MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)
(ISO/IEC - 27001-2005 Certified)
WINTER-16 EXAMINATION
Model Answer

Subject code 17562 page $\mathbf{1}$ of $\mathbf{2 8}$

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
4) While assessing figures, examiner may give credit for principal components indicated in the
figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q No.	Answer			Marks
1	Attempt any THREE of the following			12
1A-a	Difference between order and molecularity of reaction.			1 mark each for any 4 points
	Sr.No.	Molecularity	Order of reaction	
	1	Molecularity is the number of molecules,atoms or ions in a chemical reaction.	Order of reaction is the sum of exponents of the concentration terms involved in the rate equation.	
	2	Molecularity always have an integer value $1,2,3 \ldots$	Order of reaction can have a fractional value.	
	3	Shows the elementary mechanism or separate steps of a complicated process	Shows the kinetic dependence of the rate on the concentration of the reactants.	
	4	Depending upon the value of molecularity, reaction can be unimolecular ,bimolecular etc.	Depending upon the value of order, the reactions are termed as first order, second order reactions	
	5	Molecularity is a theoretical quantity	Order of reaction is entirely an experimental value.	
1A-b	Relation between $K p$ and $K_{c}($ Derivation)			4

WINTER-16 EXAMINATION

Model Answer

Subject code
17562
page $\mathbf{3}$ of $\mathbf{2 8}$

	$\mathrm{K}_{\mathrm{c}}=\left(\mathrm{C}_{\mathrm{R}}{ }^{\mathrm{r}} \cdot \mathrm{C}_{\mathrm{S}}^{\mathrm{s}}\right) /\left(\mathrm{C}_{\mathrm{A}}{ }^{\mathrm{a}} \cdot \mathrm{C}_{\mathrm{B}}{ }^{\mathrm{b}}\right)$ For ideal gas $\mathrm{C}_{\mathrm{i}}=\mathrm{p}_{\mathrm{i}} / \mathrm{RT}$ Therefore $\mathrm{K}_{\mathrm{c}}=\left\{\left(\mathrm{p}_{\mathrm{R}} / \mathrm{RT}\right)^{\mathrm{r}} .\left(\mathrm{p}_{\mathrm{S}} / \mathrm{RT}\right)^{\mathrm{s}}\right\} /\left\{\left(\mathrm{p}_{\mathrm{A}} / \mathrm{RT}\right)^{\mathrm{a}} .\left(\mathrm{p}_{\mathrm{B}} / \mathrm{RT}\right)^{\mathrm{b}}\right\}$ $=\left(p_{R}{ }^{\mathrm{r}} \cdot \mathrm{p}_{\mathrm{S}}{ }^{\mathrm{s}}\right) /\left(\mathrm{p}_{\mathrm{A}}{ }^{\mathrm{a}} \cdot \mathrm{p}_{\mathrm{B}}{ }^{\mathrm{b}}\right) \cdot(1 / \mathrm{RT})^{(\mathrm{r}+\mathrm{s}+\ldots-(\mathrm{a}+\mathrm{b}=\ldots))}$ R is the ideal gas constant T the absolute temperature in K P is the pressure in atm $\operatorname{ieK}_{\mathrm{c}}=\mathrm{K}_{\mathrm{p}} \cdot(1 / \mathrm{RT})^{\Delta \mathrm{n}} \text { where } \mathrm{K}_{\mathrm{p}}=\left(\mathrm{p}_{\mathrm{R}}{ }^{\mathrm{r}} \cdot \mathrm{p}_{\mathrm{S}}{ }^{\mathrm{s}}\right) /\left(\mathrm{p}_{\mathrm{A}}{ }^{\mathrm{a}} \cdot \mathrm{p}_{\mathrm{B}}{ }^{\mathrm{b}}\right)$ $\Delta \mathrm{n}=(\mathrm{r}+\mathrm{s}+\ldots-(\mathrm{a}+\mathrm{b}+\ldots)$.$) is the difference in the number of moles of$ product and reactant Or $K_{p}=K_{c} \times(R T) \Delta^{n}$	
1A-c	Autocatalytic reactions:A reaction in which one of the products of the reaction acts as a catalyst is called as an autocatalytic reactions. Eg1. $\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ Here $\mathrm{CH}_{3} \mathrm{COOH}$ acts as catalyst 2. Oxidation of a solution of oxalic acid by an acidified solution of KMnO_{4}. $2 \mathrm{MnO}_{4}^{-}+6 \mathrm{H}^{+}+5(\mathrm{COOH})_{2} \rightarrow 2 \mathrm{Mn}^{2+}+10 \mathrm{CO}_{2}+8 \mathrm{H}_{2} \mathrm{O}$ Oxalic acid The reaction is very slow at room temp .The reaction is catalyzed by manganese ions $\left(\mathrm{Mn}^{2+}\right)$ that are not present at start of reaction, hence the rate of reaction is extremely slow..Once reaction starts, $M n^{2+}$ ions are formed ,the rate of reaction speeds up.	2 mark for any 1 eg .
1A-d	Graphical representation: MFR The performance or design equation is $\mathrm{V} / \mathrm{F}_{\mathrm{AO}}=\tau / \mathrm{C}_{\mathrm{AO}}=\mathrm{X}_{\mathrm{A}} /-\mathrm{r}_{\mathrm{A}}$	

