

SUMMER-17 EXAMINATION Model Answer

Subject code | 17562

page 1 of 28

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.

2) The model answer and the answer written by candidate may vary but the examiner may try

to assess the understanding level of the candidate.

3) The language errors such as grammatical, spelling errors should not be given more

Importance (Not applicable for subject English and Communication Skills.

4) While assessing figures, examiner may give credit for principal components indicated in the

figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.

5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.

6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.

7) For programming language papers, credit may be given to any other program based on equivalent concept.

SUMMER-17 EXAMINATION Model Answer

Subject code

17562

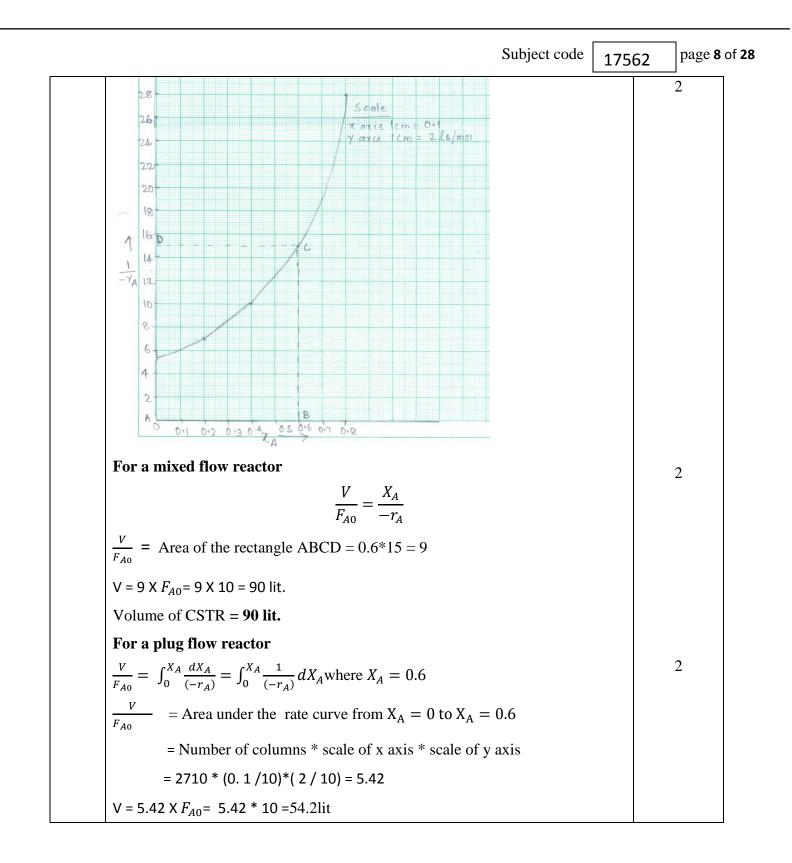
page **2** of **28**

Q No.				Answer			Marks
1	Attempt	any THF	REE of the fo	llowing			12
1A-a	Differen	ce betwee	n order and	molecularity	of reaction.		1 mark
	Sr.No.	Molecul	arity		Order of react	tion	each for
	1	Molecul	arity is the nu	mber of	Order of react	tion is the sum	any 4
		molecule	es, atoms or i	ons in a	of exponents	of the	points
		chemica	l reaction.		concentration	terms	
					involved in th	e rate	
					equation.		
	2	Molecul	arity always ł	nas an integer	Order of react	tion can have	
		value 1,	2, 3		a fractional va	alue.	
	3	Shows th	ne elementary	mechanism	Shows the kin	netic	
		or separa	ate steps of a	complicated	dependence of	f the rate on	
		process			the concentrat	tion of the	
					reactants.		
	4	Dependi	ng upon the v	value of	Depending up	oon the value	
		molecula	arity, reaction	can be	of order, the r	eactions are	
		unimole	cular,bimole	cular etc.	termed as first	t order,	
					second order	reactions.	
	5	Molecul	arity is a theo	oretical	Order of react	tion is entirely	
		quantity			an experiment	tal value.	
		1			1		
1A-b	T(min)	0		2	3	4	
	C _{N205}		.16	0.113	0.056	0.04	

			Sul	oject code	17562	page 3 of
(mol / l)						
$C_{A0} = 0.16 \text{ r}$	nol / l	1	I	I		1
For first ord	er reaction –ln(CA	$(C_{A0}) = kt$				
$k = -ln(C_A)$	/ C _{A0}) / t					
When						
t = 2 minute	es, $k = -\ln(0.113)$	/ 0.16) / 2 = 0.	1738 min ⁻¹			3
t = 3 minute	s, $k = -\ln(0.056)$	0.16) / 3 = 0.3	499 min⁻¹			
t = 4 minute	s, $k = -ln(0.04 / $	0.16) / 4 = 0.34	65 min ⁻¹			
Since k valu	es are not same, the	edecomposition	reaction is not o	f first order	r.	
1A-c Relation be	tween Gibb's free	energy (ΔG ⁰) ai	nd equilibrium	constant K	^p	
Consider the	e reaction aA + bB-	$\rightarrow rR + sS$				
ΔG reaction	= ΔG product - ΔG	G reactant.				
	$= (r \ \mu_R + s \ \mu_S) - (a \ \mu_R)$	$\mu_{\rm A}$ + b $\mu_{\rm B}$).				
At equilibriu	um there is no Gibb	's free energy ch	ange, $\Delta G = 0$			
$(r \mu_R + s \mu_S)$	$-(a \ \mu_A + b \ \mu_B) = 0$					2
$(r \mu_R + s \mu_S)$	$=$ (a μ_A + b μ_B)					
But $\mu_i = \mu_i^0$	+ RT lnp _i					
Therefore	$r(\mu_R^0 + RT \ln p_R) +$	s($\mu_s^0 + RT \ln p_s$	$a_{\rm S}$) = a($\mu_{\rm A}^0$ + RT	lnp _A) +		
		b(μ _B ⁰ -	⊦ RT lnp _B)			
RT ln $\left(\frac{p_R^r}{p_A^a}p_B^s\right)$) = $(a \mu_{\rm A}^{0} + b \mu_{\rm B}^{0})$) - (r $\mu_{\rm R}^0$ + s $\mu_{\rm S}^0$))			
	= - (ΔG product	- Δ G reactant)				
	= - Δ G reaction					
$\ln\left(\frac{p_R^r}{p_A^a}\frac{p_S^s}{p_B^b}\right) =$	$= \frac{-\Delta G \text{ reaction}}{RT} \qquad \text{I}$	But $\left(\frac{p_R^r}{p_A^a}\frac{p_S^s}{p_B^b}\right) = \mathbf{K}$	р			
Therefore Δ	$G = - RT \ln K_p$					2

