MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)
(ISO/IEC - 27001-2005 Certified)
WINTER-15 EXAMINATION
Model Answer

Subject code :(17562)

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q No.	Answer	marks	Total marks
1A	Attempt any THREE		12
1A-a	Rate of a reaction: It is defined as change in the moles of any reactant / product of the reaction per unit time per unit volume of reacting fluid. Rate constant: Rate constant of a chemical reaction is a measure of the rate of the reaction when all the reactants are at unit concentration. For the reaction $\mathrm{A} \rightarrow \mathrm{B}$, For the reactant A. $\quad-r_{\mathrm{A}}=\mathrm{kC}_{\mathrm{A}}$ For the product $B \quad r_{B}=k C_{A}$	1 1 1 1	4
1A-b	Definition: Chemical potential: It is defined as the change in free energy of a substance when one mole ofit is added to such a large quantity of the system that there is no appreciable change in overall composition of the system at constant temperature \& pressure. Mathematical equation: $\mu=\mu_{i o}+\mathrm{RT} \operatorname{lnp}_{\mathrm{i}}$ Fugacity: Itis a kind of fictitious pressure used for real gases.ie it is a measure of pressure for real gases Mathematical equation: $1 \mathrm{t} \frac{f}{P}=1$ $\mathrm{P} \rightarrow 0$	1 1 1 1	4
1A-c	Half life: It is the time required to reduce the concentration of the reactant to half of its original value. Expression for half-life for $\mathbf{n}^{\text {th }}$ order reaction. For first order chemical reaction $(\mathrm{n}=1), t_{1 / 2}=\frac{0.693}{k}$ $\mathrm{k}=$ rate constant of chemical reaction	2 2	4

	For chemical reaction with $\mathrm{n} \neq 1$, half-life is $t_{1 / 2}=\left(\frac{2^{n-1}-1}{k^{\prime}(n-1)}\right) C_{A_{0}}^{1-n}$ Where $\mathrm{t}_{1 / 2}=$ half life period $\begin{aligned} & \mathrm{C}_{\mathrm{A}} \mathrm{O}=\text { Initial concentration of reactant } \mathrm{A} \\ & \mathrm{n}=\text { Order of reaction } \\ & \mathrm{k}^{\prime}=\text { Rate constant of reaction } . \end{aligned}$		
1A-d	Relation between C_{A} and X_{A} Constant volume System $\mathrm{C}_{\mathrm{A}}=\mathrm{C}_{\mathrm{A} 0}\left(1-\mathrm{X}_{\mathrm{A}}\right)$ Variable volume system $\frac{c_{\mathrm{A}}}{c_{\mathrm{Ao}}}=\frac{\left(1-X_{\mathrm{A}}\right)}{\left(1+\varepsilon_{\mathrm{A}} X_{\mathrm{A}}\right)}$	2	4
1B	Attempt any ONE		6
1B-a	Steps for differential method of analysis of data: 1. Assume a mechanism and from it obtain a rate equation of the form $-\mathrm{rA}=-\mathrm{dCA} / \mathrm{dt}=\mathrm{kf}(\mathrm{c})$ 2.From experiment obtain concentration-time data and plotthem 3.Draw a smooth curve through this data. 4.Determine the slope of this curve at suitably selectedconcentration values. These slopes $(-\mathrm{dCA} / \mathrm{dt})$ are the rates of the reaction at these composition. 5.Evaluate f(c) for each composition. 6.Plot ($-\mathrm{dCA} / \mathrm{dt}$) versus $\mathrm{f}(\mathrm{c})$ for each composition. If we get astraight line passing through origin, the rate equation isconsistent with the data. If not, then another rate equationshould be tested.	6	6

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

WINTER-15 EXAMINATION

Model Answer

Subject code :(17562)

