

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-17 EXAMINATION

Model Answer

Subject Title: Chemical Reaction Engineering

Subject code

17562

page **1** of **27**

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.

2) The model answer and the answer written by candidate may vary but the examiner may try

to assess the understanding level of the candidate.

3) The language errors such as grammatical, spelling errors should not be given more

Importance (Not applicable for subject English and Communication Skills.

4) While assessing figures, examiner may give credit for principal components indicated in the

figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.

5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.

6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.

7) For programming language papers, credit may be given to any other program based on equivalent concept.

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-17 EXAMINATION

Model Answer

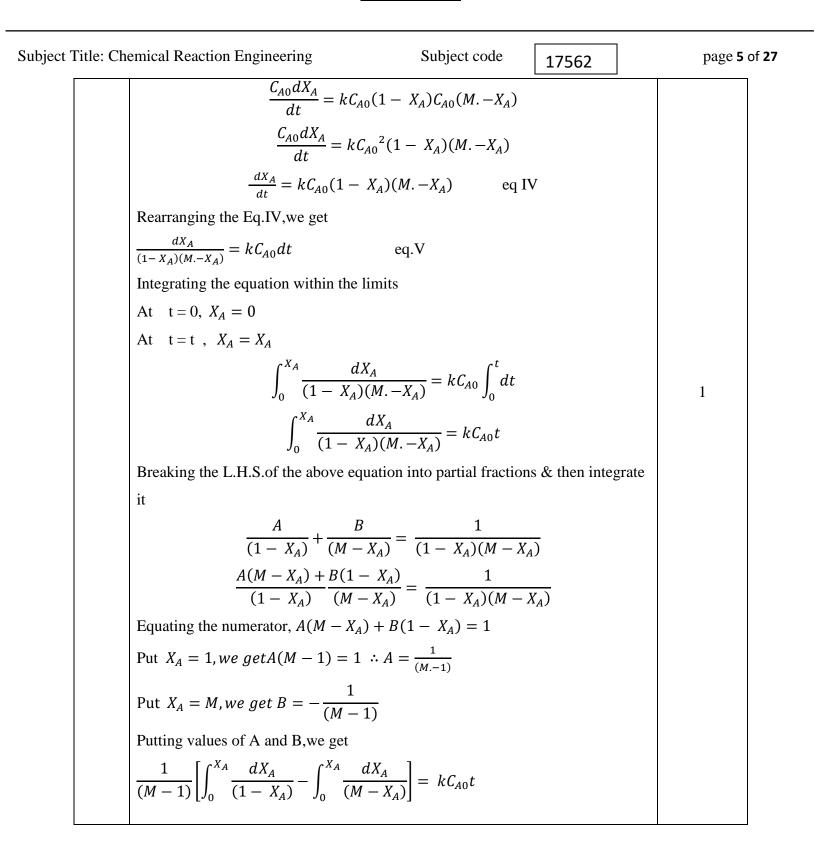
Subject Title: Chemical Reaction Engineering

Subject code

17562

page 2 of 27

Q No.		Answe	r	Marks
1A	Attempt a	ny THREE of the following		12
1A-a	Comparis	on of collision and transition th	neories:	1 mark
	Sr.No.	Transition State Theory	Collision Theory	each
	1	Prediction of reaction rates	Prediction of reaction rates is	
		is more accurate with experiment.	less accurate with experiment.	
	2	The theory is based on statistical mechanics	The theory is based on kinetic theory of gases.	
	3	The theory views that the formation of activated	The theory views that the decomposition of activated	
		complex is very rapid&	complex is very rapid & formation of activated	
		decomposition of activated complex is slow.	complex is slow.	
	4	Temperature Dependency is $k \propto T \cdot e^{-E/_{RT}}$	Temperature Dependency is $k \propto T^{1/2} \cdot e^{-E/_{RT}}$	
1A-b	Definition		and in the system by virtue of	the 1
		on and motion of the molecules	ored in the system by virtue of constituting the system.	
	Chemical	Potential: It is defined as the cha	ange in free energy of a substance	
	when one i	mole of it is added to such a large	e quantity of the system that there	is 1
	no apprecia	able change in overall composition	on of the system at constant	
	temperatur	e & pressure.		


itle: Ch	emical Reaction EngineeringSubject code17562	page 3 c
	Entropy : Entropy(s) is the measure of the total disorder or randomness of the	1
	system or it is a measure of the unavailable energy to perform useful work.	
	Fugacity: It is a kind of fictitious pressure used for real gases.ie it is a measure	1
	of pressure for real gases.	
1A-c	Autocatalytic reactions: A reaction in which one of the products of the	2
	reaction acts as a catalyst is known as an autocatalytic reactions.	
	Eg1. $CH_3COOC_2H_5 + H_2O \rightarrow CH_3COOH + C_2H_5OH$	2
	Here CH ₃ COOH acts as catalyst	
	OR	
	2. Oxidation of a solution of oxalic acid by an acidified solution of KMnO ₄ .	
	$2MnO_4^- + 6H^+ + 5(COOH)_2 \rightarrow 2Mn^{2+} + 10CO_2 + 8H_2O$	
	Oxalic acid	
	The reaction is very slow at room temp .The reaction is catalyzed by	
	manganese ions(Mn^{2+}) that are not present at start of reaction, hence the rate of	
	reaction is extremely slowOnce reaction starts, Mn^{2+} ions are formed and the	
	rate of reaction speeds up.	
1A-d	Space time:	1
	It is the time required to process one reactor volume of feed measured at	
	specified condition.	
	Equation and unit	1
	$\tau = \frac{1}{s} = \frac{C_{A0V}}{F_{A0}}$	
	Unit is unit of time (seconds, minute, etc)	
	Space velocity	
	It is the number of reactor volume of feed at specified conditions which can be	
	treated in unit time.	1
	Equation and unit	

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Subject '	Title: Ch	emical Reaction Engineering Subject code 17562	page 4 o	of 27
		$S = \frac{1}{\tau} = \frac{F_{A0}}{C_{A0V}}$ Unit is time ⁻¹ (second ⁻¹ , minute ⁻¹ etc)	1	
	1B	Attempt any ONE of the following	6	
	1B-a	Integrated rate equation for irreversible Second order reaction A+B \rightarrow		
		Products		
		Reaction is $A+B \rightarrow$ Products		
		The rate law for the reaction can be written as		
		$-r_A = -\frac{dC_A}{dt} = kC_A.C_B$ eq.I		
		Let C_{A0} and C_{B0} be initial concentrations of A and B respectively.		
		Let $M = \frac{C_{B0}}{C_{A0}}$		
		Let C_A and C_B be the concentrations of A and B at any time t.		
		Let X_A and X_B be the fractional conversions of A and B respectively at time t.		
		From the reaction stoichiometry, the amount of A and B reacted at any time t		
		are equal & given by		
		$X_A. C_{A0} = X_B. C_{B0} \text{eq.II}$		
		$C_A = C_{A0}(1 - X_A)$ and $C_B = C_{B0}(1 - X_B)$		
		Therefore on differentiating $dC_A = -C_{A0}dX_A$		
		By putting values of C_A , C_B and $-dC_A$ Eq.I becomes		
		$-r_{A} = \frac{C_{A0}dX_{A}}{dt} = kC_{A0}(1 - X_{A}).C_{B0}(1 - X_{B})$	2	
		$-r_A = \frac{C_{A0}dX_A}{dt} = kC_{A0}(1 - X_A)(C_{B0} - C_{B0}, X_B)$ eq III		
		As X_A . $C_{A0} = X_B$. C_{B0} and $C_{B0} = M$. C_{A0} , eq III becomes		
		$\frac{C_{A0}dX_A}{dt} = kC_{A0}(1 - X_A)(C_{B0} - C_{A0}X_A)$		
		$\frac{C_{A0}dX_A}{dt} = kC_{A0}(1 - X_A)(M.C_{A0} - C_{A0}.X_A)$		