	Subject code 175	62 page 4 of		
1A-d	Types of reactors used in industry:			
	Based upon mode of operation, the reactors are classified as Batch reactors,	1		
	Semi batch reactors & Continuous reactors. Reactors like packed bed reactors,			
	fluidized bed reactors are also used in industry.			
	Application of			
	Batch reactor:			
	These are used when relatively small amount of material are to be treated. Also	1 mark		
	to produce different products using same reactor, for testing new products etc.	each for		
	Semi batch reactors:	writing one		
	When good control of reaction is required, also used for liquid phase reactions	application		
	& 2-phase reactions where gas is continuously bubbled through the pool of	of any		
	liquid in reactor.	three		
	Continuous reactors:	reactors.		
	Used for higher production rates with short reaction times, for producing high			
	quality products, for carrying out reactions when rate of reaction is high.			
	Packed (fixed)bed reactor:			
	Used when high conversion rate per catalyst weight is required.			
	Fluidized bed reactor:			
	Used when good temperature control is required, when catalyst regeneration			
	has to be done on a continuous basis without shutting down the reactor.			
1B	Attempt any ONE of the following	6		
1B-a	Arrhenius law			
	The temperature dependence of the reaction rate constant k, is given by $k =$			
	$k_0 e_{RT}^{-E}$			
	Where k_0 - frequency factor or pre exponential factor			
	E - activation energy in J/ mol or cal/ mol			
	R – universal gas constant	2		

	Subject code 17562	page 5 of
	T – temperature in Kelvin	
	The activation energy is determined experimentally by carrying out the reaction	
	at different temperatures. A plot of ln k vs $\frac{1}{T}$ should give a straight line with	
	slope equal to $\frac{-E}{R}$.	
	$k_{n,k}$ \uparrow \uparrow $\rightarrow \frac{1}{T}$	2
	Alternatively, if the rate is known at two different temperatures T_1 and T_2 , then	
	we can evaluate E with the help of equation	
	$\ln\frac{k_2}{k_1} = \frac{-E}{R} \left(\frac{1}{T_2} - \frac{1}{T_1}\right)$	
	Lower the value of activation energy, higher will be the rate at which reaction	2
	will proceed as the considerable part of collisions between the molecules result	
	in a reaction and higher the value of activation energy, lower will be the rate at	
	which the reaction proceeds.	
1B-b	General procedure for analysis of complete rate equation by integral	
	method	
	The procedure for integral method of analysis is as follows :	
	1. In a constant volume system, the rate expression for the disappearance of reactant A will be of the following form	



Attempt any TWO of the following	16
s slope - k t	1
Graph:	
rejected and another rate equation is tried.	
data are being fitted by a curve, the rate equation and mechanism are	
particular rate equation being tested satisfactorily fits the data. If the	
6. If the data fall on a reasonable straight line, then it may said that the	
and plot these at the corresponding time.	
5. From experiment, determine the numerical value for the above integral	
rate equation.	
concentration vs time gives a straight line of slope k for this particular	
4. The concentration function is proportional to time, so a plot of	
$C_{A0} = 0$	
$-\int (dC_A / f(c)) = k \int dt$	
3. Above equation is integrated with appropriate limits C _A t	5
terms of C _A 3. Above equation is integrated with appropriate limits	
f(c) involves the concentration of materials which may be expressed in	
$-dC_{A} / f(c) = kdt$	
2. Rate equation is rearranged as	
$-\mathbf{r}_{\mathrm{A}} = -\mathrm{d}\mathbf{C}_{\mathrm{A}} / \mathrm{d}\mathbf{t} = \mathbf{k}\mathbf{f}(\mathbf{c})$	
Subject code 1756	52 page 6 of