WINTER-15 EXAMINATION

Model Answer

Where $\square=$ diameter of molecule, cm
$\mathrm{M}=$ (molecular weight) / N , mass of a molecule, gm
$\mathrm{N}=$ Avogadro's number
$\mathrm{C}_{\mathrm{A}}=$ concentration of $\mathrm{A}, \mathrm{mol} /$ liter
$\mathrm{n}_{\mathrm{A}}=\mathrm{NC}_{\mathrm{A}} / 10^{3}$, number of molecules of $\mathrm{A} / \mathrm{cm}^{3}$
$\mathrm{k}=$ Boltzmann constant
For the bimolecular collision of unlike molecules in a mixture of A and B , kinetic theory gives

$$
\begin{aligned}
\mathrm{Z}_{\mathrm{AB}} & =\left\{\left(\square_{\mathrm{A}}+\square_{\mathrm{B}}\right) / 2\right\}^{2} \mathrm{n}_{\mathrm{A}} \mathrm{n}_{\mathrm{B}} \sqrt{8 \pi k T\left(\frac{1}{M_{A}}+\frac{1}{M_{B}}\right)} \\
& =\left\{\left(\square_{\mathrm{A}}+\square_{\mathrm{B}}\right) / 2\right\}^{2 N^{2}} \frac{10^{6}}{8 \pi k T\left(\frac{1}{M_{A}}+\frac{1}{M_{B}}\right)} \mathrm{C}_{\mathrm{A}} \mathrm{C}_{\mathrm{B}} .
\end{aligned}
$$ of all bimolecular collisions that involves energies in excess of this minimum energy is given approximately by $\mathrm{e}^{-\mathrm{E} / \mathrm{RT}}$ where $\mathrm{E} \square \square \mathrm{RT}$.

Thus the rate of reaction is given by
$-\mathrm{r}_{\mathrm{A}}=-\frac{1}{V} \frac{d N_{A}}{d t}=\mathrm{k} \mathrm{C}_{\mathrm{A}} \mathrm{C}_{\mathrm{B}}$ \qquad
$=(\text { collision rate, mole } / \text { liter.sec })^{*}($ fraction of collision involving energies in excess of E)

$$
=\mathrm{Z}_{\mathrm{AB}} \frac{10^{3}}{N} \mathrm{e}^{-\mathrm{E} / \mathrm{RT}}
$$

Model Answer

	$\begin{equation*} =\left\{\left(\square_{\mathrm{A}}+\square_{\mathrm{B}}\right) / 2\right\}^{2} \frac{N}{10^{3}} \sqrt{8 \pi k T\left(\frac{1}{M_{A}}+\frac{1}{M_{B}}\right)} \mathrm{e}^{-\mathrm{E} / \mathrm{RT} \mathrm{C}_{\mathrm{A}} \mathrm{C}_{\mathrm{B}} \ldots \ldots} \tag{iv} \end{equation*}$ Comparing iii and iv, $\mathbf{k} \propto \mathbf{T}^{1 / 2} \mathbf{e}^{-\mathrm{E} / \mathrm{RT}}$	1	
2-b	Performance equation of steady state plug flow reactor: In PFR, the composition of the fluid varies from point to point along the flow path. So the material balance for a reaction component must be made for a differential element of volume dV . Taking material balance of reactant A over the reactor, Input of A to reactor $=$ Output of A from reactor + Disappearance of A due to chemical reaction + Accumulation of A within the reactor. For plug flowreactor, the last term is zero. Input of A to reactor $=$ Output of A from reactor + Disappearance of A due to chemical reaction \qquad Let, $\quad F_{A 0}=$ Molar feed rate to the reactor. $\mathrm{C}_{\mathrm{A} 0}=$ Molar concentration of A in stream entering the reactor (moles/volume) $X_{A}=$ Fractional conversion of A $\mathrm{F}_{\mathrm{A}}=\mathrm{F}_{\mathrm{A} 0}\left(1-\mathrm{X}_{\mathrm{A}}\right)=\mathrm{F}_{\mathrm{A} 0}-\mathrm{F}_{\mathrm{A} 0} . \mathrm{X}_{\mathrm{A}}$ $\mathrm{dF}_{\mathrm{A}}=-\mathrm{F}_{\mathrm{A} 0} \mathrm{~d} \mathrm{X}_{\mathrm{A}}$ For the differential volume dV	2	8