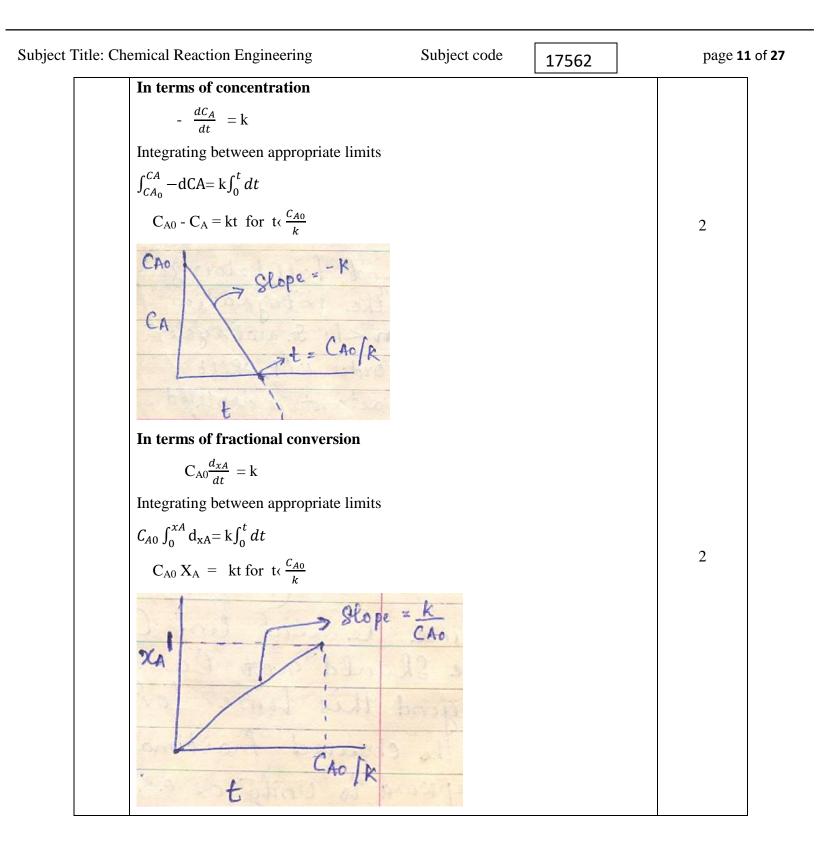
Subject Title: Chemical	Reaction Engineering	Subject code	17562	page 6 of 27
$\frac{1}{(M-)}$	$\frac{1}{1}\left[-ln(1-X_A)+ln\frac{(M-X_A)}{M}\right]$	$= kC_{A0}t$		
$ln\left[\frac{(N)}{M}\right]$	$\left[\frac{(-X_A)}{(1-X_A)}\right] = C_{A0}(M-1)kt$	Eq.VI		2
EqVI	is the desired integrated rate e	quation of irreversi	ible second	order
reaction	on with $C_{A0} \neq C_{B0}$ in terms of con	version.		
	$(V_{X} - I)_{U}$ Slope = C _{Ao}	(M – 1) k		1
1B-b k=1.3	x 10 ⁻³ S ⁻¹			
T = 27	$^{0}C = 300 \text{ K}$			
$\mathbf{E} = 12$	28170 cal / mol			
$\mathbf{k} = \mathbf{k}$	e_{RT}^{-E}			2
ln k =	$\ln k_0 - (E / RT)$			
	$= \ln k + (E / RT) = \ln(1.3 \times 10^{-3}) + (1.3 \times 1$	(128170 /(1.987 x 30	0)) = 208.36	2
$\mathbf{k}_0 = 3$.11 x 10 ⁹⁰ S ⁻¹			2
2 Atten	pt any TWO of the following			16
2-a Differ	ence between order and molecula		-	2marks
Sr.N		Order of read		each
1	Molecularity is the number of		ction is the su	m
	molecules, atoms or ions in a	of exponents		
	chemical reaction.	concentration		
		involved in t	he rate	

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Subject Title: Cl	nemical Re	eaction Engineering Su	bject code 17562	page 7 of 27
			equation.	
	2	Molecularity always have an integer value 1,2,3	Order of reaction can have a fractional value.	
	3	Shows the elementary mechanism or separate steps of a complicated process	Shows the kinetic dependence of the rate on the concentration of the reactants.	
	4	Depending upon the value of molecularity, reaction can be unimolecular ,bimolecular etc.	Depending upon the value of order, the reactions are termed as first order, second order reactions	
	5	Molecularity is a theoretical quantity	Order of reaction is entirely an experimental value.	
2-b	Perforn kinetics		patch reactor with first order	

Subject Title: Chemical Reaction Engineer	ring Subject code	17562	page 8 of 27
Writing the material bal	ance for any component A.		
Rate of reactant A in =	Rate of reactant A out + Rate of loss	of reactant A	due
to chemical reaction + R	Rate of accumulation of reactant A wi	thin the react	or.
In a batch reactor, no flu	id enters or leaves the reaction mixtu	re during the	
reaction. Therefore Rate	e of reactant A in = Rate of reactant A	out = 0	
Material balance equation	on then becomes		2
Rate of loss of reactant	t A due to chemical reaction = - Rate of	of accumulation	on of
reactant A within the rea	actor(1)		
Rate of loss of reactant	t A due to chemical reaction = $-r_A V$		
Rate of accumulation of	of reactant A within the reactor $= \frac{dN_A}{dt}$	$= - N_{A0} \frac{dX_A}{dt}$	
Substituting in equation	n (1)		
$-\mathbf{r}_{\mathrm{A}}\mathbf{V} = \mathbf{N}_{\mathrm{A}0}\frac{dX_{A}}{dt}$			
Rearranging and integra	ting		
$\int_0^t dt = N_{A0} \int_0^{x_A} \frac{dx_A}{V(-r_A)}$ $t = N_{A0} \int_0^{x_A} \frac{dx_A}{V(-r_A)}$			
$\mathbf{t} = \mathbf{N}_{\mathrm{A0}} \int_0^{x_A} \frac{dx_A}{V \left(-r_A\right)}$			3
For constant volume sys	stem, the equation becomes		
$t = \frac{N_{A0}}{V} \int_0^{x_A} \frac{dx_A}{(-r_A)} = C_{A0} \int_0^{x_A} \frac{dx_A}{(-r_A)} = C_{A$	$\int_{0}^{x_{A}} \frac{dx_{A}}{(-r_{A})} = - \int_{CA0}^{C_{A}} \frac{dC_{A}}{(-r_{A})}$		
For first order reaction -	$\mathbf{r}_{\mathrm{A}} = \mathbf{k}\mathbf{C}_{\mathrm{A}} = \mathbf{k}\mathbf{C}_{\mathrm{Ao}} (1 - \mathbf{X}_{\mathrm{A}})$		
$t = C_{A0} \int_0^{x_A} \frac{dx_A}{kCA0 (1-x_A)^2} dx_A$	$\frac{1}{-XA} = - \int_{CA0}^{C_A} \frac{dC_A}{kCA}$		2
$t = \frac{-\ln(1 - XA)}{k} = -$	$-\frac{\ln \frac{C_A}{C_{A0}}}{k}$		
Graphical representation	ion for constant volume batch react	or	