For constant density system
$\mathrm{VC}_{\mathrm{AO}} / \mathrm{F}_{\mathrm{AO}}=\tau=\mathrm{C}_{\mathrm{AO}} \mathrm{X}_{\mathrm{A}} /-\mathrm{r}_{\mathrm{A}}=\left(\mathrm{C}_{\mathrm{AO}}-\mathrm{C}_{\mathrm{A}}\right) /\left(-\mathrm{r}_{\mathrm{A}}\right)$

PFR

The performance or design equation is
$\frac{V}{F_{A 0}}=\int_{0}^{x_{A}} \frac{d X_{A}}{-r_{A}}=\frac{\tau}{C_{A 0}}$

Model Answer

	$\text { Area }=\frac{V}{F_{A O}}=\frac{\tau}{C_{A 0}}$ For constant density system $\frac{V}{F_{A 0}}=\int_{0}^{x_{A}} \frac{d X_{A}}{-r_{A}}=\frac{\tau}{C_{A 0}}=\frac{-1}{C_{A O}} \int_{C_{A o}}^{C_{A}} \frac{d C_{A}}{-r_{A}}$	1
1B	Attempt any ONE of the following	6
1B-a	Differential method of analysis of data	

WINTER-16 EXAMINATION

Model Answer

Subject code 17562 page 6 of 28

\begin{tabular}{|c|c|c|}
\hline \& \begin{tabular}{l}
1)Assume a mechanism and from it obtain a rate equation of the form
\[
-r_{A}=\frac{-d C_{A}}{d t}=k f(c)
\] \\
2) From experiment obtain concentration-time data and plot them. \\
3) Draw a smooth curve through this data. \\
4) Determine the slope of this curve at suitably selected concentration values.These slopes \(\left(\frac{-d C_{A}}{d t}\right)\) are the rates of reaction at these composition. \\
5) Evaluate \(f(c)\) for each composition. \\
6) Plot \(\frac{-d C_{A}}{d t} v s f(c)\) for each composition.If we get a straight line through origin ,the rate equation is consistent with the data.If not ,the another rate equation should be tested.
\end{tabular} \& 4

2

\hline 1B-b \& | Given: $\begin{aligned} & \mathrm{C}_{\mathrm{A} 0}=1 \mathrm{~mol} / 1 \\ & X_{A}=0.80 \text { when } t=8 \mathrm{~min} . \\ & X_{A}=0.90 \text { when } t=18 \mathrm{~min} \end{aligned}$ |
| :--- |
| Let us first assume reaction is of zero order. Therefore the integrated equation for zero order reaction in terms of fractional conversion is $\mathrm{C}_{\mathrm{A} 0} \mathrm{X}_{\mathrm{A}}=\mathrm{kt}$ |
| Case 1) Where $X_{A}=0.80$ when $t=8 \mathrm{~min}$. | \&

\hline
\end{tabular}

	since k values are same, reaction is of second order .	
2	Attempt any TWO of the following	16
2-a	The given expression $\mathrm{T}=\left(\frac{10 \mathrm{KE}}{\operatorname{RIn} 2}\right)^{1 / 2}$ is wrong. k should not be there in the expression $\mathrm{k}=\mathrm{ko} \mathrm{e}^{-\mathrm{E} / \mathrm{RT}}$ $\ln \mathrm{k}=\ln \mathrm{ko}-(\mathrm{E} / \mathrm{RT})$ For 2 different temperatures, this can be written as $\begin{equation*} \ln \mathrm{k}_{1}=\ln \mathrm{ko}-\left(\mathrm{E} / \mathrm{RT}_{1}\right) \tag{1} \end{equation*}$ $\ln \mathrm{k}_{2}=\ln \mathrm{ko}-\left(\mathrm{E} / \mathrm{RT}_{2}\right)$ Equation (2)- equation (1) is $\begin{equation*} \ln \frac{k_{2}}{k_{1}}=\frac{-E}{R}\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right) . \tag{2} \end{equation*}$ Given $\mathrm{k}_{2}=2 \mathrm{k}_{1}$ and $\mathrm{T}_{2}=\mathrm{T}_{1}+10$ Equation (3) becomes $\ln 2=\frac{-E}{R}\left(\frac{1}{T_{1+10}}-\frac{1}{T_{1}}\right)$ $\begin{align*} & \ln 2=\frac{-E}{R}\left(\frac{T_{1}-T_{1+10}}{T_{1 *}\left(T_{1+10}\right)}\right) \\ & \ln 2=\frac{10 E}{R T_{1} *\left(T_{1+10}\right)} \ldots \ldots . \tag{4} \end{align*}$ Assuming that the difference between T_{1} and $\mathrm{T}_{1}+10$ is negligible, $\mathrm{T}_{1} *\left(\mathrm{~T}_{1}+10\right)$ can be written as T_{1}^{2} or simply T^{2} Equation 4 can be written as $\ln 2=\frac{10 E}{R T^{2}}$ Therefore $\mathbf{T}^{2}=\left(\frac{10 E}{R \ln 2}\right)$ and $\mathbf{T}=\left(\frac{10 E}{R \ln 2}\right)^{1 / 2}$ If the students have written the basic steps, full mark should be given	8
2-b	Comparison of size of MFR and PFR for first order reaction The performance or design equation for MFR is $\begin{aligned} & \mathrm{V} / \mathrm{F}_{\mathrm{AO}}=\tau / \mathrm{C}_{\mathrm{AO}}= \\ & \tau_{m}=\left(\frac{C_{A 0} V}{F_{A 0}}\right)_{m}=\mathrm{C}_{\mathrm{AO}} \mathrm{X}_{\mathrm{A}} /-\mathrm{r}_{\mathrm{A}} \end{aligned}$	

