

> SUMMER-16 EXAMINATION Model Answer

Subject code :(17562)

Page **1** of **24**

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.

2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.

3) The language errors such as grammatical, spelling errors should not be given more

Importance (Not applicable for subject English and Communication Skills.

4) While assessing figures, examiner may give credit for principal components indicated in the

figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.

5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.

6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.

7) For programming language papers, credit may be given to any other program based on equivalent concept.

SUMMER-16 EXAMINATION Model Answer

Subject code :(17562)

Page 2 of 24

Q			Answer				marks	Total
No.								marks
1A	Attempt any THREE							12
1A- a	Chain reaction: In Chain reaction, the in then combines with the					•	2	4
	step. Occasionally these	e intermediates	are destroyed	in chain ter	mination ste	p.		
	$R \rightarrow I^*$	Initiation ste	р			-		
	$I^* + R \rightarrow I^*$	+ P Propagati	ion step					
		Termination s	-					
	Non chain reaction:		-					
	In non-chain reaction	n, the intermed	ate is formed i	n the first re	eaction and t	hen disappears as it		
	reacts further to give pr	oducts.					2	
	R→I*						2	
	$I \rightarrow P$							
1A-	Relation between conv	version and eq	uilibrium con	stant for se	cond order	reversible reaction		4
b	Reaction is $A + B \leftrightarrow R$	+S						
	Let 1 mole of A	and 1 mole of	B is present in	itially.				
	x_A mole of A reacts at	equilibrium						
	P is the tot	al pressure.						
	When 1 mole of A reac	ts, 1mole of B	also reacts. Th	en 1 mole of	R and 1 m	ole of S is produced		
		А	В	R	S	Total		
						moles		
	Moles present initially	1	1	-	-			

SUMMER-16 EXAMINATION Model Answer

Subject code :(17562)

Page **3** of **24**

Moles r	eacted /	XA	XA	X _A	XA			
produced	at							
equilibriur	n							
Moles p	resent at	1- x _A	1- x _A	X _A	XA	2	2	
equilibriur	n							
Mole fract	ion	1- x _A /2	1- x _A /2	x _A / 2	x _A / 2			
Partial pre	ssure	$P(1-x_A)/2$	$P(1-x_A)/2$	P x _A / 2	P x _A / 2			
	$(\underline{X}_A)_P(\underline{X}_A)$							
$\mathbf{K}_{\mathrm{p}} = \frac{P\left(\frac{1}{2}\right)}{P\left(\frac{1-2}{2}\right)}$	$\left(\frac{1-X_A}{2}\right) P\left(\frac{1-X_A}{2}\right)$	$\frac{1}{4} = \frac{x_A^2}{(1-x_A)^2}$						
$K_{p} (1 - x_{A})^{2}$	$= x_A^2$							
$K_p(1-2x_A+$	$(x_A^2) = x_A$	2						
K _p - 2 K _p x _A	$+ K_p x_A^2 =$	x_A^2						
(K _p - 1) x _A	$^2-2$ $K_p x_A$	$+ K_p = 0$						
2Kn	$+ (4K_p^2)$	$-4(K_{D}-1)K_{D}$	-				2	
$X_A = -$	$\frac{1}{\sqrt{\frac{mp}{2(k_{r})}}}$	$-4(K_P-1)K_P)$						
	-							4
		$-r_{A1} = 2.7 * 10^{-10}$						4
	mol / I	$-r_{A1} = 0.3 * 10^{-1}$	^o mol / 1 min					
$-\mathbf{r}_{\mathrm{A}} = \mathbf{K}\mathbf{C}_{\mathrm{A}}^{n}$								
	•	og K +n log C					2	
		$\log (C_{A1} / C_{A2})$						
_	10-3 / 0.3 *	10^{-3}) = n log(0.15 / 0.05)					
n = 2							2	
Order of th	e reaction	is 2						

