol / l)}$ Case 2) Where  $X_A = 0.90$  when t = 18 min. 1\*0.9 = k\*18 $k = 0.05(min)^{-1}(mol / 1)$ Since k values are not same, the reaction is not of zero order Let us now assume reaction is of First order. The integrated equation for first order reaction in terms of fractional conversion is  $\ln\left[\frac{1}{1-X_A}\right] = kt$ Case 1) Where  $X_A = 0.80$  when t = 8 min.  $\ln \left| \frac{1}{1-0.8} \right| = k^* 8$  $k = 0.201 \text{ (min)}^{-1}$ Case 2) Where  $X_A = 0.90$  when t = 80 min. 2  $\ln \left[ \frac{1}{1-0.9} \right] = k*18$  $k = 0.1279 \text{ (min)}^{-1}$ Since k values are not same, the reaction is not of first order.



MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

## WINTER-18 EXAMINATION

## Model Answer

Subject Name: Chemical Reaction Engineering

Subject Code:

17562

Page **20** of **27** 

|   |   | Let us now assume it is of Second order. The integrated equation for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|---|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|   |   | second order reaction with respect to A in terms of fractional conversion is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |
|   |   | $\frac{X_A}{1-X_A} = \mathbf{k} C_{AO} \mathbf{t}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |
|   |   | Case 1) Where $X_A = 0.80$ when $t = 8$ min. & C $_{A0} = 1$ mol/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2 |
|   |   | $\frac{0.8}{1-0.8} = k * 1 * 8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |
|   |   | $k = 0.5 \text{ (mol/l)}^{-1} \text{ (min)}^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |
|   |   | Case 2) Where $X_A = 0.90$ when $t = 18$ min. & C $_{A0} = 1$ mol/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |
|   |   | $\frac{0.9}{1-0.9} = k * 1 * 18$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |
|   |   | $k = 0.5 ( mol/l)^{-1} (min)^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |
|   |   | since k values are same, reaction is of second order.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2 |
|   |   | Rate of the reaction is $-r_A = kC_A^2 = 0.5C_A^2$ (mol/l minute)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |
| 5 | b | Derivation of performance equation / design equation of mixed flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |
|   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |
|   |   | reactor:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |
|   |   | <b>reactor</b> :<br>In MFR, the composition of the reactants is uniform throughout the reactor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |
|   |   | <b>reactor</b> :<br>In MFR, the composition of the reactants is uniform throughout the reactor.<br>Taking material balance of reactant A over the reactor as a whole,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
|   |   | <pre>reactor:<br/>In MFR, the composition of the reactants is uniform throughout the reactor.<br/>Taking material balance of reactant A over the reactor as a whole,<br/>Rate of input of A to the reactor = Rate of output of A from the reactor</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |
|   |   | <pre>reactor:<br/>In MFR, the composition of the reactants is uniform throughout the reactor.<br/>Taking material balance of reactant A over the reactor as a whole,<br/>Rate of input of A to the reactor = Rate of output of A from the reactor<br/>+ Rate of disappearance of A due to chemical reaction + Rate of</pre>                                                                                                                                                                                                                                                                                                                                                                                                         |   |
|   |   | <pre>reactor:<br/>In MFR, the composition of the reactants is uniform throughout the reactor.<br/>Taking material balance of reactant A over the reactor as a whole,<br/>Rate of input of A to the reactor = Rate of output of A from the reactor<br/>+ Rate of disappearance of A due to chemical reaction + Rate of<br/>accumulation of A within the reactor.</pre>                                                                                                                                                                                                                                                                                                                                                               |   |
|   |   | <ul> <li>reactor:</li> <li>In MFR, the composition of the reactants is uniform throughout the reactor.</li> <li>Taking material balance of reactant A over the reactor as a whole,</li> <li>Rate of input of A to the reactor = Rate of output of A from the reactor</li> <li>+ Rate of disappearance of A due to chemical reaction + Rate of</li> <li>accumulation of A within the reactor.</li> <li>For mixed flow reactor at steady state the last term is zero. Therefore the</li> </ul>                                                                                                                                                                                                                                        |   |
|   |   | <ul> <li>reactor:</li> <li>In MFR, the composition of the reactants is uniform throughout the reactor.</li> <li>Taking material balance of reactant A over the reactor as a whole,</li> <li>Rate of input of A to the reactor = Rate of output of A from the reactor</li> <li>+ Rate of disappearance of A due to chemical reaction + Rate of</li> <li>accumulation of A within the reactor.</li> <li>For mixed flow reactor at steady state the last term is zero. Therefore the</li> <li>material balance equation becomes</li> </ul>                                                                                                                                                                                             |   |
|   |   | <ul> <li>reactor:</li> <li>In MFR, the composition of the reactants is uniform throughout the reactor.</li> <li>Taking material balance of reactant A over the reactor as a whole,</li> <li>Rate of input of A to the reactor = Rate of output of A from the reactor</li> <li>+ Rate of disappearance of A due to chemical reaction + Rate of</li> <li>accumulation of A within the reactor.</li> <li>For mixed flow reactor at steady state the last term is zero. Therefore the</li> <li>material balance equation becomes</li> <li>Rate of input of A to the reactor = Rate of output of A from the reactor +</li> </ul>                                                                                                         |   |
|   |   | <ul> <li>reactor:</li> <li>In MFR, the composition of the reactants is uniform throughout the reactor.</li> <li>Taking material balance of reactant A over the reactor as a whole,</li> <li>Rate of input of A to the reactor = Rate of output of A from the reactor</li> <li>+ Rate of disappearance of A due to chemical reaction + Rate of</li> <li>accumulation of A within the reactor.</li> <li>For mixed flow reactor at steady state the last term is zero. Therefore the</li> <li>material balance equation becomes</li> <li>Rate of input of A to the reactor = Rate of output of A from the reactor +</li> <li>Rate of disappearance of A due to chemical reaction</li></ul>                                             |   |
|   |   | reactor:In MFR, the composition of the reactants is uniform throughout the reactor.Taking material balance of reactant A over the reactor as a whole,Rate of input of A to the reactor $=$ Rate of output of A from the reactor+ Rate of disappearance of A due to chemical reaction + Rate ofaccumulation of A within the reactor.For mixed flow reactor at steady state the last term is zero. Therefore thematerial balance equation becomesRate of input of A to the reactor $=$ Rate of output of A from the reactor +Rate of input of A to the reactor $=$ Rate of output of A from the reactor +Rate of disappearance of A due to chemical reaction                                                                          |   |
|   |   | reactor:In MFR, the composition of the reactants is uniform throughout the reactor.Taking material balance of reactant A over the reactor as a whole,Rate of input of A to the reactor $=$ Rate of output of A from the reactor+ Rate of disappearance of A due to chemical reaction + Rate ofaccumulation of A within the reactor.For mixed flow reactor at steady state the last term is zero. Therefore thematerial balance equation becomesRate of input of A to the reactor $=$ Rate of output of A from the reactor +Rate of input of A to the reactor $=$ Rate of output of A from the reactor +Rate of disappearance of A due to chemical reaction(i)Let, $F_{A0} =$ Molar feed rate to the reactor $V =$ Volume of reactor |   |