WINTER-15 EXAMINATION

Model Answer

Subject code :(17562)
Input of A in moles/time $=\mathrm{F}_{\mathrm{A}}$
Output of A from reactor in moles/time $=\mathrm{F}_{\mathrm{A}}+\mathrm{dF}_{\mathrm{A}}$
Disappearance of A due to chemical reaction in moles/time $=\left(-r_{A}\right) d V$
Substituting all the terms in the material balance equation (1)

$$
\begin{aligned}
& F_{A}=F_{A}+d F_{A}+\left(-r_{A}\right) \cdot d V \\
& - \\
& d F_{A}=\left(-r_{A}\right) d V \\
& \\
& F_{A 0} \cdot d X_{A}=\left(-r_{A}\right) d V
\end{aligned}
$$

$$
\frac{d V}{F_{A 0}}=\frac{d X_{A}}{-r_{A}}
$$

This is the equation accounting for A in the differential section of the reactor of volume dV . For the whole reactor, the equation must be integrated.
$\int_{0}^{V} \frac{d V}{F_{A 0}}=\int_{0}^{x_{A}} \frac{d X_{A}}{-r_{A}}$
$\frac{V}{F_{A 0}}=\int_{0}^{x_{A}} \frac{d X_{A}}{-r_{A}}=\frac{\tau}{C_{A 0}}$
Where X_{A} and $\left(-\mathrm{r}_{\mathrm{A}}\right)$ are evaluated at the exit conditions
For constant volume system :
$\frac{V}{F_{A 0}}=\int_{0}^{x_{A}} \frac{d X_{A}}{-r_{A}}=\frac{\tau}{C_{A 0}}=\frac{-1}{C_{A O}} \int_{C_{A o}}^{C_{A}} \frac{d C_{A}}{-r_{A}}$
For first order reaction $-\mathrm{r}_{\mathrm{A}}=\mathrm{kC}_{\mathrm{A}}=\mathrm{kC}_{\mathrm{Ao}}\left(1-\mathrm{x}_{\mathrm{A}}\right)$
Therefore $\frac{V}{F_{A 0}}=\frac{\tau}{C_{A 0}}=\frac{-1}{C_{A O}} \int_{C_{A o}}^{C_{A}} \frac{d C_{A}}{K C_{A}}=\int_{0}^{x_{A}} \frac{d X_{A}}{K C_{A o}\left(1-X_{A}\right)}$
$\tau=\frac{V C_{A O}}{F_{A 0}}=\frac{-1}{K} \ln \frac{C_{A}}{C_{A O}}=\frac{-\ln \left(1-x_{A}\right)}{K}$

Graphical representation:

Model Answer

| | | |
| :--- | :--- | :--- | :--- |

3. Simple mixing: Some porous materials are obtained by mixing the components with water, milling to the desired grain size, drying and calcining. Such materials may be ground and sieved to obtain the particle size.
Eg Mixed Mg and Ca oxide catalyst is prepared by this method

4. Impregnation method:

This method is used for the preparation of expensive catalysts like platinum, palladium, silver etc. A catalyst carrier provides a means of obtaining a large surface area with a small amount of catalyst. The steps in the preparation of a catalyst impregnated on a carrier include evacuating the carrier, contacting the carrier with the impregnating solution, removing the excess solution, drying, calcining and activation.

Eg Nickel catalyst is prepared on alumina by soaking the evacuated alumina particles with nickel nitrate solution, draining to remove the excess solution and heating in an oven to decompose the nitrate to nickel oxide. The final step is activation in which nickel oxide is reduced to nickel.