Subjec	t code :(17562)	Page 4 of 2	24
1A-	Relation between C _A and X _A		4
d	i)Constant volume System		
	$C_{A} = C_{A0}(1 - X_{A})$	2	
	ii)Variable volume system		
	$C_{\rm A}$ $(1-X_{\rm A})$	2	
	$\frac{c_{\mathrm{A}}}{c_{\mathrm{A0}}} = \frac{(1 - X_{\mathrm{A}})}{(1 + \varepsilon_{\mathrm{A}} X_{\mathrm{A}})}$		
1B	Attempt any ONE		6
1B-	Integrated form of rate expression for zero order reaction		6
a	Rate equation is $-\mathbf{r}_{A} = -\frac{dC_{A}}{dt} = C_{A0}\frac{d_{xA}}{dt} = \mathbf{k}$	1	
	In terms of concentration		
	$-\frac{dC_A}{dt} = \mathbf{k}$		
	Integrating between appropriate limits		
	$\int_{CA_0}^{CA} - dCA = \mathbf{k} \int_0^t dt$	1.5	
	$C_{A0} - C_A = kt$ for $t < \frac{C_{A0}}{k}$		
	CAO CAO CA CA t = CAO/R t = CAO/R	1	
	In terms of fractional conversion		
	$C_{A0}\frac{d_{xA}}{dt} = k$	1.5	
	Integrating between appropriate limits		

ubject	code :(17562)				F	Page 5 of	24
	$C_{A0} \int_0^{xA} d_{xA} = k \int_0^{xA} $	$\int_{0}^{t} dt$					
	$C_{A0} X_A = kt$	t for $t < \frac{C_{A0}}{k}$					
	24	t CAO JI	$p_e = \frac{k}{CA_0}$			1	
1B-	Theories of rea	ction rate constant:				1	6
b	1. Arrheniu	is theory					
	2. Collision	n theory					
	3. Transitio	on state theory					
		Transition State	Collision Theory	Arrhenius			
		Theory		theory		5	
	i) E	Prediction of reaction	Prediction of reaction	Prediction of			
	Experiment	rates is more	rates is less accurate	reaction rates is			
		accurate with	with experiment.	more accurate			
		experiment.		with experiment			
	ii)	Temperature	Temperature	Temperature			
	Mathematical	Dependency is	Dependency is	Dependency is			

SUMMER-16 EXAMINATION Model Answer

	equation	$k \propto T \cdot e^{-E/_{RT}}$	$k \propto T^{1/2} \cdot e^{-E/_{RT}}$	$k \propto e^{-E/_{RT}}$		
	iii) Activated	The theory views	The theory views that	No activated		
	complex	that the formation of	the decomposition of	complex is		
		activated complex is	activated complex is	formed		
		very rapid&	very rapid & formation			
		decomposition of	of activated complex is			
		activated complex is	slow.			
		slow.				
2	A 44 amont a may T	WO				16
	Attempt any T			111.1		16
2-a			cy of rate constant from	·		8
		-	is found from the kinetic t	heory of gases.		
	For the bimolecular collision of like molecules A,					
	$Z_{AA} = \Box_A^2 n_A^2 \sqrt{\frac{4\pi kt}{M_A}}$					
	$= \Box_{\mathrm{A}}^2 \frac{N^2}{10^6}$	$\sqrt{\frac{4\pi kt}{M_A}} C_A^2 \dots \dots (i)$			2	
	= number	of collisions of A with A	A / sec.cm ³			
	Where $\Box = diar$	neter of molecule, cm				
	M = (motion M)	olecular weight) / N, ma	ss of a molecule, gm			
	N = Avc	ogadro's number				
	$C_A = con$	centration of A, mol / li	ter			
	$n_{\rm A} = NC_{\rm A} / 10^3,$	number of molecules of	$f A / cm^3$			
	$\mathbf{k} = \mathbf{Bo}$	ltzmann constant				
	For the bimolec	ular collision of unlike 1	molecules in a mixture of A	A and B, kinetic theory gives		
	$Z_{AB} = \{(\Box_A + \Box$	$ B /2 \}^{2} n_{A} n_{B} \sqrt{8\pi kT \left(\frac{1}{M_{A}}\right)^{2}}$	$\left(\frac{1}{M_B}\right)$			