WINTER-16 EXAMINATION

Model Answer

For first order reaction,
$-\mathrm{r}_{\mathrm{A}}=\mathrm{k} \mathrm{C} \mathrm{C}_{\mathrm{A}}=\mathrm{KC}_{\mathrm{AO}}\left(1-\mathrm{X}_{\mathrm{A}}\right) /\left(1+\square_{\mathrm{A}} \mathrm{X}_{\mathrm{A}}\right)$
Therefore $\tau_{m}=\left(\frac{C_{A 0} V}{F_{A 0}}\right)_{m}=\mathrm{C}_{\mathrm{AO}} \mathrm{X}_{\mathrm{A}} /-\mathrm{r}_{\mathrm{A}}=\mathrm{X}_{\mathrm{A}}\left(1+\square_{\mathrm{A}} \mathrm{X}_{\mathrm{A}}\right) / \mathrm{K}\left(1-\mathrm{X}_{\mathrm{A}}\right) \ldots$. (i)
For constant volume system $\square_{\mathrm{A}}=0$
$\tau_{m}=\left(\frac{C_{A 0} V}{F_{A 0}}\right)_{m}=\mathrm{C}_{\mathrm{AO}} \mathrm{X}_{\mathrm{A}} /-\mathrm{r}_{\mathrm{A}}=\mathrm{X}_{\mathrm{A}} / \mathrm{K}\left(1-\mathrm{X}_{\mathrm{A}}\right)$.
The performance or design equation for PFR is
$\frac{V}{F_{A 0}}=\int_{0}^{x_{A}} \frac{d X_{A}}{-r_{A}}=\frac{\tau}{C_{A 0}}$
$\tau_{P}=\left(\frac{C_{A 0} V}{F_{A 0}}\right)_{P}=\mathrm{C}_{\mathrm{AO}} \int_{0}^{x_{A}} \frac{d X_{A}}{-r_{A}}$
For first order reaction,
$\tau_{P}=\left(\frac{C_{A 0} V}{F_{A 0}}\right)_{P}=\mathrm{C}_{\mathrm{AO}} \int_{0}^{x_{A}} \frac{d X_{A}}{-r_{A}}=\int_{0}^{x_{A}} \frac{(1+\epsilon \mathrm{AXA}) d X_{A}}{\mathrm{~K}(1-\mathrm{XA})}$.
For constant volume system $\square_{\mathrm{A}}=0$
$\tau_{P}=\left(\frac{C_{A 0} V}{F_{A 0}}\right)_{P}=\mathrm{C}_{\mathrm{AO}} \int_{0}^{x_{A}} \frac{d X_{A}}{-r_{A}}=\frac{1}{k} \int_{0}^{x_{A}} \frac{d X_{A}}{(1-\mathrm{XA})}=-\ln \left(1-\mathrm{X}_{\mathrm{A}}\right) / \mathrm{k}$
From eqn (i) and (iii), for variable density system
$\tau_{m} / \tau_{p}=\left(\frac{C_{A 0} V}{F_{A 0}}\right)_{m} /\left(\frac{C_{A 0} V}{F_{A 0}}\right)_{p}=$
$\left\{\mathrm{X}_{\mathrm{A}}\left(1+\square_{\mathrm{A}} \mathrm{X}_{\mathrm{A}}\right) / \mathrm{K}\left(1-\mathrm{X}_{\mathrm{A}}\right)\right\}_{\mathrm{m}} /\left\{\int_{0}^{x_{\mathrm{A}}} \frac{(1+\epsilon \mathrm{AXA}) d X_{A}}{\mathrm{~K}(1-\mathrm{XA})}\right\}_{\mathrm{p}}$
From eqn (ii) and (iv), for constant density system
$\tau_{m} / \tau_{p}=\left(\frac{C_{A 0} V}{F_{A 0}}\right)_{m} /\left(\frac{C_{A 0} V}{F_{A 0}}\right)_{p}=\left\{\mathrm{X}_{\mathrm{A}} /\left(1-\mathrm{X}_{\mathrm{A}}\right)\right\}_{\mathrm{m}} /\{-\ln (1-\mathrm{XA})\}_{\mathrm{p}}$

2-c	Size of MFR is always greater than PFR	
	They are substances present either in the reactants or produced by the reaction which lowers the activity of the catalyst. Methods of catalyst Preparation:	2 mark for definition of catalyst poison