(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

## WINTER-18 EXAMINATION

| ct Name: Chemical Reaction Engineering                                                                                  | Subject Code:                             | 17562 |                            |
|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-------|----------------------------|
|                                                                                                                         |                                           |       | Page <b>21</b> of <b>2</b> |
| $C_{A0} = Molar concentration$                                                                                          | of A in stream entering the reactor       |       |                            |
| ( moles/volume)                                                                                                         |                                           |       |                            |
| $v_0 =$ Volumetric flow rate                                                                                            | e(volume/time)                            |       |                            |
| X <sub>A</sub> = Fractional conversio                                                                                   | n of A                                    |       |                            |
| $\mathbf{F}_{\mathbf{A}0} = \mathbf{C}_{\mathbf{A}0.} \mathbf{v}_{0}$                                                   |                                           |       |                            |
| Input of A to the reactor in mole                                                                                       | $es / time = F_{A0.}$                     |       | 2                          |
| Disappearance of A due chemica                                                                                          | al reaction in moles / time = $(-r_A)$ .V |       |                            |
| Output of A from the reactor                                                                                            | in moles / time $= F_A$                   |       |                            |
| Substituting in (i)                                                                                                     |                                           |       |                            |
| $F_{A0} = F_{A+}(-r_A) .V$                                                                                              | (ii)                                      |       |                            |
| But $F_A = F_{A0}(1 - X_A) = F_{A0} - F_{A0}$                                                                           | F <sub>A0.</sub> X <sub>A</sub>           |       |                            |
| Equation (ii) becomes $F_{A0} = F_{A0}$                                                                                 | $_{0}$ - $F_{A0.} X_{A} + (-r_{A}) .V$    |       |                            |
| $F_{A0.} X_A = (-r_A) . V$                                                                                              |                                           |       |                            |
| Rearranging, we get                                                                                                     |                                           |       |                            |
| $\frac{V}{F_{A0}} = \frac{X_A}{-r_A} = \frac{\tau}{C_{A0}}$                                                             |                                           |       | 2                          |
| For constant volume system                                                                                              |                                           |       |                            |
| $\frac{V}{F_{A0}} = \frac{X_A}{-r_A} = \frac{\tau}{C_{A0}} = \frac{C_{A0-CA}}{CA0(-r_A)}$                               |                                           |       |                            |
| Where $X_A$ and $(-r_A)$ are evaluate                                                                                   | ed at the exit conditions, which are same | ie as |                            |
| conditions prevailing within reac                                                                                       | tor (ex .composition,temperature)         |       |                            |
| For first order reaction                                                                                                |                                           |       |                            |
| $-\mathbf{r}_{A} = \mathbf{k}\mathbf{C}_{A} = \mathbf{k}\mathbf{C}_{Ao} = \mathbf{k}\mathbf{C}_{Ao} (1-\mathbf{x}_{A})$ |                                           |       | 2                          |
| $\frac{V}{F_{A0}} = \frac{\tau}{C_{A0}} = \frac{X_A}{KC_{A0}(1-X_A)} = \frac{C_{A0-CA}}{CA0(kC_A)}$                     | $\left(\frac{A}{A}\right)$                |       | Z                          |
| The graphical representation o                                                                                          | f the performance equation in term        | s of  |                            |