ject code :(17562)	Page 7 of	24
$= \{ (\Box_{A} + \Box_{B}) / 2 \} \frac{2N^{2}}{10^{6}} \sqrt{8\pi kT \left(\frac{1}{M_{A}} + \frac{1}{M_{B}}\right)} C_{A} C_{B} \dots \dots \dots (ii)$	2	
If every collision between reactant molecules results in the transformation of reactants	into	
product, these expressions give the rate of bimolecular reactions. The actual rate is much lo	ower	
than that predicted and this indicates that only a small fraction of all collisions result in react	tion.	
This suggests that only those collisions that involve energies in excess of a given minim	num	
energy E lead to reaction. From the Maxwell distribution law of molecular energies the frac	tion	
of all bimolecular collisions that involves energies in excess of this minimum energy is g	iven	
approximately by $e^{-E/RT}$ where $E \square \square RT$.	3	
Thus the rate of reaction is given by	C C	
$-\mathbf{r}_{\mathrm{A}} = -\frac{1}{V} \frac{dN_{A}}{dt} = \mathbf{k} \ \mathbf{C}_{\mathrm{A}} \mathbf{C}_{\mathrm{B}} \ \dots \dots \dots (\mathrm{i}\mathrm{i}\mathrm{i}\mathrm{i})$		
= (collision rate, mole / liter.sec)* (fraction of		
collision involving energies in excess of E)		
$= Z_{AB} \frac{10^3}{N} e^{-E / RT}$		
$= \{ (\Box_{A} + \Box_{B}) / 2 \}^{\frac{2}{10^{3}}} \sqrt{8\pi kT \left(\frac{1}{M_{A}} + \frac{1}{M_{B}}\right)} e^{-E/RT} C_{A} C_{B} \dots (iv)$	1	
Comparing iii and iv, $\mathbf{k} \propto T^{1/2} e^{-\mathbf{E} / \mathbf{RT}}$		
2-b Given: $X_A = 0.70$, t = 13 min		8
For batch reactor, in which first order chemical reaction is taking place		
$-\mathbf{r}_{\mathbf{A}} = \mathbf{k}.\mathbf{C}_{\mathbf{A}}$		
$-\ln(1 - X_A) = kt$		
$-\ln(1-0.70) = k * 13$		
$k = 0.0926 \text{ min}^{-1}$ For Plug flow reactor (constant –density system):	2	
$\frac{V}{F_{A0}} = \int_0^{X_A} \frac{dX_A}{-r_A} = \frac{\tau}{C_{A0}}$		

SUMMER-16 EXAMINATION Model Answer

Subject code :(17562)

	$\tau = C_{A0} \int_0^X A \frac{dX_A}{k.C_{A0.(1-X_A)}}$ $\tau = \int_0^X A \frac{dX_A}{k.(1-X_A)}$	2	
	$\int_{0}^{\infty} k. (1 - X_{A})$ Space time $\tau = \frac{1}{k}(-\ln(1 - X_{A})) = \frac{1}{0.0926}(-\ln(1 - 0.7)) = 13 \text{ min.}$ Space velocity = s = 1/ τ = 1/13 = 0.07692 min ⁻¹	1	
	For Mixed flow reactor :		
	$\tau = \frac{C_{A0} \cdot X_A}{(-r_A)}$		
	$\tau = \frac{C_{A0} \cdot X_A}{-r_A} = \frac{C_{A0} \cdot X_A}{k C_{A0} (1 - X_A)}$	2	
	Space time $\tau = \frac{0.70}{0.0926(1-0.7)} = 25.2$ min.		
	Space velocity = s = $1/\tau = 1/25.2 = 0.03968 \text{ min}^{-1}$	1	
2-c	Packed bed(Fixed bed) reactor		8
	Coolant out Reactant lijas m	2	
	Explanation: Fixed bed reactors normally consist of one or more tubes packed with catalyst		
	particles and are generally operated in vertical position. The catalyst particles may be of a variety		
	of sizes and shapes - granular, pelleted, cylinder, spheres etc. Wires of metals are made into		
	screens in the case of expensive catalysts.	2	
	Chances of hot spot formation are there in fixed bed reactor. In order to prolong the time		
	between regeneration and shut down, the reactor tube may be made longer than required. The		

Page **8** of **24**

SUMMER-16 EXAMINATION Model Answer

Subject code :(17562)