Subject Title: Che	mical Reaction Engineering Subject code 17562	page 9 of 27
	Area t -RA CAO Anea t XA CAO CA	1
2-c	Methods of catalyst Preparation:	2 marks
	1. Precipitation	each for
	2. Gel formation	explaining
	3. Simple mixing	the
	4. Impregnation method	methods
	1.Precipitation method : This method produces catalyst in porous form.It consists of adding a	with eg
	precipitating agent to the solution of the desired component. The precipitation	
	is followed by washing, drying, calcinations & activation(or pretreatment)	
	Eg. Magnesium oxide catalyst is prepared by this method. It is prepared by	
	precipitating MgCO ₃ from magnesium nitrate solution by adding sodium	
	carbonate. The magnesium carbonate precipitate is washed, dried & calcined to	
	obtain magnesium oxide.	
	2.Gel formation: If the precipitate formed in the above method is colloidal,	
	then gel is formed.	
	Eg Catalyst containing silica and alumina are suitable for gel formation because	
	their precipitates are colloidal in nature.	
	3. Simple mixing: Some porous materials are obtained by mixing the	
	components with water, milling to the desired grain size, drying and calcining.	
	Such materials may be ground and sieved to obtain the particle size.	


WINTER-17 EXAMINATION <u>Model Answer</u>

	nemical Reaction Engineering Subject code 17562	page
	Eg Mixed Mg and Ca oxide catalyst is prepared by this method	
	4. Impregnation method:	
	This method is used for the preparation of expensive catalysts like platinum,	
	palladium, silver etc. A catalyst carrier provides a means of obtaining a large	
	surface area with a small amount of catalyst. The steps in the preparation of a	
	catalyst impregnated on a carrier include evacuating the carrier, contacting the	
	carrier with the impregnating solution, removing the excess solution, drying,	
	calcining and activation.	
	Eg Nickel catalyst is prepared on alumina by soaking the evacuated alumina	
	particles with nickel nitrate solution, draining to remove the excess solution and	
	heating in an oven to decompose the nitrate to nickel oxide. The final step is	
	activation in which nickel oxide is reduced to nickel.	
	Any other appropriate preparation method should also be given due	
	consideration	
3	Attempt any FOUR of the following	16
3-a		
	Definition	
	Definition (i) Chemical Potential:	
	(i) Chemical Potential:	2
	(i) Chemical Potential:It is defined as the change in free energy of a substance when one mole of it is	2
	(i) Chemical Potential:It is defined as the change in free energy of a substance when one mole of it is added to such a large quantity of the system that there is no appreciable change	2
	(i) Chemical Potential:It is defined as the change in free energy of a substance when one mole of it is added to such a large quantity of the system that there is no appreciable change in overall composition of the system at constant temperature & pressure.	2
	 (i) Chemical Potential: It is defined as the change in free energy of a substance when one mole of it is added to such a large quantity of the system that there is no appreciable change in overall composition of the system at constant temperature & pressure. (ii) Chemical equilibrium : 	2
	 (i) Chemical Potential: It is defined as the change in free energy of a substance when one mole of it is added to such a large quantity of the system that there is no appreciable change in overall composition of the system at constant temperature & pressure. (ii) Chemical equilibrium : It is the state when the rate of forward reaction is equal to the rate of backward 	
3-b	 (i) Chemical Potential: It is defined as the change in free energy of a substance when one mole of it is added to such a large quantity of the system that there is no appreciable change in overall composition of the system at constant temperature & pressure. (ii) Chemical equilibrium : It is the state when the rate of forward reaction is equal to the rate of backward reaction. At chemical equilibrium, the net change in the concentration of 	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

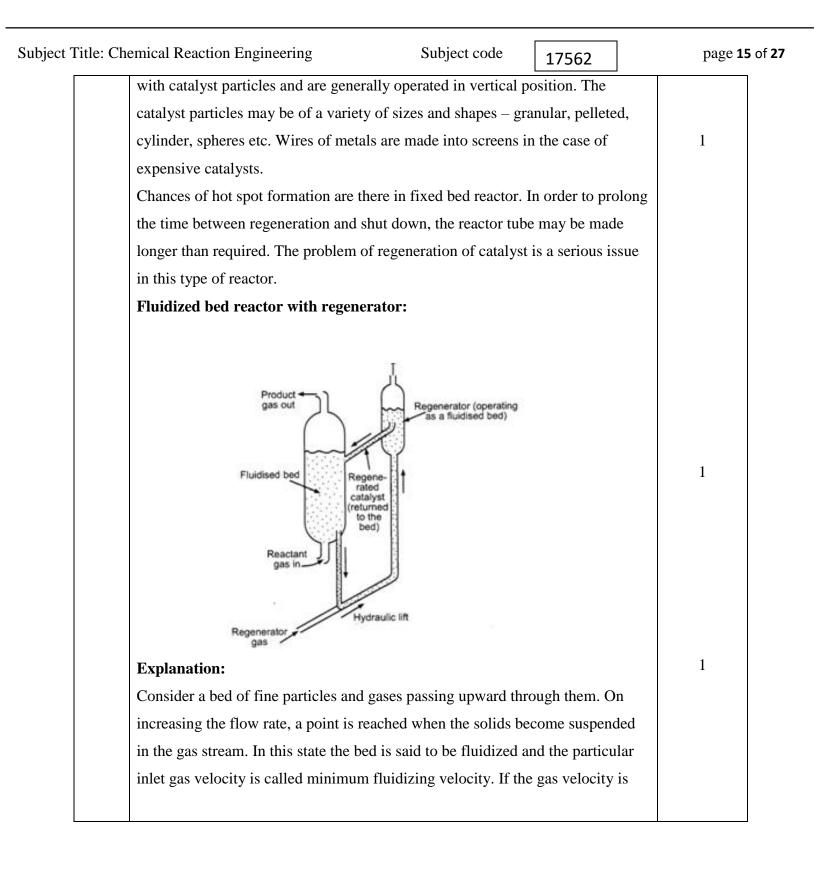
(ISO/IEC - 27001 - 2005 Certified)

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

	hemical Reaction Engineering Subject code 17562	page 12
3-с	Derivation for entropy change of an ideal gas:	
	From first law of thermodynamics, $dU = dQ - dW$	
	$dQ = dU + dW \dots(i)$	
	But $dQ = TdS$ (ii)	
	dW = PdV(iii)	
	For ideal gas $dU = n C_v dT$ (iv)	2
	Substituting ii,iii and iv in i	
	$TdS = n C_v dT + PdV$	
	$dS = \frac{n Cv dT}{T} + \frac{P dV}{T}$	
	For ideal gas $P = \frac{nRT}{V}$	
	Substituting dS = $\frac{n CvdT}{T} + \frac{nRdV}{V}$	
	Integrating between limits	
	$\int_{S_1}^{S_2} dS = nC_v \int_{T_1}^{T_2} \frac{dT}{T} + nR \int_{V_1}^{V_2} \frac{dV}{V}$	
	$\Delta \mathbf{S} = \mathbf{n} \mathbf{C}_{\mathbf{v}} \ln \frac{T_2}{T_1} + \mathbf{n} \mathbf{R} \ln \frac{V_2}{V_1} \dots \dots (\mathbf{v})$	2
	For constant volume process , $v_1 = v_2$ and the equation becomes	
	$\Delta \mathbf{S} = \mathbf{n} \mathbf{C}_{\mathbf{v}} \ln \frac{T_2}{T_1}$	
3-d	Factors affecting the rate of a chemical reaction (4 factors) :	
	1. In homogeneous system temperature, pressure and composition are the variables.	e 1 mark each
	2. In heterogeneous system, since more than one phase is involved, mate	rial
	have to move from phase to phase during reaction, hence the rate of mas	s
	transfer is important.	
	3. rate of heat transfer	
	4. Catalyst	
	5. Nature of reactants	