					:	Subject code	1756	52 page	e 7 of 28
2-a	Chain rea In chain re		e intermediate	is formed i	n the first reacti	ion called chai	n		
	initiation step. It then combines with the reactant to form product and more								
	intermedia	ates in the	chain propaga	tion step. O	ccasionally the	se intermediat	es	3	
	are destroy	yed in chai	n termination	step.				5	
		R —	I* Initiation	n step					
		I* + R -	→I* + P Propa	agation step					
		I* –	→ P Termina	tion step.					
	$-\mathbf{r}_{\mathrm{A}} = \mathbf{k} \mathbf{C}$	\mathcal{Z}^{n}_{A}						2	
	Taking	g log	$\log - r_A = \log$	$gk + n \log C_A$	- (1)			2	
	On doubling the concentration of reactant, the rate of reaction triples								
	ie 3-1	$r_A = k (2$	$(C_A)^n$						
	Taking	g log	$\log(3 - r_{A}) = 1$	logk + n log	$(2C_A)$	- (2)		3	
	(1) - (1	2) log0.	333 = n	log 0.5				5	
	n =	= 1.585							
2-b	A → Produ	ucts							
	X _A	0	0.2	0.4	0.6	0.8			
	$-r_A$	0.182 5.5	0.143	0.1	0.0667	0.0357		1	
	$(-r_A)$								
	F _{A0} = 10 m	iol / s							
	Plot a grap	oh betweer	$1/(-r_A)$ and	X_A					

	Subject code 175	62 page 9 of 2
	Volume of PFR = 54.2 lit Volume of PFR is less than the volume of CSTR for the same conversion.	1
2-c	Fluidized bed reactor: Diagram:	2
	Explanation: Consider a bed of fine particles and gases passing upward through them. On increasing the flow rate, a point is reached when the solids become suspended in the gas stream. In this state the bed is said to be fluidized and the particular inlet gas velocity is called minimum fluidizing velocity. If the gas velocity is much larger than this minimum, the bed takes the appearance of a violently boiling liquid with solids in vigorous motion and large bubbles rising rapidly through the bed. In this case we have the bubbling fluidized bed. Industrial reactors particularly for solid catalyzed gas phase reactions often operate as bubbling beds with gas velocities equal to 9 to 30 times minimum fluidizing velocity. Merits:	2
	 Good temperature control Can use small size catalyst particles 	1 mark each for any 2

	Subject code 175	62 page 10 of
	3. Regeneration is easily done without shut down of the reactor.	points.
	Demerits:	
	1. Effective contacting require large amount of catalyst for high gas	
	conversion	1 mark each
	2. Catalyst loss is there. So recovery units are required.	
3	Attempt any FOUR of the following	16
3-a	$H_2 + I_2 \leftrightarrow 2HI$	
	Moles of H_2 present initially = 5 millimoles	
	Moles of I_2 present initially = 2 millimoles	
	$K_{c} = 16.34$	
	Let x moles of H_2 reacts at equilibrium	
	Moles of H_2 present at equilibrium = 5-x	
	Moles of I_2 present at equilibrium = 2-x	
	Moles of HI present at equilibrium $= 2x$	
	$K_{c} = \{ (C_{HI})^{2} / \{ (C_{H2}) * (C_{I2}) \}$	2
	Concentration = moles $/ 1$	
	$16.34 = \{ (2x)^2 / \{ (5-x) * (2-x) \}$	
	$16.34 = 4x^2 / x^2 - 7x + 10$	
	$12.34x^2 - 114.38x + 163.4 = 0$	
	$x = \frac{-b \pm \sqrt{(b^2 - 4 * a * c)}}{2 *}$ $x = \frac{114.38 \pm \sqrt{(114.38^2 - 4 * 12.34 * 163.4)}}{2 * 12.34}$ $= 7.504 \text{ or } 1.76$	
	Value of $x = 1.76$	
	Equilibrium concentration for $H_2 = 5 - x = 5 - 1.76 = 3.24$ millimoles / l	

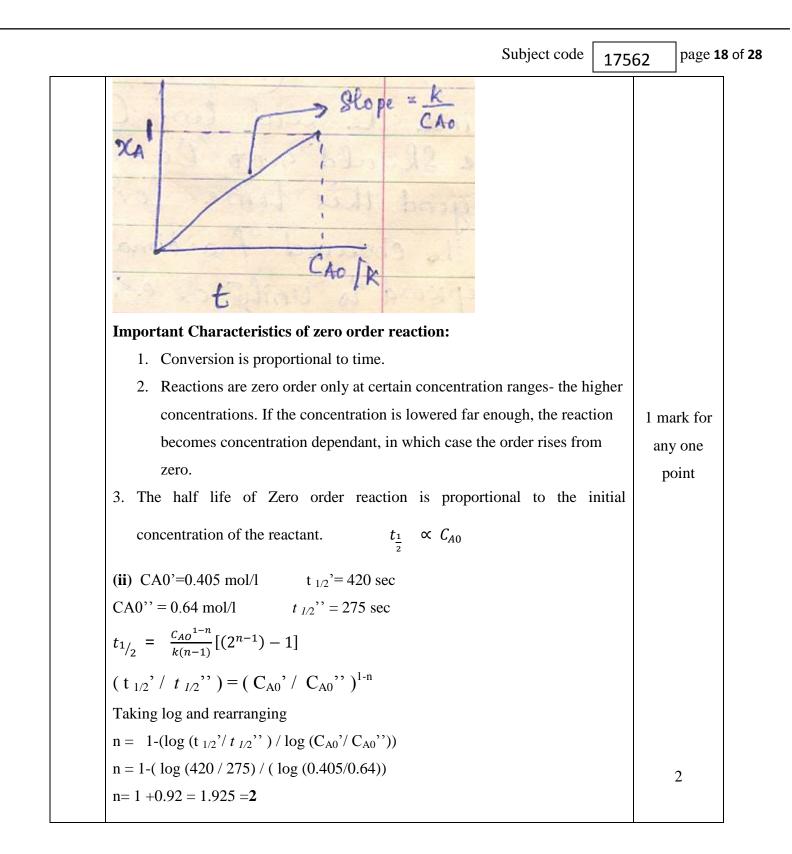
	Subject code 175	62 page 1	1 of 2
	Equilibrium concentration for $I_2 = 2-x = 2-1.76 = 0.24$ millimoles / 1	2]
	Equilibrium concentration for HI = $2x = 2 * 1.76 = 3.52$ millimoles / 1		
3-b	Half life period: It is the time required to reduce the concentration of the	2	
	reactant to half of its original value		
	Given Data:		
	$t_{1/2} = 2500 s$		
	$t_{1/2} = \frac{0.693}{k}$		
	$2500 = \frac{0.693}{k}$	1	
	$k = 2.77 * 10^{-4} s^{-1}$	1	
	Let t be the time required to drop the concentration of the reactant to 1/4 th of its		
	initial concentration.		
	$C_{A0} = 1 \frac{mol}{l}$		
	$C_A = 1/4 \frac{mol}{l}$		
	For first order reaction, $t = \frac{1}{k} \ln \left[\frac{C_{A0}}{C_A} \right]$	1	
	t = 5000.5 s	1	
3-с	Expression for entropy change in constant volume process		
	From first law of thermodynamics, $dU = dQ - dW$		
	$dQ = dU + dW \dots(i)$		
	But $dQ = TdS$ (ii)	1	
	dW = PdV(iii)		
	For ideal gas $dU = n C_v dT$ (iv)		
	Substituting ii,iii and iv in i		
	$TdS = n C_v dT + PdV$	1	
	$dS = \frac{n Cv dT}{T} + \frac{P dV}{T}$		