Page 9 of 24

Jeci	code :(17562)	Page 9 01 2	4
	problem of regeneration of catalyst is a serious issue in this type of reactor.		
	Fluidized bed reactor with regenerator:		
	Product gas out Fluidised bed Regenerator (returned bed) Reactant gas in Hydraulic lift	2	
	Explanation:		
	Consider a bed of fine particles and gases passing upward through them. On increasing the flow		
	rate, a point is reached when the solids become suspended in the gas stream. In this state the bed		
	is said to be fluidized and the particular inlet gas velocity is called minimum fluidizing velocity.	2	
	If the gas velocity is much larger than this minimum, the bed takes the appearance of a violently	2	
	boiling liquid with solids in vigorous motion and large bubbles rising rapidly through the bed. In		
	this case we have the bubbling fluidized bed. Industrial reactors particularly for solid catalyzed		
	gas phase reactions often operate as bubbling beds with gas velocities equal to 9 to 30 times		
	minimum fluidizing velocity.		
3	Attempt any FOUR		16
3-a	$C_{\rm NH3} = 0.105 \text{ mol} / 1$		4
	$C_{H2} = 1.5 \text{ mol} / 1$		
	$C_{N2} = 1.1 \text{ mol} / 1$		
	T = 1000 K		
	$N_2 + 3 H_2 \leftrightarrow 2 NH_3$		
		1	

Page 10 of 24

	$K_c = = 0.105^2 / (1.5^3 * 1.1) = 2.97 * 10^{-3} (g \text{ mol/ l})^{-2}$	2	
	$Kp = Kc(RT)^{\Delta n}$		
	$\Delta n = 2 - 4 = -2$	2	
	$Kp = 2.97 * 10^{-3} * (0.08206 * 1000)^{-2} = 4.4 * 10^{-7} atm^{-2}$		
3-b	Definition of Half life : Itisthetime required to reduce the concentration of the reactant to half of its original value.	1	4
	Relation between half life and rate constant for first order reaction:		
	$t_{\gamma_2} = \frac{0.693}{k}$	2	
	Characteristics.		
	Half-life of first order reaction is independent of initial concentration of the reactant	1	
3-c	Definition:		4
	i)fugacity:	1	
	It is the fictitious (imaginary) pressure for real gases		
	ii) Chemical potential:		
	It is defined as the change infree energy of a substance when one moleofit is added to such a large	1	
	quantity of the system that there is		
	no appreciable change in over all composition of the systematic onstant temperature & pressure.		
	iii) chemical equilibrium constant:		
	It is the ratio of rate constants of forward and backward reaction.		
	Or	1	
	It is the ratio of product of the concentration of the products to the product of concentration of		
	the reactants.		
	iv) Gibb's free energy:		
	Itistheenergyactuallyavailabletodousefulwork. It predicts the feasibility and equilibrium	1	

oject	code :(17562)	Page 11 of	24			
	conditionsforchemicalreactionsat constanttemperatureandpressure.					
3-d	Types of intermediates in non- chain reaction:1.Freeradicals.Freeatomsorlargerfragments of stable molecules which contain one or more					
	unpaired electrons are called free radicals. The unpaired electrons designated by a dot in the					
	chemical symbol for the substance.	each				
	Eg. $C\dot{H}_3C_2\dot{H}_5$					
	2.Ions andpolarsubstances. Electrically charged atoms,					
	molecules or fragments of molecules such as Na^+ , OH^- , $NH4^+$ are called ions. They may act as intermediates in reaction.					
	3.Molecules:Consider the consecutive reaction $A \rightarrow R \rightarrow S$					
	Thisisamultiple reaction. If the product Rishighly reactive, its concentration					
	inthereactionmixturecanbecometoosmall tomeasure.Insuchasituation,R isnotobservedand					
	canbeconsideredtobea reactive intermediate.					
	4. Transition complexes. The collision between reactant molecules resultina					
	widedistributionofenergiesamongtheindividual molecules. This can result in					
	strained bonds, unstable form of molecules or unstable association of molecules					
	which can then either decomposet ogive products or by further collision return tomolecules					
	inthenormalstate.Suchunstableformsarecalledtransition complexes.					
3-е	Steps involved in solid catalyzed gas phase reactions	4				
	1. Diffusion of the reactant from bulk fluid phase to external surface of catalyst					
	2. Diffusion of reactant throm pour mouth into catalyst pores					
	3. Adsorption of reactant into catalyst surface					
	4. Chemical reaction to form product					
	5. Deadsorption of product					
	6. Diffusion of deadsorped product from interior of catalyst pores to surface					
	7. Diffusion of product to the bulk of fluid phase					

SUMMER-16 EXAMINATION Model Answer

Subject code :(17562)