\begin{tabular}{|c|c|c|}
\hline \& \begin{tabular}{l}
Eg Nickel catalyst is prepared on alumina by soaking the evacuated alumina particles with nickel nitrate solution, draining to remove the excess solution and heating in an oven to decompose the nitrate to nickel oxide. The final step is activation in which nickel oxide is reduced to nickel. \\
Any other appropriate method should also be given due consideration.
\end{tabular} \& \\
\hline 3 \& Attempt any FOUR of the following \& 16 \\
\hline 3-a \& \begin{tabular}{l}
Feasibility of a chemical reaction from Gibbs free energy change: \\
At chemical equilibrium \(\Delta \mathrm{G}^{0}=0\).For a chemical reaction at equilibrium at a given temperature \&pressure , the free energy must be minimum. If \(\Delta \mathrm{G}^{0}<0\) i.e.it is negative, the reaction can take place spontaneously.(reaction is possible under a given set of reactions).For spontaneous reaction,there should be decrease in Gibb's free energy change . \\
If \(\Delta \mathrm{G}^{0}\) is positive ,the reaction cannot take place under these conditions
\end{tabular} \& 4 \\
\hline 3-b \& \begin{tabular}{l}
Derivation for \(1^{\text {st }}\) order reaction in terms of concentration: \\
Consider the reaction \(\mathrm{A} \rightarrow \mathrm{R}\) \\
The rate equation is \(-\mathrm{r}_{\mathrm{A}}=-\mathrm{dC}_{\mathrm{A}} / \mathrm{dt}=\mathrm{kC}_{\mathrm{A}} \ldots\). (1) \\
Rearranging - \(\frac{d C_{A}}{C_{A}}=\mathrm{kdt}\) \\
Integrating \\
between \\
appropriate \\
limits
\[
\begin{aligned}
\& -\int_{C_{A O}}^{C_{A} \frac{d C_{A}}{C_{A}}=\mathrm{k} \int_{0}^{t} d t} \\
\& -\left(\ln \mathrm{C}_{\mathrm{A}} / \mathrm{C}_{\mathrm{A} 0}\right)=\mathrm{kt} \\
\& -\ln \frac{C_{A}}{C_{A_{0}}}
\end{aligned}
\]
\end{tabular} \& 3

1

\hline $3-\mathrm{c}$ \& $\mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{c}}(\mathrm{RT})^{\Delta \mathrm{n}}$ \& 1

\hline
\end{tabular}

Model Answer

Subject code
17562
page 12 of 28

	$\begin{aligned} & \mathrm{R}=0.082061 . \mathrm{atm} / \mathrm{mol} . \mathrm{K} \\ & \mathrm{~T}=300 \mathrm{~K} \\ & \text { i) } \mathrm{N}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \leftrightarrow 2 \mathrm{NO}_{(\mathrm{g})} \\ & \Delta \mathrm{n}=(2-(1+1))=0 \\ & \mathbf{K}_{\mathrm{p}} / \mathbf{K}_{\mathbf{c}}=\mathbf{1} \end{aligned}$ $\text { ii) } \mathrm{NH}_{4} \mathrm{Cl}_{(\mathrm{s})} \leftrightarrow \mathrm{HCl}_{(\mathrm{g})}+\mathrm{NH}_{3(\mathrm{~g})}$ $\Delta \mathrm{n}=(1+1)-0=2$ $\mathrm{K}_{\mathrm{p}} / \mathrm{K}_{\mathrm{c}}=(0.08206 * 300)^{2}=\mathbf{6 0 5 . 2}(\mathbf{1} . \mathrm{atm} / \mathrm{mol})^{2}$	1.5 1.5
3-d	Arrhenius law The temperature dependence of the reaction rate constant k , is given by $\mathrm{k}=$ $\mathrm{k}_{0} e_{R T}^{-E}$ Where k_{0} - frequency factor or pre exponential factor E - activation energy in $\mathrm{J} / \mathrm{mol}$ or $\mathrm{cal} / \mathrm{mol}$ R - universal gas constant T - temperature in Kelvin The activation energy is determined experimentally by carrying out the reaction at different temperatures. A plot of $\ln \mathrm{kvs} \frac{1}{T}$ should give a straight line with slope equal to $\frac{-E}{R}$.	2