(ISO/IEC - 27001 - 2005 Certified)

### WINTER-18 EXAMINATION





MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

## WINTER-18 EXAMINATION

| Name: | Chemical Reaction Engineering Subject Code: 1756                                                                                               | 52 |                             |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------|----|-----------------------------|
|       |                                                                                                                                                |    | Page <b>23</b> of <b>27</b> |
|       | these reactors approaches unity. The size ratio increases very rapidly at                                                                      |    |                             |
|       | high values of conversion.                                                                                                                     |    |                             |
|       | 3) Design of reactor is affected by density variation during reaction.                                                                         |    |                             |
|       | Expansion (density decrease) during reaction increases the volume ratio,                                                                       |    |                             |
|       | but decreases, the effectiveness of CSTR with respect to PFR. Density                                                                          |    |                             |
|       | increase during reaction has the opposite effect.                                                                                              |    |                             |
|       | 4) The performance equation for MFR is                                                                                                         |    |                             |
|       | $\tau_m \cdot C_{A0}^{n-1} = \left(\frac{C_{A0}V}{F_{A0}}\right)_m = \frac{X_A (1 + \varepsilon_A \cdot X_A)^n}{k(1 - X_A)^n}$                 |    |                             |
|       | For PFR                                                                                                                                        |    |                             |
|       | $\tau_p. C_{A0}^{n-1} = \left(\frac{C_{A0}^n V}{F_{A0}}\right)_p = \frac{1}{K} \int_0^{XA} \frac{(1 + \varepsilon A X A)^n}{(1 - X_A)^n} dX_A$ |    |                             |
|       | 5) For a given space time, conversion in a PFR is higher than in MFR.                                                                          |    |                             |
|       | 6) It is possible to operate MFR under isothermal conditions whereas with                                                                      |    |                             |
|       | PFR it is difficult.                                                                                                                           |    |                             |
|       | 7) MFR has long residence time compared to PFR.                                                                                                |    |                             |
|       | 8) MFR is not suitable for high pressure reactions whereas PFR is                                                                              |    |                             |
|       | suitable.                                                                                                                                      |    |                             |
| 6     | Attempt any FOUR                                                                                                                               |    | 16                          |
| 6     | a Method of feeding when PFR's are connected in parallel                                                                                       |    |                             |
|       | Consider PFRs are connected as shown in the figure.                                                                                            |    |                             |
|       |                                                                                                                                                |    |                             |
|       |                                                                                                                                                |    |                             |
|       |                                                                                                                                                |    |                             |
|       |                                                                                                                                                |    |                             |
|       |                                                                                                                                                |    |                             |



(ISO/IEC - 27001 - 2005 Certified)

#### WINTER-18 EXAMINATION Model Answer





(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

### WINTER-18 EXAMINATION

#### Model Answer

**Subject Name: Chemical Reaction Engineering** Subject Code: 17562 Page 25 of 27 Temperature increase is not desirable for exothermic reaction. 4 6 b Van't Hoff equation is  $\frac{dlnK}{dT} = \frac{\Delta H}{RT^2}$ For exothermic reaction,  $\Delta H$  is negative. When temperature is increased, overall equation is negative, which means ln K is dT is positive; the negative. When ln K is negative, the value of K is low which denotes lower concentration of products. Therefore temperature increase is not desirable for exothermic reaction. Difference between order and molecularity of reaction.( 4 points) 1 mark 6 с Sr.No. Molecularity Order of reaction each Order of reaction is the sum 1 Molecularity is the number of molecules, atoms or ions in a of exponents of the chemical reaction. concentration terms involved in the rate equation. 2 Molecularity always have an Order of reaction can have a integer value 1,2,3... fractional value. Shows the kinetic 3 Shows the elementary mechanism or separate steps of a complicated dependence of the rate on the concentration of the process reactants. 4 Depending upon the value of Depending upon the value molecularity, reaction can be of order, the reactions are unimolecular, bimolecular etc. termed as first order, second



(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

### WINTER-18 EXAMINATION





MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-18 EXAMINATION