Page 12 of 24

4	Attempt any THREE		12
4A-	Derivation of integrated rate expression for irreversible second order reaction2A		4
a	→Products:		
	$2A \rightarrow \text{product}$		
	In terms of conversion		
	$-\mathbf{r}_{\mathrm{A}} = -\mathbf{d}_{\mathrm{CA}}/\mathrm{dt} = \mathbf{k}{\mathbf{C}_{\mathrm{A}}}^2$	1	
	$C_A = C_{A0}(1 - X_A)$		
	$\mathbf{d}_{\mathrm{CA}} = -\mathbf{C}_{\mathrm{A0}}.\mathbf{d}_{\mathrm{XA}}$	1	
	$- \mathbf{d}_{\mathrm{CA}} = \mathbf{C}_{\mathrm{A0}}. \ \mathbf{d}_{\mathrm{XA}}$		
	$C_{A0} (d_{XA}/dt) = k. C_{A0}^{2} (1-X_{A})^{2}$	1	
	On integrating		
	$1/C_{A0}\{X_A/(1-X_A)\} = kt$	1	
4A-	Catalyst deactivation categories		4
0	1. Deactivation by Fouling	2	
	2. Chemical Deactivation - Poisoning		
	3. Deactivation by Thermal Degradation and Sintering		
	Description:		
	Deactivation by Fouling Generally fouling covers all phenomena where the surface is covered with adeposit. The most		
	widely known form of fouling of catalysts is coke formation. Most of coke formation arises as a		
	result of carbonaceous residues covering the active sites of a heterogeneous catalyst surface,		
	subsequently decreasing the active surface area of the catalyst. In addition the deposition of rust		
	and scale from elsewhere in the catalytic system is not uncommon. Coke-forming processes also	2	
	involve chemisorption of different kinds of carbons or condensed hydrocarbons that may act as		
	catalyst poisons causing the chemical deactivation of the catalyst.		
	Eg. The fouling of zeolite catalysts occurs in the form of coke molecules limiting the access of		
	the reactant hexane to the active sites of catalyst.		

SUMMER-16 EXAMINATION Model Answer

Subject code :(17562)

Page **13** of **24**

	Due consideration should be given to any other method of catalyst deactivation		
4A-	CA0'=0.1 mol/l $t_{1/2}$ '= 1152 min		4
c	CA0'' = $0.2 \text{mol/lt}_{1/2}$ '' = 568 min		
	$t_{1/2} = \frac{c_{AO}^{1-n}}{k(n-1)} [(2^{n-1}) - 1]$	2	
	$(t_{1/2}' / t_{1/2}'') = (C_{A0}' / C_{A0}'')^{1-n}$		
	Taking log and rearranging		
	$n = 1 - (\log(t_{1/2}'/t_{1/2}'') / \log(C_{A0}''/C_{A0}'))$	2	
	$n = 1-(\log (1152/5 \ 68))/(\log (0.1/0.2))$	-	
	n=1 + 1.02 = 2.02		
	Order of the reaction is 2		
4A-	Derivation of $\mathbf{Kp} = \mathbf{K}_{c}(\mathbf{RT})^{\Delta n}$		4
d	Consider the reaction $aA + bB + \dots \rightarrow rR + sS \dots$	1	
	$K_{c} = (C_{R}^{r} \cdot C_{S}^{s}) / (C_{A}^{a} \cdot C_{B}^{b})$	1	
	For ideal gas $C_i = p_i / RT$		
	Therefore $K_{c} = \{(p_{R} / RT)^{r} . (p_{S} / RT)^{s}\} / \{(p_{A} / RT)^{a} . (p_{B} / RT)^{b}\}$	2	
	$=(p_{R}^{r}.p_{S}^{s}) / (p_{A}^{a}.p_{B}^{b})$. $(1 / RT)^{(r+s+(a+b=))}$		
	R is the ideal gas constant		
	T the absolute temperature in K		
	P is the pressure in atm		
	$ieK_{c} = K_{p}$. $(1 / RT)^{\Delta n}where K_{p} = (p_{R}^{r} \cdot p_{S}^{s}) / (p_{A}^{a} \cdot p_{B}^{b})$		
	$\Delta n = (r + s + (a + b +))$ is the difference in the number of moles of product and reactant		
	Or $K_p = K_c \times (RT) \Delta^n$	1	
4B	Attempt any one		6
4B-	Rate of disappearance of A is $-dC_A / dt = (0.1-0.05) / 2 = 0.025 \text{ mol} / 1 \text{ hr}$	1	6
a	Rate of disappearance of B is $-dC_B / dt = (0.1-0.075) / 2 = 0.0125 \text{ mol} / 1 \text{ hr}$	1	
	Since rate of disappearance of A is high, the reaction $A \rightarrow R$ proceeds at a faster rate	1	