| Subject code 17562 page 13 of 28 |
| :--- | :--- |

WINTER-16 EXAMINATION

Model Answer

Model Answer

Model Answer

WINTER-16 EXAMINATION

Model Answer

\begin{tabular}{|c|c|c|}
\hline \& \& \\
\hline 4A-d \& \begin{tabular}{l}
Relation between Gibb's free energy (\(\Delta \mathbf{G}^{\mathbf{0}}\)) and equilibrium constant \(\mathrm{K}_{\mathrm{p}}\) \\
Consider the reaction \(\mathrm{aA}+\mathrm{bB} \rightarrow \mathrm{rR}+\mathrm{sS}\) \\
\(\Delta \mathrm{G}\) reaction \(=\Delta \mathrm{G}\) product \(-\Delta \mathrm{G}\) reactant.
\[
=\left(\mathrm{r} \mu_{\mathrm{R}}+\mathrm{s} \mu_{\mathrm{S}}\right)-\left(\mathrm{a} \mu_{\mathrm{A}}+\mathrm{b} \mu_{\mathrm{B}}\right) .
\] \\
At equilibrium there is no Gibb's free energy change, \(\Delta \mathrm{G}=0\)
\[
\begin{aligned}
\& \left(\mathrm{r} \mu_{\mathrm{R}}+\mathrm{s} \mu_{\mathrm{S}}\right)-\left(\mathrm{a} \mu_{\mathrm{A}}+\mathrm{b} \mu_{\mathrm{B}}\right)=0 \\
\& \mathrm{r}\left(\mu_{\mathrm{R}}^{0}+\mathrm{RT} \ln \mathrm{p}_{\mathrm{R}}\right)+\mathrm{s}\left(\mu_{\mathrm{S}}^{0}+\mathrm{RT} \ln p_{\mathrm{S}}\right)= \\
\& \quad \mathrm{a}\left(\mu_{\mathrm{A}}^{0}+\mathrm{RT} \ln \mathrm{ln}_{\mathrm{A}}\right)+ \\
\& \mathrm{b}\left(\mu_{\mathrm{B}}^{0}+\mathrm{RT} \ln p_{\mathrm{B}}\right)
\end{aligned}
\]
\[
\begin{aligned}
\mathrm{RT} \ln \left(\frac{p_{\mathrm{R}}^{r}}{p_{A}^{a}} \frac{p_{S}^{s}}{p_{B}^{b}}\right) \& =\left(\mathrm{a} \mu_{\mathrm{A}}^{0}+\mathrm{b} \mu_{\mathrm{B}}{ }^{0}\right)-\left(\mathrm{r} \mu_{\mathrm{R}}^{0}+\mathrm{s} \mu_{\mathrm{S}}^{0}\right. \\
\& =-(\Delta \mathrm{G} \text { product }-\Delta \mathrm{G} \text { reactant }) \\
\& =-\Delta \mathrm{G} \text { reaction. }
\end{aligned}
\] \\
\(\ln \left(\frac{p_{R}^{r}}{p_{A}^{a}} p_{B}^{s} p_{B}^{b}\right)=\frac{-\Delta \mathrm{G} \text { reaction }}{R T} \operatorname{But}\left(\frac{p_{R}^{r}}{p_{A}^{a}} \frac{p_{S}^{s}}{p_{B}^{b}}\right)=\mathrm{K}_{\mathrm{p}}\) \\
Therefore \(\Delta \mathrm{G}=-\mathrm{RT} \ln \mathrm{K}_{\mathrm{p}}\)
\end{tabular} \& 2

2

\hline 4B \& Attempt any ONE of the following \& 6

\hline 4B-a \& $\mathrm{T}_{1}=400 \mathrm{~K}$ \&

\hline
\end{tabular}

Model Answer

$\mathrm{T}_{2}=500 \mathrm{~K}$
$\mathrm{k}_{2}=10 \mathrm{k}_{1}$
(i) From Arrhenius law
$\ln \frac{k_{2}}{k_{1}}=\frac{-E}{R}\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right)$
$\ln 10=(-\mathrm{E} / 1.987) *\left(\frac{1}{500}-\frac{1}{400}\right)=2.52 * 10^{-4} \mathrm{E}$
$\mathrm{E}=9137.2 \mathrm{cal}$
(ii) From collision theory:
$\ln \frac{k_{2}}{k_{1}}=\frac{-E}{R}\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right)+0.5 \ln \left(\mathrm{~T}_{1} / \mathrm{T}_{2}\right)$
$\ln 10=(-\mathrm{E} / 1.987) *\left(\frac{1}{500}-\frac{1}{400}\right)+0.5 \ln \left(\frac{500}{400}\right)$
$\mathrm{E}=8694.5 \mathrm{cal}$
(iii) $\mathrm{T}_{1}=500 \mathrm{~K}$
$\mathrm{T}_{2}=600 \mathrm{~K}$
From Arrhenius law

$$
\begin{aligned}
& \ln \frac{k_{2}}{k_{1}}=\frac{-E}{R}\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right) \\
& \ln \frac{k_{2}}{k_{1}}=(-9137.2 / 1.987) *\left(\frac{1}{600}-\frac{1}{500)}=1.533\right.
\end{aligned}
$$

$\frac{k_{2}}{k_{1}}=4.63$
From collision theory:
$\ln \frac{k_{2}}{k_{1}}=\frac{-E}{R}\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right)+0.5 \ln \left(\mathrm{~T}_{1} / \mathrm{T}_{2}\right)$
$\ln \frac{k_{2}}{k_{1}}=(-8694.5 / 1.987) *\left(\frac{1}{600}-\frac{1}{500}+0.5 \ln \left(\frac{600}{500}\right)=1.5496\right.$
$\frac{k_{2}}{k_{1}}=4.71$
$\%$ change in rate of reaction $=(4.71-4.63) / 4.63=\mathbf{1 . 7 3}$