	Any other appropriate method should also be given due consideration.
3	Attempt any FOUR
3-a	$\mathrm{C}_{\mathrm{p}}($ ice $)=9 \mathrm{cal} / \mathrm{g}$ mole K $\mathrm{C}_{\mathrm{p}}($ water $)=18 \mathrm{cal} / \mathrm{g}$ mole K Molar enthalpy of fusion $=1437 \mathrm{cal} / \mathrm{g}$ mole 1. Entropy change when 1 mole of ice is heated from $-10^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$ $\Delta \mathrm{S}_{1}=\mathrm{nC}_{\mathrm{p}(\mathrm{cce})} \int_{T_{1}}^{T_{2}} d \ln T=\mathrm{nC}_{\mathrm{p}(\mathrm{cce})} \ln \frac{T_{2}}{T_{1}}=1 * 9^{*} \ln (273 / 263)=0.335 \mathrm{cal} / \mathrm{K}$

2. Entropy change when 1 mole of ice at $0^{\circ} \mathrm{C}$ is converted to water at $0^{\circ} \mathrm{C}$ $\Delta \mathrm{S}_{2}=\mathrm{n} \Delta \mathrm{H}$ fusion $/ \mathrm{T}_{\text {fusion }}=1 * 1437 / 273=5.2637 \mathrm{cal} / \mathrm{k}$
3. Entropy change when 1 mole of water is heated from $0^{\circ} \mathrm{C}$ to $10^{\circ} \mathrm{C}$

$$
\Delta \mathrm{S}_{3}=\mathrm{nC}_{\mathrm{p}(\text { water })} \int_{T_{1}}^{T_{2}} d \ln T=1 * 18 * \ln (283 / 273)=0.64755 \mathrm{cal} / \mathrm{k}
$$

	Total entropy change $\Delta \mathrm{S}=\Delta \mathrm{S}_{1}+\Delta \mathrm{S}_{2}+\Delta \mathrm{S}_{3}=6.246 \mathrm{cal} / \mathrm{K}$	1	
3-b	Integrated form of rate expression for first order irreversible reaction in terms of fractionalconversion Consider the reaction $\mathrm{A} \rightarrow \mathrm{B}$ The rate equation is $-\mathrm{r}_{\mathrm{A}}=-\mathrm{dC}_{\mathrm{A}} / \mathrm{dt}=\mathrm{kC}_{\mathrm{A}} \ldots$. (1) But $\mathrm{C}_{\mathrm{A}}=\mathrm{C}_{\mathrm{A} 0}\left(1-\mathrm{x}_{\mathrm{A}}\right)$ and $\mathrm{dC}_{\mathrm{A}}=-\mathrm{C}_{\mathrm{A} 0} \mathrm{dx}_{\mathrm{A}}$ Substituting in (1) and rearranging and integrating $\begin{array}{lc} \mathrm{x}_{\mathrm{A}} & \mathrm{t} \\ \int\left(\mathrm{dx}_{\mathrm{A}} /\left(1-\mathrm{x}_{\mathrm{A}}\right)=\right. & \mathrm{k} \int \mathrm{dt} \\ \mathrm{x}_{\mathrm{A} 0} & 0 \\ -\ln \left(1-\mathrm{x}_{\mathrm{A}}\right)=\mathrm{kt} & \end{array}$ Graphical representation	3	4
3-c	Decrease in temperature is not desirable for endothermic reaction: Van't Hoff equation is $\frac{d \ln K}{d T}=\frac{\Delta H}{R T^{2}}$ For endothermic reaction, $\Delta \mathrm{H}$ is positive. When temperature is decreased, dT is negative; the overall equation is negative, which means $\ln \mathrm{K}$ is negative. When $\ln \mathrm{K}$ is negative, the value of K is low which denotes lower concentration of products. Therefore temperature decrease is not desirable for endothermic reaction.	4	4
3-d	Difference between order and molecularity of reaction	1 mark each for any four	4

WINTER-15 EXAMINATION

Model Answer

Subject code :(17562)