Subject	code	:(17562)
---------	------	----------

Page 14 of 24

Rate of formation of R is $dC_R / dt = (0.05-0) / 2 = 0.025 \text{ mol} / 1 \text{ hr}$	1.5	
Rate of formation of S is $dC_S / dt = (0.025-0) / 2 = 0.0125 \text{ mol} / 1 \text{ hr}$	1.5	
Derivation for entropy change of an ideal gas		6
From first law of thermodynamics, $dU = dQ - dW$		
$dQ = dU + dW \dots(i)$		
But $dQ = TdS$ (ii)		
dW = PdV(iii)		
For ideal gas $dU = nC_v dT$ (iv)		
Substituting ii,iii and iv in i		
$TdS = n C_v dT + PdV$		
$dS = \frac{n Cv dT}{T} + \frac{P dV}{T}$		
For ideal gas $P = \frac{nRT}{V}$		
Substituting dS = $\frac{n \text{ CvdT}}{T} + \frac{nRdV}{V}$		
Integrating between limits		
$\int_{S_1}^{S_2} dS = n C_v \int_{T_1}^{T_2} \frac{dT}{T} + n R \int_{V_1}^{V_2} \frac{dV}{V}$		
$\Delta S = nC_v ln \frac{T_2}{T_1} + nR ln \frac{V_2}{V_1} \dots \dots (v)$	2	
For isothermal operation, $\Delta S = nRln \frac{V_2}{V_1}$	1	
For ideal gas $PV = RT$		
$\frac{P_2 V_2}{P_1 V_1} = \frac{T_2}{T_1}$		
Therefore $\frac{V_2}{V_1} = \frac{T_2 P_1}{T_1 P_2}$ (vi)		
Also $Cp - Cv = R$ (vii)		
Substituting vi and vii in v		
$\Delta S = n(C_p - R) \ln \frac{T_2}{T_1} + nR \ln \frac{T_2 P_1}{T_1 P_2}$	2	
	Rate of formation of S is dC _S / dt = (0.025-0) / 2 = 0.0125 mol / 1 hr Derivation for entropy change of an ideal gas From first law of thermodynamics, dU = dQ - dW dQ = dU + dW(i) But dQ = TdS(ii) dW = PdV(iii) For ideal gas dU = nC _v dT (iv) Substituting ii,iii and iv in i TdS = nC _v dT + PdV dS = $\frac{nCvdT}{T} + \frac{PdV}{T}$ For ideal gas P = $\frac{nRT}{V}$ Substituting dS = $\frac{nCvdT}{T} + \frac{nRdV}{V}$ Integrating between limits $\int_{S_1}^{S_2} dS = nC_v \int_{T_1}^{T_2} \frac{dT}{T} + nR \int_{V_1}^{V_2} \frac{dV}{V}$ $\Delta S = nC_v ln \frac{T_2}{T_1} + nRln \frac{V_2}{V}$ For ideal gas PV = RT $\frac{P_2V_2}{P_1V_1} = \frac{T_2}{T_1}$ Therefore $\frac{V_2}{V_1} = \frac{T_2P_1}{T_1P_2}$	Rate of formation of S is $dC_S / dt = (0.025 \cdot 0) / 2 = 0.0125 \text{ mol} / 1 \text{ hr}$ 1.5Derivation for entropy change of an ideal gasFrom first law of thermodynamics, $dU = dQ - dW$ $dQ = dU + dW \dots (i)$ But $dQ = TdS \dots (ii)$ $dW = PdV \dots (iii)$ For ideal gas $dU = nC_v dT \dots (iv)$ Substituting ii, iii and iv in i $TdS = n C_v dT + PdV$ $dS = \frac{nCvdT}{T} + \frac{rRV}{T}$ For ideal gas $P = \frac{nRT}{V}$ Substituting $dS = \frac{nCvdT}{r} + \frac{nRdV}{r}$ Integrating between limits $\int_{S_1^2} dS = nC_v \int_{T_1}^{T_2} \frac{dT}{T} + nR \int_{V_1}^{V_2} \frac{dV}{V}$ $\Delta S = nC_v \ln \frac{T_2}{T_1} + nR \ln \frac{V_2}{V_1} \dots (v)$ For ideal gas PV = RT $\frac{\mu_2 V_2}{P_v V_1} = \frac{T_2}{T_1}$ Therefore $\frac{V_2}{V_1} = \frac{T_2 P_1}{T_1 P_2} \dots (vi)$ Also $Cp - Cv = R$