	6. Surface area available. Subject code 17562	
	7. Intensity of light if reaction is light sensitive.	
3-е	Catalyst regeneration.	
50	Catalyst gets poisoned due to the presence of impurities present either in the	
	reactant stream or produced as a result of chemical reaction. Regeneration is the	1
	methods adopted for regaining the activity of poisoned catalysts.	
	Methods for regeneration of catalyst (any three)	
	 Volatile poison may be removed from the catalyst surface by passing current of pure gas or liquid or by raising the temperature. 	1 mark each
	2. Coke deposited on the catalyst is removed by roasting the coke by atmospheric oxygen at 550-700 0 c.	
	3. Metallic catalysts like nickel are regenerated by washing with alcohol or	
	acid and other solvents. Irreversibly poisoned catalyst like platinum on	
	silica support, silver and vanadium pentoxide are regenerated by	
	extracting platinum, silver and vanadium from them using acids and	
	alkalies.	
	4. Magnetic methods are also used for regenerating the activity of catalyst.	
	5. Metals concentrate on the surface of cracking catalyst and they can be	
	removed by the abrasion of surface bed.	
	6. Alumino silicate cracking catalyst gets poisoned due to the deposition of	
	metal on them. The poison is converted to a form which is highly	
	volatile or readily soluble in water and the catalyst is treated with	
	aqueous solution of organic acid, alkalies and gases.	
4A	Attempt any THREE of the following	12
4-A-a	Graph of concentration term with time	
	(i) For first order reaction	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)


(ISO/IEC - 27001 - 2005 Certified)