	Subject code 1756	52 page 12
	For ideal gas $P = \frac{nRT}{V}$	
	Substituting dS = $\frac{n CvdT}{T} + \frac{nRdV}{V}$	
	Integrating between limits	
	$\int_{S_1}^{S_2} dS = nC_v \int_{T_1}^{T_2} \frac{dT}{T} + nR \int_{V_1}^{V_2} \frac{dV}{V}$	1
	$\Delta \mathbf{S} = \mathbf{n} \mathbf{C}_{\mathbf{v}} \ln \frac{T_2}{T_1} + \mathbf{n} \mathbf{R} \ln \frac{V_2}{V_1} \dots \dots (\mathbf{v})$	
	For constant volume system $v_1 = v_2$	
	$\Delta S = nC_v ln \frac{T_2}{T_1}$	1
3-d	Rate of a reaction: It is defined as change in the moles of any reactant /	1
	product of the reaction per unit time per unit volume of reacting fluid.	
	Rate constant: Rate constant of a chemical reaction is a measure of the rate of	1
	the reaction when all the reactants are at unit concentration.	
	Factors affecting the rate of a chemical reaction :1. In homogeneous system temperature, pressure and composition are the	2
	variables.	
	2. In heterogeneous system , since more than one phase is involved, material	
	have to move from phase to phase during reaction, hence the rate of mass	
	transfer is important.	
	3. rate of heat transfer	
	4. Catalyst	
	5. Nature of reactants	
	6. Surface area available.	
	7. Intensity of light if reaction is light sensitive.	
3-е	Catalyst ingredients	
	Promoters	
	They are substances which do not act as catalyst but enhances the efficiency	1.5

	Subject code 1756	52 page 13
	and life of the catalyst. It is a substance added during the preparation of a	
	catalyst which improves the activity or selectivity or stabilizes the catalytic	
	agent so as to increase its life.	
	Eg Al_2O_3 is used as a promoter to iron catalyst in the manufacture of ammonia	
	Inhibitors	
	It is the substance which decreases the performance of the catalyst. It lessens	
	activity, stability or selectivity of a catalyst. It is useful for reducing the activity	1.5
	of a catalyst for an undesirable side reaction.	
	Eg silver supported on alumina is an excellent oxidation catalyst and is used in	
	the production of ethylene oxide from ethylene. But at the same conditions,	
	complete oxidation to CO ₂ and H ₂ O also occurs. So selectivity is poor. By	
	adding halogen compounds to the catalyst inhibits the oxidation to CO_2 and	
	H ₂ O and results in satisfactory selectivity.	
	Accelerators	
	They are substances added to the reactant streams to improve the performance	
	of a catalyst.	1
	Eg steam added to butane feed of a dehydrogenation reactor reduces the amount	
	of coke formed and increases the yield of butadiene.	
4A	Attempt any THREE of the following	12
4A-a	Relation between concentration and conversion for constant volume batch	
	system:	4
	Consider the reaction $A \rightarrow R$	
	Let	
	N_{A0} and N_{R0} represent the number of moles of A and R present initially (t = 0).	
	N_A and N_R represent the number of moles of A and R present at time t.	
	X _A be the fractional conversion of A at time t	
	Moles of A reacted at any time $t = N_{A0} X_A$	