WINTER-16 EXAMINATION

Model Answer

Subject code 17562 page 19 of $\mathbf{2 8}$

	Consider the reaction $\mathrm{aA}+\mathrm{bB} \rightarrow \mathrm{rR}+\mathrm{sS}$ $\begin{align*} & \Delta G^{0}=-\mathrm{RT} \ln \mathrm{~K} \ldots \ldots(1) \\ & \Delta \mathrm{G}^{0}=(\mathrm{r} \mu \mathrm{R}+\mathrm{s} \mu \mathrm{~s})-(\mathrm{a} \mu \mathrm{~A}+\mathrm{b} \mu \mathrm{~B}) . \tag{2} \end{align*}$ From 1 and $2-R T \ln K=(r \mu R+s \mu s)-(a \mu A+b \mu B)$ Differentiating with respect to T at constant pressure $\mathrm{d} / \mathrm{dT} \ln \mathrm{k}=-(1 / \mathrm{R})((\mathrm{r} \partial / \partial \mathrm{T} \mu \mathrm{R} / \mathrm{T}+\mathrm{s} \partial / \partial \mathrm{T} \mu \mathrm{~s} / \mathrm{T})-(\mathrm{a} \partial / \partial \mathrm{T} \mu \mathrm{~A} / \mathrm{T}+\mathrm{b} \partial / \partial \mathrm{T} \mu \mathrm{~b} / \mathrm{T})$ Gibb's Helmholtz equation is a $\partial / \partial \mathrm{T}(\mu \mathrm{i} / \mathrm{T})=-\mathrm{Hi} / \mathrm{RT}^{2}$ ie $\mathrm{d} / \mathrm{dTlnk}=\left(1 / \mathrm{RT}^{2}\right)\left\{\left[\mathrm{rH}_{\mathrm{R}}+\mathrm{sH} \mathrm{s}_{\mathrm{s}}\right]-\left[\mathrm{aH}_{\mathrm{A}}+\mathrm{bH}_{\mathrm{B}}\right]\right\}$ $=\left(1 / \mathrm{RT}^{2}\right)\left(\Sigma \mathrm{H}_{\text {product }}^{0}-\Sigma \mathrm{H}_{\text {reactant }}^{0}\right)$ $\mathrm{d} / \mathrm{dTlnk}=\Delta \mathrm{H}^{0} / \mathrm{RT}^{2}$ is the Van't Hoff equationwhere $\Delta \mathrm{H} 0$ is molal enthalpy	2 2 2
5	Attempt any TWO of the following	16
5-a	Integrated rate equation for irreversible Second order reaction A+B \rightarrow Products The chemical reaction is $\mathrm{A}+\mathrm{B} \rightarrow$ Products The rate law for the reaction can be written as $-r_{A}=-\frac{d C_{A}}{d t}=k C_{A} \cdot C_{B} \text { eq.I }$ Let $C_{A 0}$ and $C_{B 0}$ be initial concentrations of A and B respectively. Let $M=\frac{C_{B 0}}{C_{A 0}}$ Let C_{A} and C_{B} be the concentrations of A and B at any time t . Let X_{A} and X_{B} be the fractional conversions of A and B respectively. $X_{A}=\frac{C_{A 0}-C_{A}}{C_{A 0}}$ Amount of A reacted $=X_{A} \cdot C_{A 0}$ $X_{B}=\frac{C_{B 0}-C_{B}}{C_{B 0}}$ Amount of B reacted $=X_{B} \cdot C_{B 0}$	1

WINTER-16 EXAMINATION

Model Answer

Subject code
17562
page 20 of 28
The amounts of A and B reacted at any time t are equal $\&$ given by

$$
X_{A} \cdot C_{A 0}=X_{B} \cdot C_{B 0} \text { eq.II }
$$

$C_{A}=C_{A 0}\left(1-X_{A}\right)$ and $C_{B}=C_{B 0}\left(1-X_{B}\right)$
Therefore on differentiating $\quad-d C_{A}=C_{A 0} d X_{A}$
By putting values of C_{A}, C_{B} and $-d C_{A}$ Eq.I becomes

$$
-r_{A}=\frac{C_{A 0} d X_{A}}{d t}=k C_{A 0}\left(1-X_{A}\right) \cdot C_{B 0}\left(1-X_{B}\right)
$$

$-r_{A}=\frac{C_{A 0} d X_{A}}{d t}=k C_{A 0}\left(1-X_{A}\right)\left(C_{B 0}-C_{B 0} \cdot X_{B}\right)$ eq III
As $X_{A} \cdot C_{A 0}=X_{B} \cdot C_{B 0}$ and $C_{B 0}=M \cdot C_{A 0}$, eq III becomes

$$
\begin{gathered}
\frac{C_{A 0} d X_{A}}{d t}=k C_{A 0}\left(1-X_{A}\right)\left(C_{B 0}-C_{A 0} \cdot X_{A}\right) \\
\frac{C_{A 0} d X_{A}}{d t}=k C_{A 0}\left(1-X_{A}\right)\left(M \cdot C_{A 0}-C_{A 0} \cdot X_{A}\right) \\
\frac{C_{A 0} d X_{A}}{d t}=k C_{A 0}\left(1-X_{A}\right) C_{A 0}\left(M .-X_{A}\right) \\
\frac{C_{A 0} d X_{A}}{d t}=k C_{A 0}^{2}\left(1-X_{A}\right)\left(M .-X_{A}\right) \\
\frac{d X_{A}}{d t}=k C_{A 0}\left(1-X_{A}\right)\left(M .-X_{A}\right) \text { eq IV }
\end{gathered}
$$

Rearranging the Eq.IV, we get
$\frac{d X_{A}}{\left(1-X_{A}\right)\left(M .-X_{A}\right)}=k C_{A 0} d t \quad$ eq.V
Integrating the equation within the limits
At $\mathrm{t}=0, X_{A}=0$
At $\mathrm{t}=\mathrm{t}, X_{A}=X_{A}$

$$
\begin{gathered}
\int_{0}^{X_{A}} \frac{d X_{A}}{\left(1-X_{A}\right)\left(M .-X_{A}\right)}=k C_{A 0} \int_{0}^{t} d t \\
\int_{0}^{X_{A}} \frac{d X_{A}}{\left(1-X_{A}\right)\left(M .-X_{A}\right)}=k C_{A 0} t
\end{gathered}
$$