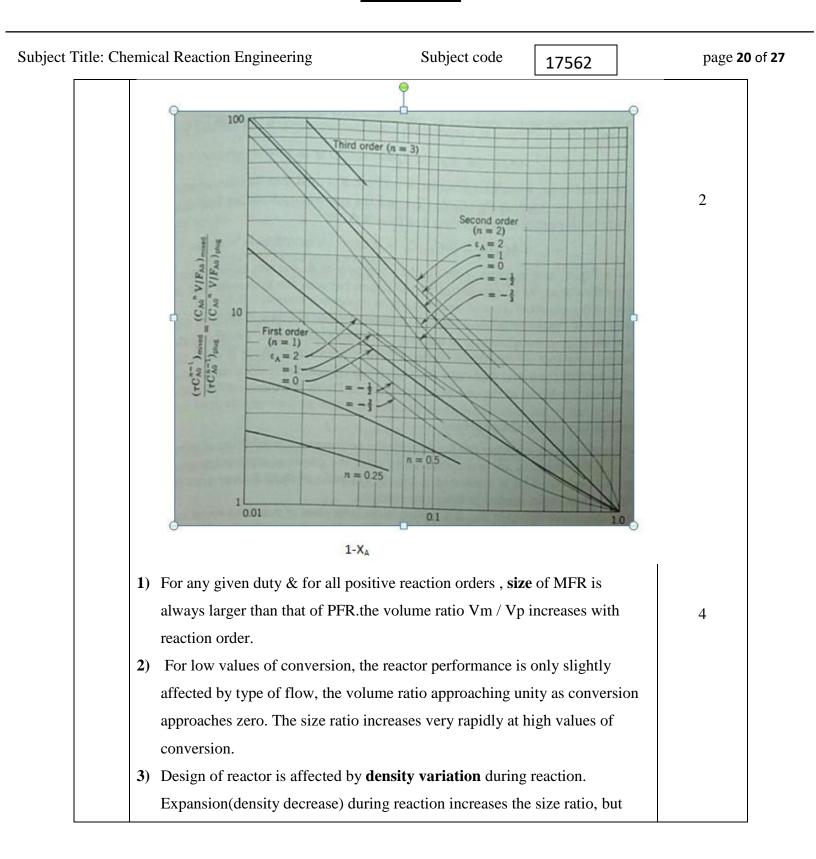
WINTER-17 EXAMINATION

Model Answer

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Subject Title:	Chemical Reaction Engineering Subject code 17	7562	page 16 of 27
		much larger than this minimum, the bed takes the appearance of a	violently	
4A-cRelation between $C_A & C_{A0}$ X_A or consider the reaction $A \to R$ Let N_{A0} represent the number of moles of A present initially (t = 0). N_A represent the number of moles of A present at time t. X_A be the fractional conversion of A at time tMoles of A reacted at any time t = $N_{A0} \cdot N_{A0} X_A$ Divide throughout by V, $(N_A / V) = (N_{A0} - N_{A0} X_A)$ But concentration = moles /1 $C_A = C_{A0} (1 - X_A)$ A_A -dRelation between Kp and K _c (Derivation)Consider the reaction $A \to B + \to rR + sS$ $K_c = (C_R^r \cdot C_S^*) / (C_A^a \cdot C_B^b)$ For ideal gas $C_1 = p_i / RT$ 2Where R is the ideal gas constantT the absolute temperature in KP is the pressure in atmTherefore $K_c = \{(p_R / RT)^r \cdot (p_S / RT)^b\} / \{(p_A / RT)^a \cdot (p_B / RT)^b\}$		boiling liquid with solids in vigorous motion and large bubbles risi	ing rapidly	7
		through the bed. In this case we have the bubbling fluidized bed. I	Industrial	
4A-cRelation between $C_A & C_{A0}$ Consider the reaction $A \to R$ Let N_{A0} represent the number of moles of A present initially (t = 0). N_A represent the number of moles of A present at time t. X_A be the fractional conversion of A at time t Moles of A reacted at any time t = $N_{A0} X_A$ At time t, moles of A present $N_A = N_{A0} - N_{A0} X_A$ Divide throughout by V, $(N_A / V) = (N_{A0} / V) - (N_{A0} X_A / V)$ But concentration = moles /1 Therefore $C_A = C_{A0} - C_{A0} X_A$; $C_A = C_{A0} (1 - X_A)$ 24A-dRelation between Kp and K _c (Derivation) Consider the reaction $aA + bB + \rightarrow -rR + sS$ $K_c = (C_R^{-r}, C_S^{-s}) / (C_A^{-a}, C_B^{-b})$ For ideal gas $C_i = p_i / RT$ Where R is the ideal gas constant T the absolute temperature in K P is the pressure in atm Therefore $K_c = {(p_R / RT)^r, (p_S / RT)^s} / {(p_A / RT)^a, (p_B / RT)^b}$		reactors particularly for solid catalyzed gas phase reactions often of	operate as	
4A-cRelation between $C_A \& C_{A0}$ Consider the reaction $A \to R$ Let N_{A0} represent the number of moles of A present initially (t = 0). N_A represent the number of moles of A present at time t.2 X_A be the fractional conversion of A at time t Moles of A reacted at any time t = $N_{A0} X_A$ At time t, moles of A present $N_A = N_{A0} - N_{A0} X_A$ Divide throughout by V, $(N_A / V) = (N_{A0} / V) - (N_{A0} X_A / V)$ But concentration = moles /1 Therefore $C_A = C_{A0} - C_{A0} X_A$; $C_A = C_{A0} (1 - X_A)$ 24A-dRelation between Kp and K _c (Derivation) Consider the reaction $aA + bB + \rightarrow -rR + sS$ $K_c = (C_R^{-r}, C_S^{-s}) / (C_A^{-a}, C_B^{-b})$ For ideal gas $C_i = p_i / RT$ 2Where R is the ideal gas constant T the absolute temperature in K P is the pressure in atm Therefore $K_c = {(p_R / RT)^c, (p_S / RT)^s} / {(p_A / RT)^a, (p_B / RT)^b}$		bubbling beds with gas velocities equal to 9 to 30 times minimum	fluidizing	
$ \begin{array}{ c c c c c } Consider the reaction A \rightarrow R \\ Let \\ N_{A0} represent the number of moles of A present initially (t = 0). \\ N_A represent the number of moles of A present at time t. 2 \\ X_A be the fractional conversion of A at time t \\ Moles of A reacted at any time t = N_{A0} X_A \\ At time t, moles of A present N_A = N_{A0} - N_{A0} X_A \\ Divide throughout by V, (N_A / V) = (N_{A0} / V) - (N_{A0} X_A / V) \\ But concentration = moles /1 \\ Therefore C_A = C_{A0} - C_{A0} X_A; \\ C_A = C_{A0} (1- X_A) \\ \end{array} $		velocity.		
$ \begin{array}{ c c c c c } Let & & & & & & & & & & & & & & & & & & &$	4A	-c Relation between C _A & C _{A0}		
$ \begin{array}{ c c c c c } & & & & & & & & & & & & & & & & & & &$		Consider the reaction $A \rightarrow R$		
NA represent the number of moles of A present at time t.2XA be the fractional conversion of A at time tMoles of A reacted at any time $t = N_{A0} X_A$ At time t, moles of A present $N_A = N_{A0} - N_{A0} X_A$ Divide throughout by V, $(N_A / V) = (N_{A0} / V) - (N_{A0} X_A / V)$ But concentration = moles /12Therefore $C_A = C_{A0} - C_{A0} X_A$; $C_A = C_{A0} (1 - X_A)$ 24A-dRelation between Kp and Ke(Derivation)Consider the reaction $aA + bB + \rightarrow rR + sS$ $K_c = (C_R^{-r}, C_S^{-s}) / (C_A^{-a}, C_B^{-b})$ For ideal gas $C_i = p_i / RT$ 2Where R is the ideal gas constantT the absolute temperature in KP is the pressure in atmTherefore $K_c = {(p_R / RT)^r. (p_S / RT)^s} / {(p_A / RT)^a. (p_B / RT)^b}$		Let		
$\begin{array}{ c c c c c } X_A be the fractional conversion of A at time t \\ Moles of A reacted at any time t = N_{A0} X_A \\ At time t, moles of A present N_A = N_{A0} - N_{A0} X_A \\ Divide throughout by V, (N_A / V) = (N_{A0} / V) - (N_{A0} X_A / V) \\ But concentration = moles / 1 \\ Therefore C_A = C_{A0} - C_{A0} X_A; \\ \hline C_A = C_{A0} (1 - X_A) \\ \hline \\ $		N_{A0} represent the number of moles of A present initially (t = 0).		
$ \begin{array}{ c c c c c } & Moles of A reacted at any time t = N_{A0} X_A & \\ At time t, moles of A present N_A = N_{A0} \cdot N_{A0} X_A & \\ Divide throughout by V, (N_A / V) = (N_{A0} / V) \cdot (N_{A0} X_A / V) & \\ But concentration = moles /1 & 2 & \\ & Therefore & C_A = C_{A0} \cdot C_{A0} X_A \\ \hline C_A = C_{A0} (1 - X_A) & & \\ \hline \hline & 4A-d & Relation between Kp and K_c (Derivation) & \\ Consider the reaction aA +bB + \rightarrow rR + sS & \\ K_c = (C_R^r \cdot C_S^s) / (C_A^a \cdot C_B^b) & \\ For ideal gas C_i = p_i / RT & 2 & \\ Where R is the ideal gas constant & \\ T the absolute temperature in K & \\ P is the pressure in atm & \\ Therefore K_c = \{(p_R / RT)^r \cdot (p_S / RT)^s\} / \{(p_A / RT)^a \cdot (p_B / RT)^b\} & \\ \end{array} $		N_A represent the number of moles of A present at time t.		2
At time t, moles of A present $N_A = N_{A0} - N_{A0} X_A$ Divide throughout by V, $(N_A / V) = (N_{A0} / V) - (N_{A0} X_A / V)$ But concentration = moles / 12Therefore $C_A = C_{A0} - C_{A0} X_A$; $C_A = C_{A0} (1 - X_A)$ 4A-dRelation between Kp and K _c (Derivation) Consider the reaction $aA + bB + \dots \rightarrow rR + sS \dots K_c = (C_R^r \cdot C_S^s) / (C_A^a \cdot C_B^b)$ For ideal gas $C_i = p_i / RT$ 2Where R is the ideal gas constant T the absolute temperature in K P is the pressure in atm Therefore $K_c = {(p_R / RT)^r \cdot (p_S / RT)^s} / {(p_A / RT)^a \cdot (p_B / RT)^b}$		X_A be the fractional conversion of A at time t		
$ \begin{array}{ c c c c c } \hline Divide throughout by V, & (N_A / V) = (N_{A0} / V) - (N_{A0} X_A / V) \\ \hline But concentration = moles / 1 & 2 \\ \hline Therefore & C_A = C_{A0} - C_{A0} X_A; \\ \hline C_A = C_{A0} (1 - X_A) & 2 \\ \hline \end{array} \\ \hline \begin{array}{ c c } \hline \hline \end{array} \\ \hline \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \begin{array}{ c c } \hline \hline \end{array} \\ \hline \begin{array}{ c } \hline \end{array} \\ \hline \begin{array}{ c } \hline \end{array} \\ \hline \end{array} $ \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \hline \end{array} \hline \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \\ \hline \end{array} \\ \hline \end{array} \\ \\ \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \\ \hline \end{array} \\ \\ \hline \end{array} \\ \hline \end{array} \\ \hline \\ \\ \hline \end{array} \\ \hline \end{array} \\ \hline \\ \\ \\ \\ \end{array} \\ \\ \\ \hline \end{array} \\ \\ \\ \hline \end{array} \\ \\ \\ \hline \end{array} \\ \hline \end{array} \\ \\ \\ \hline \end{array} \\ \\ \hline \end{array} \\ \\ \\ \\ \hline \end{array} \\ \\ \\ \hline \end{array} \\ \\ \\ \\ \hline \end{array} \\ \\ \\ \\ \hline \end{array} \\ \hline \\ \\ \hline \end{array} \\ \\ \\ \hline \end{array} \\ \\ \\ \\ \hline \\ \\ \hline \end{array} \\ \\ \\ \hline \\ \\ \hline \\ \\		Moles of A reacted at any time $t = N_{A0} X_A$		
But concentration = moles / 1 Therefore2C_A = C_{A0} (1- X_A)24A-dRelation between Kp and K _c (Derivation) Consider the reaction $aA + bB + \dots \rightarrow rR + sS \dots$ K _c = $(C_R^{-r} \cdot C_S^{-s})/(C_A^{-a} \cdot C_B^{-b})$ For ideal gas $C_i = p_i / RT$ 2Where R is the ideal gas constant T the absolute temperature in K P is the pressure in atm Therefore K _c = { $(p_R / RT)^r \cdot (p_S / RT)^s$ } / { $(p_A / RT)^a \cdot (p_B / RT)^b$ }2		At time t, moles of A present $N_A = N_{A0} - N_{A0} X_A$		
$ \begin{array}{ c c c c c } \hline Therefore & C_A = C_{A0} \cdot C_{A0} X_A; \\ \hline C_A = C_{A0} \left(1 - X_A\right) \\ \hline \\ $		Divide throughout by V, $(N_A / V) = (N_{A0} / V) - (N_{A0} X_A / V)$		
C_A = C_{A0} (1- X_A)4A-dRelation between Kp and K _c (Derivation) Consider the reaction $aA +bB + \dots \rightarrow rR + sS.\dots$ $K_c = (C_R^r \cdot C_S^s) / (C_A^a \cdot C_B^b)$ For ideal gas $C_i = p_i / RT$ 2Where R is the ideal gas constant T the absolute temperature in K P is the pressure in atm Therefore $K_c = \{(p_R / RT)^r \cdot (p_S / RT)^s\} / \{(p_A / RT)^a \cdot (p_B / RT)^b\}$		But concentration = moles $/ 1$		2
4A-dRelation between Kp and Kc(Derivation) Consider the reaction $aA + bB + \dots \rightarrow rR + sS.\dots$ $K_c = (C_R^r \cdot C_S^s) / (C_A^a \cdot C_B^b)$ For ideal gas $C_i = p_i / RT$ 2Where R is the ideal gas constant T the absolute temperature in K P is the pressure in atm Therefore $K_c = \{(p_R / RT)^r \cdot (p_S / RT)^s\} / \{(p_A / RT)^a \cdot (p_B / RT)^b\}$ 2		Therefore $C_A = C_{A0} - C_{A0} X_A$;		
Consider the reaction $aA + bB + \dots \rightarrow rR + sS \dots$ $K_c = (C_R^r \cdot C_S^s) / (C_A^a \cdot C_B^b)$ For ideal gas $C_i = p_i / RT$ 2Where R is the ideal gas constantT the absolute temperature in KP is the pressure in atmTherefore $K_c = \{(p_R / RT)^r \cdot (p_S / RT)^s\} / \{(p_A / RT)^a \cdot (p_B / RT)^b\}$		$\mathbf{C}_{\mathbf{A}} = \mathbf{C}_{\mathbf{A}0} \left(1 \cdot \mathbf{X}_{\mathbf{A}} \right)$		
$K_c = (C_R^r \cdot C_S^s) / (C_A^a \cdot C_B^b)$ 2For ideal gas $C_i = p_i / RT$ 2Where R is the ideal gas constant2T the absolute temperature in K2P is the pressure in atm7Therefore $K_c = \{(p_R / RT)^r \cdot (p_S / RT)^s\} / \{(p_A / RT)^a \cdot (p_B / RT)^b\}$	4A	-d Relation between Kp and K _c (Derivation)		
For ideal gas $C_i = p_i / RT$ 2Where R is the ideal gas constant1T the absolute temperature in K1P is the pressure in atm1Therefore $K_c = \{(p_R / RT)^r . (p_S / RT)^s\} / \{(p_A / RT)^a . (p_B / RT)^b\}$		Consider the reaction $aA + bB + \dots \rightarrow rR + sS \dots$		
Where R is the ideal gas constantT the absolute temperature in KP is the pressure in atmTherefore $K_c = \{(p_R / RT)^r . (p_S / RT)^s\} / \{(p_A / RT)^a . (p_B / RT)^b\}$		$K_{c} = (C_{R}^{r} . C_{S}^{s}) / (C_{A}^{a} . C_{B}^{b})$		
T the absolute temperature in K P is the pressure in atm Therefore $K_c = \{(p_R / RT)^r . (p_S / RT)^s\} / \{(p_A / RT)^a . (p_B / RT)^b\}$		For ideal gas $C_i = p_i / RT$		2
P is the pressure in atm Therefore $K_c = \{(p_R / RT)^r . (p_S / RT)^s\} / \{(p_A / RT)^a . (p_B / RT)^b\}$		Where R is the ideal gas constant		
Therefore $K_c = \{(p_R / RT)^r . (p_S / RT)^s\} / \{(p_A / RT)^a . (p_B / RT)^b\}$		T the absolute temperature in K		
		P is the pressure in atm		
$= (p_{R}^{r} . p_{S}^{s}) / (p_{A}^{a} . p_{B}^{b}) . (1 / RT)^{(r+s+(a+b=))}$		Therefore $K_c = \{(p_R / RT)^r . (p_S / RT)^s\} / \{(p_A / RT)^a . (p_B / RT)^{a}\}$) ^b }	
		$= (p_{R}^{r} . p_{S}^{s}) / (p_{A}^{a} . p_{B}^{b}) . (1 / RT)^{(r + s + (a + b =))}$		