SUMMER-16 EXAMINATION Model Answer

Subject code :(17562)

Page **15** of **24**

	$\Delta \mathbf{S} = \mathbf{n} \mathbf{C}_{\mathbf{p}} \mathbf{ln} \frac{T_2}{T_1} + \mathbf{n} \mathbf{R} \mathbf{ln} \frac{P_1}{P_2}$		
	For isothermal operation, $\Delta S = nRln \frac{P_1}{P_2}$	1	
	For constant pressure processnC _p ln $\frac{T_2}{T_1}$		
5	Attempt any TWO		16

SUMMER-16 EXAMINATION Model Answer

et code :(17562)	
Derivation of integrated rate expression for first order reversible reaction $A \leftrightarrow B$	8
For first order unimolecular reaction: $A \rightleftharpoons B$	
The net rate of disappearance of A	
$-r_A = k_1 C_A - k_2 C_B$	
The rate of formation of B	
$r_B = k_1 C_A - k_2 C_B$	
$\frac{dC_B}{dt} = \frac{-dC_A}{dt} = k_1 C_A - k_2 C_B$	
Let initial mole ratio of B to A to be M	
$M = \frac{C_{B0}}{C_{A0}}$	2
Concentration of A at time t is	
$C_A = C_{A0}(1 - X_A)$	
Therefore on differentiating $-dC_A = C_{A0}dX_A$	
Concentration of B at time t is	
$C_B = C_{B0} + C_{A0} X_A$	
$-\frac{dC_A}{dt} = C_{A0}\frac{dX_A}{dt} = k_1C_{A0}(1-X_A) - k_2(C_{B0} + C_{A0}X_A)$	
The reaction is composed of two elementary reaction	
$\frac{dC_A}{dt} = C_{A0} \frac{dX_A}{dt} = C_{A0} [k_1 (1 - X_A) - k_2 (M + X_A)] \text{eq. I}$	
At equilibrium , net rate is zero , therefore $\frac{-dC_A}{dt} = 0$ and $X_A = X_{Ae}$ (fractional convers	ion)
$0 = C_{A0}[k_1(1 - X_{Ae}) - k_2(M + X_{Ae})]$	
$k_1(1 - X_{Ae}) = k_2(M + X_{Ae})$ eq.II	
$K_C = \frac{C_{Re}}{C_{Ae}} = \frac{k_1}{k_2} = \frac{(M + X_{Ae})}{(1 - X_{Ae})}$ eq.III	
From eq. I, we have	
$\frac{dX_A}{dt} = [k_1(1 - X_A) - k_2(M + X_A)]$	

Subject code :(17562)

Substituting the value of
$$k_2$$
 from eq.III in above equation

$$\frac{dX_A}{dt} = k_1(1 - X_A) - \frac{k_1(1 - X_{Ac})}{(M + X_{Ac})}(M + X_A)$$

$$\frac{dX_A}{dt} = k_1 \left[\frac{(1 - X_A)(M + X_{Ae}) - (1 - X_{Ae})(M + X_A)}{(M + X_{Ac})} \right]$$

$$\frac{dX_A}{dt} = k_1 \left[\frac{M + X_{Ae} - MX_A - X_A X_{Ae} - M - X_A + MX_{Ae} + X_A X_{Ae}}{(M + X_{Ae})} \right]$$
Collecting the terms, we get
$$\frac{dX_A}{dt} = \frac{k_1 [X_{Ae} - MX_A - X_A (M + 1)]}{(M + X_{Ae})}$$

$$\frac{dX_A}{dt} = \frac{k_1 [X_{Ae} - MX_A - X_A (M + 1)]}{(M + X_{Ae})}$$

$$\frac{dX_A}{dt} = \frac{k_1 (M + 1)}{(M + X_{Ae})}(X_{Ae} - X_A)$$

$$\int_0^{X_A} \frac{dX_A}{X_{Ae} - X_A} = \frac{k_1 (M + 1)}{(M + X_{Ae})} \int_0^t dt$$

$$-ln\left(\frac{X_{Ae} - X_A}{X_{Ae}}\right) = -ln\left(\frac{Ca - Ca_e}{C_{Ao} - C_{Ae}}\right) = \frac{(M + 1)}{(M + X_{Ae})}k_1t$$
eq. IV
$$\frac{1}{M + M} = \frac{1}{M + M} + \frac{1}$$