WINTER-16 EXAMINATION

Model Answer

Subject code 17562 page 21 of 28
Breaking the L.H.S.of the above equation into partial fractions \& then integrate it

$$
\begin{gathered}
\frac{A}{\left(1-X_{A}\right)}+\frac{B}{\left(M-X_{A}\right)}=\frac{1}{\left(1-X_{A}\right)\left(M-X_{A}\right)} \\
\frac{A\left(M-X_{A}\right)+}{\left(1-X_{A}\right)} \frac{B\left(1-X_{A}\right)}{\left(M-X_{A}\right)}=\frac{1}{\left(1-X_{A}\right)\left(M-X_{A}\right)} \\
A\left(M-X_{A}\right)+B\left(1-X_{A}\right)=1
\end{gathered}
$$

Substituting $X_{A}=1$, we $\operatorname{get} A(M-1)=1 \therefore A=\frac{1}{(M .-1)}$
Substituting $X_{A}=M$, we get $B=-\frac{1}{(M-1)}$
Putting values of A and B,we get
$\frac{1}{(M-1)}\left[\int_{0}^{X_{A}} \frac{d X_{A}}{\left(1-X_{A}\right)}-\int_{0}^{X_{A}} \frac{d X_{A}}{\left(M-X_{A}\right)}\right]=k C_{A 0} t$
$\frac{1}{(M-1)}\left[-\ln \left(1-X_{A}\right)+\ln \frac{\left(M-X_{A}\right)}{M}\right]=k C_{A 0} t$
$\ln \left[\frac{\left(M-X_{A}\right)}{M\left(1-X_{A}\right)}\right]=C_{A 0}(M-1) k t$
Eq.VI
EqVI is the desired integrated rate equation of irreversible Second order reaction with $C_{A 0} \neq C_{B 0}$ in terms of conversion.

WINTER-16 EXAMINATION

Model Answer

WINTER-16 EXAMINATION

Model Answer

Subject code 17562 page 24 of 28
For PFR ,the fourth term is zero.Therefore eq.I becomes
Rate of Rate of flow Rate of
Flow of $\mathrm{A}=$ of $\mathrm{A}+$ disappearance of $\mathrm{A} \quad$ eq.II
To dV out from dV by chemical reaction
For the differential element of volume dV
Input of A, (moles/time) $=F_{A}$
Output of A, $($ moles/time $)=F_{A}+d F_{A}$
Rate of disappearance of A in moles/time
$\left(-r_{A}\right) d V=\frac{\text { moles of A reacting }}{(\text { time })(\text { volume of fluid) }}$ (volume of element)
Substituting all these values in eq.II

$$
F_{A}=\left(F_{A}+d F_{A}\right)+\left(-r_{A}\right) d V
$$

As $F_{A}=F_{A 0}\left(1-X_{A}\right)$ and $\mathrm{d} F_{A}=d\left[F_{A 0}\left(1-X_{A}\right)\right]=-F_{A 0} . d X_{A}$

$$
F_{A}=F_{A}-F_{A 0} \cdot d X_{A}+\left(-r_{A}\right) d V
$$

$F_{A 0} \cdot d X_{A}=\left(-r_{A}\right) d V$
eq.III
Eq.III is the differential form of design equation for a plug flow reactor. For the reactor as a whole,the equation must be integrated. $F_{A 0}$ is constant, but $\left(-r_{A}\right)$ depends upon the concentration.
Rearranging the terms \& integrating within limits

$$
\begin{gathered}
\int_{0}^{v} \frac{d V}{F_{A 0}}=\int_{0}^{X_{A f}} \frac{d X_{A}}{\left(-r_{A}\right)} \\
\frac{V}{F_{A 0}}=\int_{0}^{X_{A f}} \frac{d X_{A}}{\left(-r_{A}\right)} \\
V=F_{A 0} \int_{0}^{X_{A f}} \frac{d X_{A}}{\left(-r_{A}\right)}
\end{gathered}
$$

As

$$
\tau=\frac{V}{v_{0}}=\frac{V \cdot C_{A 0}}{F_{A 0}}=C_{A 0} \int_{0}^{X_{A f}} \frac{d X_{A}}{\left(-r_{A}\right)} \text { for any } \epsilon_{A} \quad \text { eq.IV }
$$

When $X_{A f}=X_{A}$

WINTER-16 EXAMINATION

Model Answer

Subject code 17562 page $\mathbf{2 5}$ of $\mathbf{2 8}$

$$
\tau=C_{A 0} \int_{0}^{X_{A}} \frac{d X_{A}}{\left(-r_{A}\right)} \quad e q V
$$

With the equation V , we can determine the reactor size necessary to achieve a specific conversion $X_{A f}$.

For constant density systems, the performance equation can be expressed in terms of concentration

We have $X_{A}=\frac{C_{A 0}-C_{A}}{C_{A 0}}$ and $d X_{A}=-\frac{d C_{A}}{C_{A 0}}$
2
Eq.IV becomes

$$
\frac{V}{F_{A 0}}=\frac{\tau}{C_{A 0}}=-\frac{1}{C_{A 0}} \int_{C_{A 0}}^{C_{A f}} \frac{d C_{A}}{\left(-r_{A}\right)}
$$

$$
\tau=\frac{V}{v_{0}}=-\int_{C_{A 0}}^{C_{A f}} \frac{d C_{A}}{\left(-r_{A}\right)}
$$

$$
e q V I
$$

$$
\frac{1}{-r_{A}}
$$

$$
A_{\text {rea }}=\tau=\frac{C_{A O} \cdot V}{F_{A O}}
$$

$$
\frac{1}{-r_{A}}
$$

Graphical Representation of Design equation of $P F R$

$\mathbf{6}$	Attempt any FOUR of the following	$\mathbf{1 6}$
$6-\mathrm{a}$	Spacetime $(\boldsymbol{\tau}):$	1
It is the time required to process one reactor volume of feed measured		
atspecified condition.		
Space time = Reactor volume / volumetric flow rate		
Mathematical expression: $\boldsymbol{\tau}=\frac{\boldsymbol{V}}{v_{0}}$	1	