Page $\mathbf{1 1}$ of $\mathbf{2 5}$

		1 2 3 4 5	Molecularity is the number of molecules, atoms or ions in a chemical reaction. Molecularity always have an integer value $1,2,3 \ldots$ Molecularity refers only to an elementary reactions Molecularity has no meaning for overall reaction specially in complex reactions. Reaction can be unimolecular ,bimolecular etc. Molecularity is a theoretical quantity	Order of reaction is the sum of exponents of the concentration terms involved in the rate equation. Order of reaction can have a fractional value. Order of reaction refers to an empirically found rate expression. Order of reaction can be one,two ,three \& has definite meaning for overall reaction. Order of reaction is entirely an experimental value.	points	
3-e		(i) (i) coloct m (ii)	of Packed bed reactor Multitubular packed bed reactor		1 mark each	4

4	Attempt any THREE		12
4A-a	For first order reaction, $-\ln \left(1-\mathrm{x}_{\mathrm{A}}\right)=\mathrm{kt}$ When $\mathrm{x}_{\mathrm{A}}=0.5 \quad-\ln (1-0.5)=\mathrm{kt}_{1}$ $\begin{equation*} \mathrm{t}_{1}=\frac{0.693}{k} \tag{1} \end{equation*}$ When $\mathrm{x}_{\mathrm{A}}=0.75 \quad-\ln (1-0.75)=\mathrm{kt}_{2}$ $\begin{equation*} \mathrm{t}_{2}=\frac{1.386}{k} \tag{2} \end{equation*}$ From equation (1)and (2) $\quad t_{2}=2 t_{1}$ Therefore the time required for 75% conversion is double the time required for 50% conversion.	1 1 1 1	4
4A-b	Methods for regeneration of catalyst (any four) 1. Volatile poison may be removed from the catalyst surface by passing current of pure gas or liquid or by raising the temperature. 2. Coke deposited on the catalyst is removed by roasting the coke by atmospheric oxygen at $550-700^{\circ} \mathrm{c}$. 3. Metallic catalyst like nickel are regenerated by washing with alcohol or acid and other solvents. Irreversibly poisoned catalyst like platinum on silica support, silver and vanadium pentoxide are regenerated by extracting platinum, silver and vanadium from them using acids and alkalies. 4. Magnetic methods are also used for regenerating the activity of catalyst. 5. Metals concentrate on the surface of cracking catalyst and they can be removed by the abrasion of surface bed. 6. Alumino silicate cracking catalyst gets poisoned due to the deposition of metal on them. The poison is converted to a form which is highly volatile or readily soluble in water and the catalyst is treated with	1 mark each	4

Model Answer

	aqueous solution of organic acid, alkalies and gases.		
4A-c	Graphical representation in terms of conversion (i) Variable volume zero order reaction (ii) Variable volume first order reaction.	2	4
4A-d	Relation between conversion and equilibrium constant for first order reversible reaction Reaction is $A \leftrightarrow R$ Let $\quad 1$ mole of A is present initially. x_{A} mole of A reacts at equilibrium P is the total pressure.		4

Model Answer

Subject code :(17562)

		A	R	Total moles	2	
	Moles present initially	1	--			
	Moles reacted / produced at equilibrium	x_{A}	X_{A}			
	Moles present at equilibrium	$1-\mathrm{x}_{\mathrm{A}}$	x_{A}	1		
	Mole fraction	$1-\mathrm{x}_{\mathrm{A}}$	x_{A}			
	Partial pressure	$\begin{aligned} & \mathrm{P}(1- \\ & \left.\mathrm{x}_{\mathrm{A}}\right) \end{aligned}$	$\mathrm{P} \mathrm{x}_{\mathrm{A}}$			
	$\begin{aligned} & \mathrm{K}_{\mathrm{p}}=\frac{P x_{A}}{P\left(1-\mathrm{x}_{\mathrm{A}}\right)}=\frac{x_{A}}{1-x_{A}} \\ & \mathrm{~K}_{\mathrm{p}}\left(1-\mathrm{x}_{\mathrm{A}}\right)=\mathrm{x}_{\mathrm{A}} \\ & \mathrm{~K}_{\mathrm{p}}-\mathrm{K}_{\mathrm{p}} \mathrm{x}_{\mathrm{A}}=\mathrm{x}_{\mathrm{A}} \\ & \mathrm{~K}_{\mathrm{p}}=\mathrm{x}_{\mathrm{A}}\left(1+\mathrm{K}_{\mathrm{p}}\right) \\ & \mathrm{x}_{\mathrm{A}}=\frac{\mathrm{Kp}}{1+\mathrm{Kp}} \end{aligned}$					
4B	Attempt any one					6
4B-a	Types of intermediates formed in a non 1. Free radicals. Free atoms or larger contain one or more unpaired electrons electron is designated by a dot in the chem Eg. CH_{3}., $\mathrm{C}_{2} \mathrm{H}_{5}$. Etc 2. Ions and polar substances. Electric fragments of molecules such as $\mathrm{Na}^{+}, \mathrm{OH}^{-}$ as intermediates in reaction. 3. Molecules: Consider the consecutive re This is a multiple reaction. If the product	hain r gmen called sym ly ch $\mathrm{NH}_{4}{ }^{+}$ ion A is high	action of st free ol for rged call $\rightarrow \mathrm{R} \rightarrow$ ly reac	molecules which 1s. The unpaired ubstance. , molecules or s. They may act its concentration	$11 / 2$ marks each	6