itle: Ch	nemical Reaction Engineering Subject code 17562	page 17
	Ie $K_c = K_p$. $(1 / RT)^{\Delta n}$ where $K_p = (p_R^r \cdot p_S^s) / (p_A^a \cdot p_B^b)$	2
	And $\Delta n = (r + s + (a + b +))$ is the difference in the number of moles of	
	product and reactant	
	Or $\mathbf{K}_{\mathbf{p}} = \mathbf{K}_{\mathbf{c}} \times (\mathbf{RT}) \triangle^{\mathbf{n}}$	
4B	Attempt any ONE of the following	6
4B-a	Arrhenius law	
	The temperature dependency of the reaction rate constant k, is given by $k =$	
	$k_0 e_{RT}^{-E}$	
	Where k_0 - frequency factor or pre exponential factor	
	E - activation energy in J/ mol or cal/ mol	
	R – universal gas constant	2
	T – temperature in Kelvin	
	The activation energy is determined experimentally by carrying out the reaction	
	at different temperatures. A plot of ln k vs $\frac{1}{T}$ should give a straight line with	
	slope equal to $\frac{-E}{R}$.	
	Slope = $-E/R$	2
	× Ciope L/H	
	=	
	$\frac{1}{T} \times 10^3$	
	Alternatively, if the rate is known at two different temperatures T_1 and T_2 , then	
	we can evaluate E with the help of equation	
	$\ln \frac{k_2}{k_1} = \frac{-E}{R} \left(\frac{1}{T_2} - \frac{1}{T_1} \right)$	
	$k_1 R T_2 T_1 '$	