	Subject code 1756	2	page 14 o
	When 1 mole of A reacts, I mole of R is produced.		
	Ie $N_{A0} X_A = N_{R0} X_R$ where X_R represents fraction of R produced.		
	At time t, moles of A present $N_A = N_{A0} - N_{A0} X_A$		
	Divide throughout by V, $(N_A / V) = (N_{A0} / V) - (N_{A0} X_A / V)$		
	But concentration = moles / l		
	Therefore $C_A = C_{A0} - C_{A0} X_A$; $C_A = C_{A0} (1 - X_A)$		
	For product R, $C_R = C_{R0} (1 + X_R)$		
4A-b	Methods of catalyst Preparation:	11	mark
	1. Precipitation	ea	ach
	2. Gel formation		
	3. Simple mixing		
	4. Impregnation method		
	1.Precipitation method : This method produces catalyst in porous form. It consists of adding a		
	precipitating agent to the solution of the desired component. The precipitation		
	is followed by washing, drying, calcinations & activation(or pretreatment)		
	Eg. Magnesium oxide catalyst is prepared by this method. It is prepared by		
	precipitating MgCO ₃ from magnesium nitrate solution by adding sodium		
	carbonate. The magnesium carbonate precipitate is washed, dried & calcined to		
	obtain magnesium oxide.		
	2.Gel formation: If the precipitate formed in the above method is colloidal,		
	then gel is formed.		
	Eg Catalyst containing silica and alumina are suitable for gel formation because		
	their precipitates are colloidal in nature.		
	3. Simple mixing: Some porous materials are obtained by mixing the		
	components with water, milling to the desired grain size, drying and calcining.		
	Such materials may be ground and sieved to obtain the particle size.		

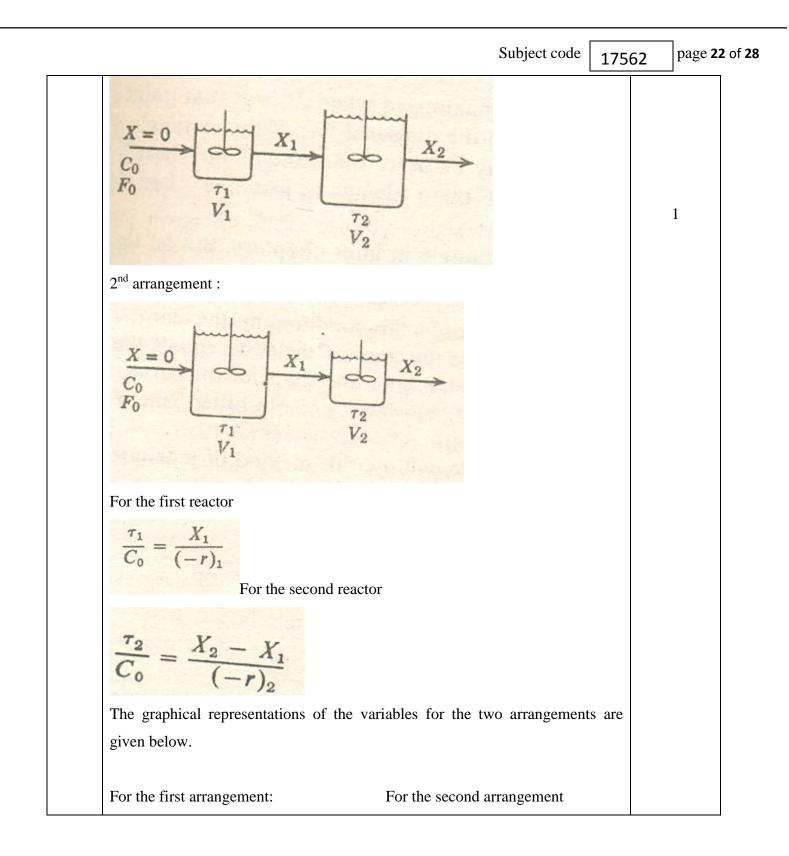
	Subject code 175	62	page 15 (
	Eg Mixed Mg and Ca oxide catalyst is prepared by this method		
	4. Impregnation method:		
	This method is used for the preparation of expensive catalysts like platinum,		
	palladium, silver etc. A catalyst carrier provides a means of obtaining a large		
	surface area with a small amount of catalyst. The steps in the preparation of a		
	catalyst impregnated on a carrier include evacuating the carrier, contacting the		
	carrier with the impregnating solution, removing the excess solution, drying,		
	calcining and activation.		
	Eg Nickel catalyst is prepared on alumina by soaking the evacuated alumina		
	particles with nickel nitrate solution, draining to remove the excess solution and		
	heating in an oven to decompose the nitrate to nickel oxide. The final step is		
	activation in which nickel oxide is reduced to nickel.		
	Any other appropriate method should also be given due consideration		
A-c	For second order reaction:		
	$k = \frac{1}{t} \left[\frac{1}{C_A} - \frac{1}{C_{A0}} \right]$		1
	$t = 50 \min$		
	$C_{A0} = 5*10^{-4} \text{ mol/l}$		
	Gas is 40% decomposed $C_A = C_{A0}(1 - X_A) = 5 \times 10^{-4} * 0.6 = 3 \times 10^{-4} \text{ mol/l}$		1
	$k = \frac{1}{50} \left[\frac{1}{3*10^{-4}} - \frac{1}{5*10^{-4}} \right]$		1
	$k = 26.67 \mathrm{l} / (\mathrm{mol.min})$		2
A-d	Feasibility of a chemical reaction from Gibbs free energy change:		4
	At chemical equilibrium $\Delta G^0 = 0$. For a chemical reaction at equilibrium at a		
	given temperature & pressure, the free energy must be minimum.		
	If $\Delta G^0 < 0$ i.e. it is negative, the reaction can take place spontaneously (reaction		
	is possible under the given set of conditions). For spontaneous reaction, there		
	should be decrease in Gibb's free energy change.		