	in the reaction mixture can become too small to measure. In such a situation, R is not observed and can be considered to be a reactive intermediate. 4. Transition complexes. The collision between reactant molecules result in a wide distribution of energies among the individual molecules. This can result in strained bonds, unstable form of molecules or unstable association of molecules which can then either decompose to give products or by further collision return to molecules in the normal state. Such unstable forms are called transition complexes.		
4B-b	At equilibrium there is no Gibb's free energy change, $\Delta \mathrm{G}=0$ $\begin{aligned} & \left(\mathrm{r} \mu_{\mathrm{R}}+\mathrm{s} \mu_{\mathrm{S}}\right)-\left(\mathrm{a} \mu_{\mathrm{A}}+\mathrm{b} \mu_{\mathrm{B}}\right)=0 \\ & \mathrm{r}\left(\mu_{\mathrm{R}}^{0}+\mathrm{RT} \ln _{\mathrm{R}}\right)+\mathrm{s}\left(\mu_{\mathrm{S}}^{0}+\mathrm{RT} \ln p_{\mathrm{S}}\right)=\mathrm{a}\left(\mu_{\mathrm{A}}^{0}+\mathrm{RT} \ln p_{\mathrm{A}}\right)+ \\ & \quad \mathrm{b}\left(\mu_{\mathrm{B}}^{0}+\mathrm{RT} \ln p_{\mathrm{B}}\right) \end{aligned} \quad \begin{aligned} \mathrm{RT} \ln \left(\frac{p_{R}^{r}}{p_{A}^{a}} \frac{p_{S}^{s}}{p_{B}^{b}}\right) & =\left(\mathrm{a} \mu_{\mathrm{A}}^{0}+\mathrm{b} \mu_{\mathrm{B}}^{0}\right)-\left(\mathrm{r} \mu_{\mathrm{R}}^{0}+\mathrm{s} \mu_{\mathrm{S}}^{0}\right. \end{aligned} \quad \begin{aligned} & \quad=-(\Delta \mathrm{G} \text { product }-\Delta \mathrm{G} \text { reactant }) \\ & \quad=-\Delta \mathrm{G} \text { reaction. } \end{aligned}$ $\ln \left(\frac{p_{R}^{r}}{p_{A}^{a}} p_{B}^{s} p_{S}^{b}\right)=\frac{-\Delta \mathrm{G} \text { reaction }}{R T}$ $\operatorname{But}\left(\frac{p_{R}^{r}}{p_{A}^{a}} \frac{p_{S}^{s}}{p_{B}^{b}}\right)=\mathrm{K}_{\mathrm{p}}$ Therefore $\Delta \mathrm{G}=-\mathrm{RT} \ln \mathrm{K}_{\mathrm{p}}$ $\Delta \mathrm{G}=-\mathrm{RT} \ln \mathrm{~K}$	2	6
5	Attempt any TWO		16