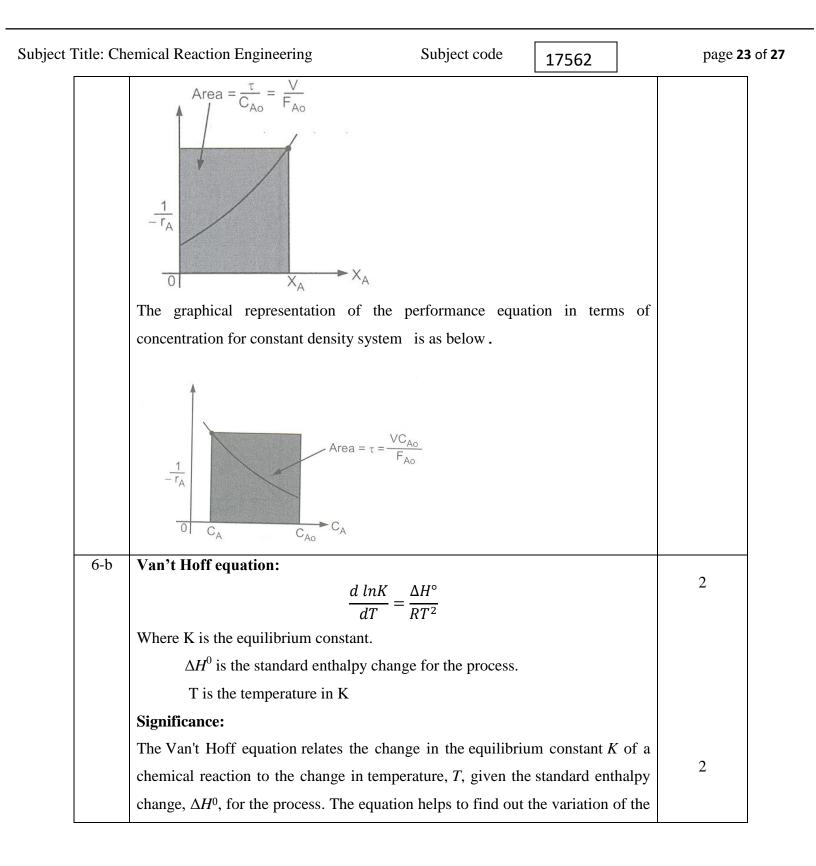
Subject 7	Title: Ch	emical Reaction Engineering Subject	ct code	17562		page 18	B of 27
		Lower the value of activation energy, higher will b	e the rate a	t which reacti	on		
		will proceed as the considerable part of collisions b	between the	e molecules re	sult		
		in a reaction and higher the value of activation ene	rgy, lower	will be the rat	e at	2	
		which the reaction proceeds.					
	4B-b	Number of moles (n)= $4/4 = 1$					
		$P_1 = 1 \text{ atm}$					
		$P_2 = 0.1 \text{ atm}$					
		$T = 30^{0}C = 303 K$					
		$\Delta \mathbf{S} = \mathbf{n} \mathbf{C}_{\mathbf{p}} \mathbf{ln} \frac{T_2}{T_1} + \mathbf{n} \mathbf{R} \mathbf{ln} \frac{P_1}{P_2}$				3	
		For isothermal operation, $\Delta S = nRln \frac{P_1}{P_2}$					
		$\Delta S = 1 \ge 1.987 \ge \ln(1/0.1) = 4.575 \text{ cal / K}$				3	
	5	Attempt any TWO of the following				16	
	5-a	For first order reaction, $-\ln(1-x_A) = kt$					
		When $x_A = 0.5$ - $\ln(1-0.5) = kt_1$					
		$t_1 = \frac{0.693}{k} - (1)$				3	
		When $x_A = 0.75$ - $\ln(1-0.75) = kt_2$					
		$t_2 = \frac{1.386}{k} - (2)$				3	
		From equation (1) and (2) $t_2 = 2 t_1$					
		Therefore the time required for 75% conversion	is double t	he time requir	ed	2	
		for 50% conversion.				2	
	5-b	Comparison of size of MFR and PFR for first o	rder reacti	on			
		The performance or design equation for MFR is					
		$V / F_{AO} = \tau / C_{AO} = X_A / -r_A$					
		$\tau_m = \left(\frac{C_{A0}V}{F_{A0}}\right)_m = C_{AO} X_A / -r_A$					



Subject Title: Che	emical Reaction Engineering	Subject code	17562	page 19 of 27
	For constant volume MFR, where first or	ler reaction is takin	g place	
	$\tau_m = \left(\frac{C_{A0}V}{F_{A0}}\right)_m = C_{AO} X_A / -r_A = X_A / K(1 - r_A)$	-X _A)(i)		2
	The performance or design equation for P	FR is		
	$\frac{V}{F_{A0}} = \int_0^{x_A} \frac{dX_A}{-r_A} = \frac{\tau}{C_{A0}}$			
	$\tau_P = \left(\frac{C_{A0}V}{F_{A0}}\right)_P = C_{AO} \int_0^{x_A} \frac{dx_A}{-r_A}$			
	For constant volume PFR, where first orde	er reaction is taking	g place	
	$\tau_P = \left(\frac{C_{A0}V}{F_{A0}}\right)_P = C_{AO} \int_0^{x_A} \frac{dx_A}{-r_A} = \frac{1}{k} \int_0^{x_A} \frac{dx_A}{(1-X_A)^2}$	$\frac{1}{A_{A}} = -\ln(1 - X_{A}) / k$	(ii)	
	From eqn (i) and (ii), for constant density	system		
	$\tau_m / \tau_p = \left(\frac{C_{A0}V}{F_{A0}}\right)_m / \left(\frac{C_{A0}V}{F_{A0}}\right)_p = \{X_A / (1-X_A) < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < $	$(A_A)_m / \{-\ln (1 - 1)\}_m$	XA) } _p	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