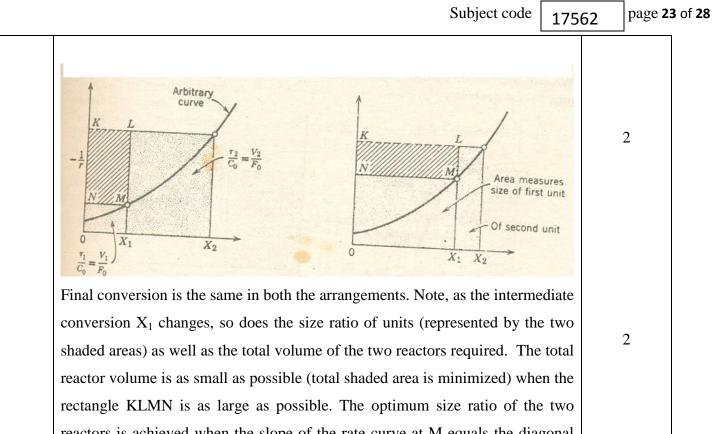
Subject code 17	562 page :
If ΔG^0 is positive ,the reaction cannot take place under the given conditions	
4B Attempt any ONE of the following	6
4B-a $T_1 = 400 \text{ K}$	
$T_2 = 500K$	
$k_2 = 10 k_1$	
(i) From Arrhenius law	
$\ln \frac{k_2}{k_1} = \frac{-E}{R} \left(\frac{1}{T_2} - \frac{1}{T_1} \right)$	
$\ln 10 = (-E / 1.987) * (\frac{1}{500} - \frac{1}{400}) = 2.52 * 10^{-4}E$	3
E = 9137.2 cal	
(ii) From collision theory:	
$\ln\frac{k_2}{k_1} = \frac{-E}{R} \left(\frac{1}{T_2} - \frac{1}{T_1}\right) + 0.5 \ln\left(\frac{1}{T_2} - \frac{1}{T_1}\right)$	
$\ln 10 = (-E / 1.987) * \left(\frac{1}{500} - \frac{1}{400}\right) + 0.5 \ln(\frac{500}{400})$	3
E= 8694.5 cal	
4B-b Van't Hoff equation:	
Consider the reaction $aA + bB \rightarrow rR + sS$	
$\Delta G^0 =- RT ln K(1)$	
$\Delta G^0 = (r\mu R + s \mu s) - (a \mu A + b \mu B)(2)$	2
From 1 and 2 - RTln K = ($r\mu R$ + s μs) –(a μA +b μB)	
Differentiating with respect to T at constant pressure	
$d/dTlnk = -(1/R) ((r \partial/\partial T \mu R/T + s \partial/\partial T \mu s/T) - (a \partial/\partial T \mu A/T + b \partial/\partial T \mu b/T)$	2
Gibb's Helmholtz equation is a $\partial/\partial T$ (µi/T)=- Hi/RT ²	
ie d/dTlnk = $(1/RT^2)$ { $[rH_R + sH_s] - [aH_A + bH_B]$ }	
$= (1/RT^{2})(\Sigma H^{0}_{product} - \Sigma H^{0}_{reactant})$	2
$d/dT \ln k = \Delta H^0 / RT^2$ is the Van't Hoff equation where ΔH^0 is molal enthalpy	
5 Attempt any TWO of the following	16

	Subject code 175	62	page 17 of 28
-a	(i)Zero order reaction: A reaction is of zero order when the rate of reaction is		1
	independent of the concentration of the reactant.		
	Integrated form of rate expression for zero order reaction		
	Rate equation is $-\mathbf{r}_{A} = -\frac{dC_{A}}{dt} = C_{A0}\frac{d_{xA}}{dt} = \mathbf{k}$		
	In terms of concentration		
	$-\frac{dC_A}{dt} = \mathbf{k}$		
	Integrating between appropriate limits		
	$\int_{CA_0}^{CA} - \mathrm{dCA} = \mathrm{k} \int_0^t dt$		
	$C_{A0} - C_A = kt$ for $t < \frac{C_{A0}}{k}$		
	CAO CAO CAO CAO Slope = - K CAO t = CAO/R t		2
	In terms of fractional conversion		
	$C_{A0}\frac{d_{xA}}{dt} = k$		
	Integrating between appropriate limits		
	$C_{A0} \int_0^{xA} \mathbf{d}_{\mathbf{x}\mathbf{A}} = \mathbf{k} \int_0^t dt$		
	$C_{A0} X_A = kt$ for $t \left(\frac{c_{A0}}{k} \right)$		

	Subject code 175	62 page 19 of 28
	$t_{\frac{1}{2}} = \frac{2^{n-1} - 1}{(n-1)kC_{A0}^{n-1}}$	
	$420 = 1 / k \ 0.405$	2
	K= 5.88 *10 ⁻³ l / (mol. Minute)	
5-b	Derivation of performance equation for PFR	
	In PFR, the composition of the fluid varies from point to point along the flow	
	path. So the material balance for a reaction component must be made for a	
	differential element of volume dV.	
	dV	
	$ \begin{array}{c} C_{Ao} \\ F_{Ao} \\ X_{Ao} = 0 \end{array} $ $ \begin{array}{c} F_{A} \\ X_{A} \\ F_{A} \\ F_{A} \\ F_{A} \\ F_{Af} \\ F_{Af$	
	Taking material balance of reactant A over the reactor,	
	Input of A to reactor = Output of A from reactor + Disappearance of A due	
	to chemical reaction + Accumulation of A within the reactor.	
	For plug flow reactor, the last term is zero.	2
	Input of A to reactor = Output of A from reactor + Disappearance of A due	
	to chemical reaction(1)	
	Let, $F_{A0} =$ Molar feed rate to the reactor.	
	C_{A0} = Molar concentration of A in stream entering the reactor	
	(moles/volume)	
	X_A = Fractional conversion of A	
	$F_A = F_{A0} (1 - X_A) = F_{A0} - F_{A0.} X_A$	