WINTER-16 EXAMINATION

Model Answer

\begin{tabular}{|c|c|c|}
\hline \& Subject code 175 \& page 26 \\
\hline \& ```
unit:Unitisunitoftime(seconds,minute,etc)
Spacevelocity(s)
Itisthenumberofreactorvolumeoffeedatspecifiedconditionswhichcanbetreate
dinunittime.
Space Velocity \(=\) volumetric flow rate \(/\) Reactor volume
Equation \(s=\frac{v_{0}}{V}\)
Unit: \(\quad\) time \(^{-1}\left(\right.\) second \(\left.{ }^{-1}, \min ^{-1}\right)\)
``` \& 1 \\
\hline 6-b \& \begin{tabular}{l}
Entropy Change for an Ideal Gas: \\
From first law of Thermodynamics, change in internal energy is the difference in heat absorbed by system and work done by that system \\
In differential formdU \(=\mathrm{dQ}-\mathrm{dWEq} . \mathrm{I}\) \\
As work done by the system against external pressure \(\mathrm{P}, \mathrm{dU}=\mathrm{P} . \mathrm{dV}\) \\
From Maxwell equation \(d Q=T . d S\) \\
Putting values of dU and dQ in Eq.IdU = T.dS- P.dVEq.II \\
The heat capacity at constant volume \(C_{v}\) is given by \(C_{v}=\frac{d U}{d T}\) \\
Therefore \(C_{v} \cdot d T=d U\) \\
Rearranging eq.II we getT.dS \(=\mathrm{dU}+\) P.dVEq.III \\
The ideal gas equation for one mole of ideal gas is
\[
\begin{aligned}
\& \text { P.V }=\text { R.T } \\
\& P=\frac{R . T}{V}
\end{aligned}
\] \\
Putting values of \(\mathrm{dU} \& \mathrm{P}\) in eq.III becomes
\[
\begin{aligned}
\& T \cdot d S=C_{V} \cdot \mathrm{dT}+\frac{R \cdot T}{V} \cdot d V \\
\& d S=C_{V} \cdot \frac{d T}{T}+R \cdot \frac{d V}{V}
\end{aligned}
\] \\
Integrating above equation between initial \& final states gives
\[
\int_{s_{1}}^{s_{2}} d S=C_{v} \int_{T_{1}}^{T_{2}} \frac{d T}{T}+R \int_{v_{1}}^{v_{2}} \frac{d V}{V}
\]
\end{tabular} \& 1

1

1 <br>
\hline
\end{tabular}

## Model Answer



## Model Answer

Subject code
17562
page 28 of $\mathbf{2 8}$

|  | Material Balance of A: A unreacted $=\mathrm{A}$ initially -A reacted $\begin{aligned} & \quad N_{A}=N_{A 0}-N_{A 0} \cdot X_{A} \\ & N_{A}=N_{A 0}\left(1-X_{A}\right) \end{aligned}$ <br> As $C_{A}=\frac{N_{A}}{V}=\frac{N_{A 0}\left(1-X_{A}\right)}{V}$ <br> For a constant-volume system $V=V_{0}$ <br> Equation I becomes $C_{A}=\frac{N_{A 0}\left(1-X_{A}\right)}{V_{0}} \quad E q . I I$ <br> As $C_{A}=\frac{N_{A 0}}{V_{0}}$ Eq.II becomes $C_{A}=C_{A 0}\left(1-X_{A}\right)$ | 1 1 1 1 |
| :---: | :---: | :---: |
| 6-e | Relationship between $\mathrm{C}_{\mathrm{A}}$ and $\mathrm{X}_{\mathrm{A}}$ for constant density batch and flow systems: <br> These systems includes most liquid phase reactions as well as gas phase reactions carried out at constant temperature and density. <br> For this case $\mathrm{C}_{\mathrm{A}}$ and $\mathrm{X}_{\mathrm{A}}$ are related as $C_{A}=C_{A 0}\left(1-X_{A}\right)$ and $\mathrm{N}_{\mathrm{A}}=\mathrm{N}_{\mathrm{A} 0}\left(1-\mathrm{X}_{\mathrm{A}}\right)$ $\frac{\mathrm{c}_{\mathrm{A}}}{\mathrm{C}_{\mathrm{A} 0}}=\left(1-X_{A}\right) \text { and } \mathrm{d} C_{A}=-C_{A 0} \cdot d X_{A}$ $X_{A}=1-\frac{C_{A}}{C_{A 0}} \text { and } d X_{A}=-\frac{d C_{A}}{C_{A 0}}$ <br> These relations are valid for $\varepsilon_{A}=\frac{V_{X_{A}=} 1-V_{X_{A}=0}}{V_{X_{A}=} 0}=0$ <br> For constant density(constant volume systems) there is no change in volume since there is no change in number of moles due to reaction and thus $\varepsilon_{A}=0$ |  |