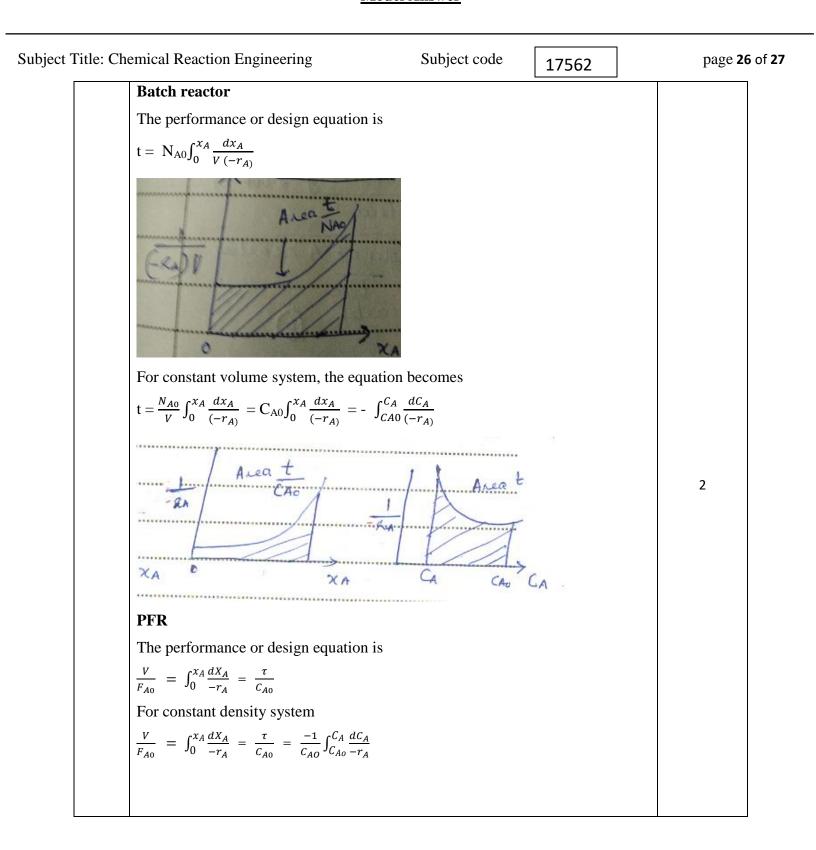

itle: Ch	nemical Reaction Engineering Subject code 17562	page 21	
	decreases, the effectiveness of CSTR with respect to PFR. The density		
	increase during reaction has the opposite effect.		
5-с	$A \rightarrow 1.6 R$		
	$\mathbf{V} = 1.5 \ \mathbf{V}_0$		
	t = 4 minutes		
	$\epsilon_{\rm A} = \frac{v_{XA=1-V_{XA=0}}}{v_{XA=0}} = (1.6-1) / 1 = 0.6$	2	
	$V = V_0 (1 + C_A X_A)$		
	$1.5 V_0 = V_0 (1 + 0.6 X_A)$	3	
	$X_{A} = 0.8333$	5	
	For first order reaction $-\ln(1 - X_A) = kt$		
	$-\ln(1 - 0.8333) = k \times 4$		
	$k = 0.4478 min^{-1}$	3	
6	Attempt any FOUR of the following	16	
6-a	Derivation of performance equation / design equation of mixed flow		
	reactor:		
	In MFR, the composition of the reactants is uniform throughout the reactor.		
	Taking material balance of reactant A over the reactor as a whole,		
	Rate of input of A to the reactor = Rate of output of A from the reactor +		
	Rate of disappearance of A due to chemical reaction + Rate of accumulation		
	of A within the reactor.		
	For mixed flow reactor at steady state the last term is zero. Therefore the		
	material balance equation becomes		
	Rate of input of A to the reactor =Rate of output of A from the reactor +		
	Rate of disappearance of A due to chemical reaction +Rate of accumulation of		
	A within the reactor(i)		

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Subject Title: Chem	ical Reaction Engineering	Subject code	17562	page 22 of 27
	V = Volume of reactor			
	$C_{A0} = Molar \text{ concentration of A in s}$	stream entering the r	reactor	
	(moles/volume)			
	$v_0 =$ Volumetric flow rate(volume/	(time)		
	X_A = Fractional conversion of A			
	$F_{A0} = C_{A0.} v_0$			
In	put of A to the reactor in moles / time	$= F_{A0.}$		
D	isappearance of A due chemical reactio	n in moles / time =	- (-r _A) .V	2
	Output of A from the reactor in moles	$/$ time = F_A		
S	ubstituting in (i)			
	$F_{A0} = F_{A+}(-r_A) .V(ii)$			
В	ut $F_A = F_{A0}(1 - X_A) = F_{A0} - F_{A0} X_A$			
E	quation (ii) becomes $F_{A0} = F_{A0} - F_{A0}$.	X_{A} + (- r_A) .V		
	$F_{A0.} X_A = (-r_A) . V$			
R	earranging, we get			
	$\frac{Y_A}{-r_A} = \frac{X_A}{-r_A} = \frac{\tau}{C_{A0}}$			
				2
	or constant volume system			
F	$\frac{Y}{A_0} = \frac{X_A}{-r_A} = \frac{\tau}{C_{A0}} = \frac{C_{A0}-C_A}{C_{A0}(-r_A)}$			
W	There X_A and $(-r_A)$ are evaluated at the	e exit conditions, v	which are sam	e as
со	onditions prevailing within reactor (ex .c	composition,tempera	uture)	
T	he graphical representation of the perform	rmance equation in	terms of fracti	onal
со	onversion is as below			

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Subject Title: C	hemical Reaction Engineering Subject co	ode 17562	page 24 of 2
	equilibrium constant, and hence equilibrium conversion	n with temperature.	
	When ΔH^0 is positive (endothermic reaction), $\frac{d \ln K}{dT} > 0, K(T)$ is a increasing function. Therefore increase in temperature. When ΔH^0 is negative (exothermic reaction), $\frac{d \ln K}{dT} < 0, K(T)$ is a decreasing function. Therefore T increase in temperature.		
б-с	$T_1 = 400 \text{ K}$		
	$T_2 = 500K$		
	$k_2 = 10 k_1$		
	From Arrhenius law		
	$\ln \frac{k_2}{k_1} = \frac{-E}{R} \left(\frac{1}{T_2} - \frac{1}{T_1} \right)$		2
	ln 10 = (-E / 1.987) * ($\frac{1}{500}$ - $\frac{1}{400}$ = 2.52 *10 ⁻⁴ E		
	E = 9137.2 cal		2
6-d	Given:		
	$C_{A0} = 1 \text{ mol/l}$		
	$X_A = 0.80$ when $t = 8$ min.		
	$X_A = 0.90$ when $t = 18$ min		
	Let us first assume reaction is of zero order. Therefore	ore the integrated	
	equation for zero order reaction in terms of fractional c	conversion is	
	$C_{A0}X_A = kt$		
	Case 1) Where $X_A = 0.80$ when $t = 8$ min.		1
	1*0.8 = k*8		
	$k = 0.1 \text{ (min)}^{-1} (\text{mol} / 1)$		
	Case 2) Where $X_A = 0.90$ when $t = 80$ min.		
	1*0.9 = k*18		


(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

bject Title: Chemical Reaction Engineering	Subject code	17562	page 25 of 2
$k = 0.05(min)^{-1}(mol / l)$			
Since k values are not same, the reac	Since k values are not same, the reaction is not of zero order		
Let us now assume reaction is of F	Let us now assume reaction is of First order. The integrated equation for first		
order reaction in terms of fractional c	conversion is		
$\ln\left[\frac{1}{1-X_A}\right] = kt$			
Case 1) Where $X_A = 0.80$ when $t =$	8 min.		
$\ln\left[\frac{1}{1-0.8}\right] = k^* 8$			
$k = 0.201 \text{ (min)}^{-1}$			1
Case 2) Where $X_A = 0.90$ when $t =$	80 min.		1
$\ln \left[\frac{1}{1-0.9} \right] = k*18$			
$k = 0.1279 (min)^{-1}$			
Since k values are not same, the reac	tion is not of first orde	r.	
Let us now assume it is of Second of	order. The integrated eq	uation for secon	nd
order reaction with respect to A in te	erms of fractional conve	rsion is	
$\left \frac{XA}{1-XA}\right = kC_{A0}t$			
Case 1) Where $X_A = 0.80$ when $t =$	8 min. & C $_{A0} = 1 \mod 1$	/1	1
$\left \frac{0.8}{1-0.8} \right = k * 1 * 8$			
$k = 0.5 (mol/l)^{-1}$ (min) ⁻¹		
Case 2) Where $X_A = 0.90$ when $t =$	= 18 min. & C $_{A0} = 1 \text{ m}$	ol/l	
$\left[\frac{0.9}{1-0.9}\right] = k * 1 * 18$			
$k = 0.5 (mol/l)^{-1}$	(min) ⁻¹		
since k values are same, reaction is	of second order .		
Rate expression for the reaction is	$-\mathbf{r}_{\rm A} = \mathbf{k} {\mathbf{C}_{\rm A}}^2 = 0.5 {\mathbf{C}_{\rm A}}^2$		1
6-e Graphical representation:			

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER-17 EXAMINATION Model Answer

Subject Title: Chemical Reaction Engineering Subject code page 27 of 27 17562 2 CAO. Area = Z = FAO TA Area 1 -1, >CA Ao CA o XA