Subject code 17	562	page 20 o
$dF_A = - F_{A0.} dX_A$		
For the differential volume dV		
Input of A in moles/time = F_A		
Output of A from reactor in moles/time $= F_A + dF_A$		
Disappearance of A due to chemical reaction in moles/ time $= (-r_A) dV$		
Substituting all the terms in the material balance equation (1)		
$F_A = F_A + d F_A + (-r_A) . dV$		
$- d F_A = (-r_A) dV$		
$F_{A0.}d X_A = (-r_A) dV$		
$\frac{dV}{F_{A0}} = \frac{dX_A}{-r_A}$		
This is the equation accounting for A in the differential section of the reactor of		
volume dV. For the whole reactor, the equation must be integrated.		
$\int_0^V \frac{dV}{F_{A0}} = \int_0^{x_A} \frac{dX_A}{-r_A}$		3
$\frac{V}{F_{A0}} = \int_0^{X_A} \frac{dX_A}{-r_A} = \frac{\tau}{C_{A0}}$		
Where X_A and $(-r_A)$ are evaluated at the exit conditions		
For constant volume system :		
$\frac{V}{F_{A0}} = \int_{0}^{x_{A}} \frac{dx_{A}}{-r_{A}} = \frac{\tau}{C_{A0}} = \frac{-1}{C_{A0}} \int_{C_{A0}}^{C_{A}} \frac{dC_{A}}{-r_{A}}$		
Graphical representation:		


	Subject code 1750	62 page 21 of
	$\frac{1}{-T_{A}} = \frac{V}{F_{Ao}} = \frac{T}{C_{Ao}} = \frac{1}{-T_{A}}$ $Area = T = \frac{C_{Ao} \cdot V}{F_{Ao}}$ $Area = T = \frac{C_{Ao} \cdot V}{F_{Ao}}$ $Graphical Representation of Design equation of PFR$	1
	Advantages of batch reactor:	½ mark
	1. Simple in construction & operation	each for
	2. Low cost	any two
	3. Gives highest conversion by leaving the reactants for longer periods in	points
	reactor.	1
	4. Requires small instrumentation & less supporting equipments	
	5. Suitable for small scale experimental studies on reaction kinetics	
	Disadvantages of batch reactor:	
	1. High labor costs per unit volume of production.	¹∕₂ mark
	2. Requires considerable time to empty, clean out & refill.	each for
	3. Poorer quality control of product.	any two
	4. Large scale production is difficult.	points
5-c	(i)Procedure to determine the best system for achieving desired conversion	
	for different size MFR in series	
	Consider two different sizes MFR's connected in series.	
	Two arrangements are possible	
	1 st arrangement	

(ISO/IEC - 27001 - 2005 Certified)

SUMMER-17 EXAMINATION Model Answer

reactors is achieved when the slope of the rate curve at M equals the diagonal NL. The optimum size ratio for two mixed reactors in series is found in general to be dependent on reaction kinetics of the reaction and on the conversion level. It has been found that for first order reaction- equal size reactors are best, for n>1 - smaller reactor should come first, for n<1 - larger reactor should come first.

(ii)

$$C_{A 0} = 100$$
 $C_{B0} = 200$ $X_A = 0.8$

The reaction

 $A + B \rightarrow R + S$

When 1 mole of A reacts, 1 mole of B also reacts and 1 mole each of R and S are formed.

	17562 page 24
Therefore $\varepsilon_{A} = \frac{Total \ moles \ on \ complete \ conversion-initial \ total \ moles}{initial \ total \ moles} = 0$	1
$C_A = C_{A0}(1 - X_A)$	
$C_A = 100(1 - 0.8) = 20$	
$C_{A0}X_A = C_{B0}X_B$	1
$100 * 0.8 = 200 * X_B$	1
$X_B = 0.4$	
$C_{B} = C_{B0}(1 - X_{B}) = 200 (1 - 0.4) = 120$	
6 Attempt any FOUR of the following	16
6-a Plug flow reactors in Series :Assume two PFRs are placed in series as show	rn 4
below	
Let $X_1 \& X_2$ be the fractional conversions of a component A leaving reactors	1
&2.	
X = 0 F_0 V_1 V_2 V_2	X ₂ F ₂
X_1 : conversion of A from first reactor	
X ₂ : overall conversion of A from entire system	
The performance equation for PFR1 is $\frac{V_1}{F_0} = \int_0^{X_1} \frac{dX}{(-r)}$	
The performance equation for PFR2 is $\frac{V_2}{F_0} = \int_{X_1}^{X_2} \frac{dX}{(-r)}$	
Two PFRS in series	
$\frac{V}{F_0} = \frac{V_1}{F_0} + \frac{V_2}{F_0} = \int_0^{X_1} \frac{dX}{(-r)} + \int_{X_1}^{X_2} \frac{dX}{(-r)} $ EqI	
From eqI, it is clear that the total volume of two PFRs in series is identical to	
that of one PFR(single reactor) for the same conversion. If the total volume of	of
two PFRs in series is $V = V_1 + V_2$ for X_2 , then the same conversion (X_2) can be	be