Page **17** of **24**

code :(17562)	
Let, $F_{A0} =$ Molar feed rate to the reactor.	
$C_{A0} =$ Molar concentration of A in stream entering the reactor	
(moles/volume)	
X_A = Fractional conversion of A	
$F_A = F_{A0} (1 - X_A) = F_{A0} - F_{A0} X_A$	
$dF_A = - F_{A0.}d X_A$	
For the differential volume dV	
Input of A in moles/time = F_A	
Output of A from reactor in moles/time $= F_A + dF_A$	
Disappearance of A due to chemical reaction in moles/ time $= (-r_A) dV$	
Substituting all the terms in the material balance equation (1)	
$F_A = F_A + d F_A + (-r_A) . dV$	
$- d F_A = (-r_A) dV$	
$F_{A0.}d X_A = (-r_A) dV$	
$\frac{dV}{F_{A0}} = \frac{dX_A}{-r_A}$	
This is the equation accounting for A in the differential section of the reactor of volume dV. For	r
the whole reactor, the equation must be integrated.	2
$\int_0^V \frac{dV}{F_{A0}} = \int_0^{x_A} \frac{dX_A}{-r_A}$	
$\frac{V}{F_{A0}} = \int_0^{x_A} \frac{dx_A}{-r_A} = \frac{\tau}{c_{A0}}$	
Where X_A and $(-r_A)$ are evaluated at the exit conditions	
For constant volume system :	2
$\frac{V}{F_{A0}} = \int_0^{x_A} \frac{dx_A}{-r_A} = \frac{\tau}{c_{A0}} = \frac{-1}{c_{A0}} \int_{C_{A0}}^{C_A} \frac{dC_A}{-r_A}$	
Graphical representation:	

bject	code :(17562)	Page 21 of	24
	7) MFR have long residence time compared to PFR.		
	8) MFR is not suitable for high pressure reactionswhereas PFR is suitable.		
6	Attempt any FOUR		16
6-a	Space time: It is the time necessary to process one reactor volume of feed at specified conditions.	1	4
	Unit: (units of time) second, minute, hour		
	Space velocity: It is the number of reactor volumes of feed at specified conditions which can be	1	
	treated in unit time	1	
	Unit: (reciprocal of time) second ⁻¹ , minute ⁻¹ , hour ⁻¹		
		1	
6-b	Temperature increase is not desirable for exothermic reaction.		
	Van't Hoff equation is $\frac{dlnK}{dT} = \frac{\Delta H}{RT^2}$	1	
	For exothermic reaction, ΔH is negative. When temperature is increased, dT is positive; the		
	overall equation is negative, which means ln K is negative. When ln K is negative, the value of K		
	is low which denotes lower concentration of products. Therefore temperature increase is not		
	desirable for exothermic reaction.	3	
6-c	Significance of activation energy.	4	2
	Activation energy is the minimum energy that the reactants must acquire before reaction takes		
	place to give the product. Activation energy can be considered as a potential energy barrier.		
	Only those molecules that have sufficient energy to reach the top of the barrier and form		
	activated complex react. Smaller the activation energy (low barrier), greater will be the number		
	of activated molecules and faster will be the rate of reaction. It will help to find out the nature of		
	the reaction (endothermic or exothermic)It will give the difference between activated complex		
	and energy of reactant.		

SUMMER-16 EXAMINATION Model Answer

Subject code :(17562)

Page 22 of 24

Page 23 of 24

Subject code :(17562)

 $x_{1} = x_{2} = x_{1}$

each branch.

$$\frac{V_1}{FO_1} = \frac{V_2}{Fo_2}$$
$$FO = FO_1 + FO_2$$

Therefore Feed flow to first branch should be multiple of $\frac{V_2}{F_{01}}$. V_1

SUMMER-16 EXAMINATION Model Answer

Subject code :(17562)

Page 24 of 24

For example: If V1 = 80 lit & V2 = 40 lit $\frac{F_A}{F_B} = \frac{V_A}{V_B} = \frac{80}{40} = 2$ Therefore 2/3 rd of feed must be fed to branch A.