	Subject code 1756	2 page 25
	achieved using one PFR of volume V. Thus it makes no difference if two PFRs	
	are connected in series or one PFR of same reactor volume. Therefore PFR's	
	are not connected in series.	
6-b	Entropy : Entropy(s) is the measure of the total disorder or randomness of the	1
	system or it is a measure of the unavailable energy to perform useful work.	
	Entropy Change for an Ideal Gas:	
	From first law of thermodynamics, $dU = dQ - dW$	
	$dQ = dU + dW \dots(i)$	
	But $dQ = TdS$ (ii)	
	dW = PdV(iii)	
	For ideal gas $dU = n C_v dT$ (iv)	
	Substituting ii,iii and iv in i	
	$TdS = n C_v dT + PdV$	
	$dS = \frac{n CvdT}{T} + \frac{PdV}{T}$	
	For ideal gas $P = \frac{nRT}{V}$	
	Substituting dS = $\frac{n CvdT}{T} + \frac{nRdV}{V}$	
	Integrating between limits	
	$\int_{S_1}^{S_2} dS = nC_v \int_{T_1}^{T_2} \frac{dT}{T} + nR \int_{V_1}^{V_2} \frac{dV}{V}$	
	$\Delta \mathbf{S} = \mathbf{n} \mathbf{C}_{\mathbf{v}} \ln \frac{T_2}{T_1} + \mathbf{n} \mathbf{R} \ln \frac{V_2}{V_1} \dots \dots (\mathbf{v})$	2
	For isothermal operation, $\Delta S = nRln \frac{V_2}{V_1}$	
	For ideal gas $PV = RT$	
	$\frac{P_2 V_2}{P_1 V_1} = \frac{T_2}{T_1}$	
	Therefore $\frac{V_2}{V_1} = \frac{T_2 P_1}{T_1 P_2}$ (vi)	
	Also $Cp - Cv = R$ (vii)	

			Subject code	175	62	page 20	5 of 28
	Substi	tuting vi and vii in v					
	$\Delta S = n($	$(C_p - R)ln \frac{T_2}{T_1} + nRln \frac{T_2P_1}{T_1P_2}$					
	$\Delta S = nG$	$C_{p} \ln \frac{T_{2}}{T_{1}} + n R \ln \frac{P_{1}}{P_{2}}$					
	For isot	thermal operation, $\Delta S = nRln \frac{P_1}{P_2}$				1	
6-c	Order	of Reaction: It is the sum of exponent	ents of the concentrations in the	rate		2	
	express	ions OR it is the sum of powers to	which concentrations are raised i	n			
	the rate	equation.					
	Classif	ication of reactions on the basis of	f Order				
	1.	First order reaction:				2	
	2.	Second order reaction:					
	3.	Third order reaction:					
	4.	Zero order reaction:					
6-d	Difference between integral method & differential method of analysis of kinetic data:				each	nark to any pints	
	Sr.N	Integral Method	Differential Method		тр	511105	
	0.						
	1.	This method puts a particular	This method deals directly with	1			
		rate equation to the test by	the differential rate equation to				
		integrating and comparing the	be tested, evaluating all terms i	n			
		predicted concentration versus	the equation including the				
		time curve with the	derivative dC_A / dt and testing				
		experimental C vs t data. If the	the goodness of fit of the				
		fit is unsatisfactory, another rate	equation with experiment.				
		equation is suggested and tested.					

			Subject code	175	62	page 27 of 2
	2	Easy to use	This method is not that much			
			easy, complicated & time			
			consuming.			
	3	It is useful for testing relatively	It is useful for testing more			
		simple rate equations	complicated rate equations			
	4	It can be used when scattered	It is used only when more			
		data is available.	accurate &large amount of data			
			are available.			
	5	This method can be only test	It can be used to evolve the rate			
		probable form of rate equation.	equation to fit the data			
6-е	Given X _A =0	: .70 ,t = 13 min	·			
	For co	nstant volume batch reactor,				
		$t = CAO \int_{\Omega}$	$\int_{0}^{X_A} \frac{dX_A}{-r_A}$			
	First order chemical reaction is taking place					
	$-r_{\rm A} = k.C_{\rm A} = k.C_{\rm A0} (1-X_{\rm A})$					
		$t = CAO \int_0^{X_A} \frac{1}{\mathrm{k.C}}$	$\frac{dX_A}{AO(1 - XA)}$			
	-ln(1 -	$X_A) = kt$				
		(0.70) = k * 13				1
		= 0.0926 min ⁻¹ lug flow reactor (constant –density	system):			
	$\frac{V}{F_{A0}} =$	$\int_0^{X_A} \frac{dX_A}{-r_A} = \frac{\tau}{c_{A0}}$				1
		$\tau = C_{A0} \int_0^{X_A} \frac{1}{k} \tau$ $\tau = \int_0^{X_A} \frac{1}{k} \frac{1}{k$	$\frac{dX_A}{c_{A0.(1-X_A)}}$ dX_A			
		$\iota = \int_0 \frac{1}{k.(k)}$	$(1 - X_A)$			

Subject c	ode 175	562	page 28	of 28
Space time $\tau = \frac{1}{k}(-\ln(1-X_A)) = \frac{1}{0.0926}(-\ln(1-0.7)) = 13 \text{ min.}$ Space velocity = s = 1/ τ = 1/13 = 0.07692 min ⁻¹			1 1	