WINTER-15 EXAMINATION

Model Answer

Subject code :(17562)

5-a	Integrated form of rate equation for first Order Reversible Reaction: For first order unimolecular reaction: $\mathrm{A} \rightleftharpoons \mathrm{B}$ Where k_{1} is rate constant for forward reaction andk k_{2} rate constant for backward reaction The net rate of disappearance of A $-r_{A}=k_{1} C_{A}-k_{2} C_{B}$ The $\frac{-d C_{A}}{d t}=k_{1} C_{A}-k_{2} C_{B}$ Let initial mole ratio of B to A to be M $M=\frac{C_{B 0}}{C_{A 0}}$ When 1 mole of A reacts, I mole of B is produced, therefore $C_{A 0} X_{A}=C_{B 0} X_{B}$ Concentration of A at time t is $C_{A}=C_{A 0}\left(1-X_{A}\right)$ Therefore on differentiating $\quad-d C_{A}=C_{A 0} d X_{A}$ Concentration of B at time t is $C_{B}=C_{B 0}+C_{A 0} X_{A}$ $-\frac{d C_{A}}{d t}=C_{A 0} \frac{d X_{A}}{d t}=k_{1} C_{A 0}\left(1-X_{A}\right)-k_{2}\left(C_{B 0}+C_{A 0} X_{A}\right)$ The reaction is composed of two elementary reaction $\frac{d C_{A}}{d t}=C_{A 0} \frac{d X_{A}}{d t}=C_{A 0}\left[k_{1}\left(1-X_{A}\right)-k_{2}\left(M+X_{A}\right)\right] \text { eq. } \mathbf{I}$ At equilibrium ,net rate is zero ,therefore $\frac{-d C_{A}}{d t}=0$ and $\begin{aligned} & X_{A}=X_{A e}(\text { fractional conversion }) \\ & 0=C_{A 0}\left[k_{1}\left(1-X_{A e}\right)-k_{2}\left(M+X_{A e}\right)\right] \\ & k_{1}\left(1-X_{A e}\right)=k_{2}\left(M+X_{A e}\right) \text { eq.II } \end{aligned}$	2	8

WINTER-15 EXAMINATION

Model Answer

Subject code :(17562)
$K_{C}=\frac{C_{R e}}{C_{A e}}=\frac{k_{1}}{k_{2}}=\frac{\left(M+X_{A e}\right)}{\left(1-X_{A e}\right)}$ eq.III
From eq.I , we have
$\frac{d X_{A}}{d t}=\left[k_{1}\left(1-X_{A}\right)-k_{2}\left(M+X_{A}\right)\right]$
Substituting the value of k_{2} from eq.III in above equation 2

$$
\begin{aligned}
& \frac{d X_{A}}{d t}=k_{1}\left(1-X_{A}\right)-\frac{k_{1}\left(1-X_{A e}\right)}{\left(M+X_{A e}\right)}\left(M+X_{A}\right) \\
& \frac{d X_{A}}{d t}=k_{1}\left[\frac{\left(1-X_{A}\right)\left(M+X_{A e}\right)-\left(1-X_{A e}\right)\left(M+X_{A}\right)}{\left(M+X_{A e}\right)}\right] \\
& \frac{d X_{A}}{d t}=k_{1}\left[\frac{\left(1-X_{A}\right)\left(M+X_{A e}\right)-\left(1-X_{A e}\right)\left(M+X_{A}\right)}{\left(M+X_{A e}\right)}\right] \\
& \frac{d X_{A}}{d t}=k_{1}\left[\frac{M+X_{A e}-M X_{A}-X_{A} X_{A e}-M-X_{A}+M X_{A e}+X_{A} X_{A e}}{\left(M+X_{A e}\right)}\right]
\end{aligned}
$$

Collecting the terms, we get
$\frac{d X_{A}}{d t}=\frac{k_{1}\left[X_{A e}(M+1)-X_{A}(M+1)\right]}{\left(M+X_{A e}\right)}$
$\frac{d X_{A}}{d t}=\frac{k_{1}(M+1)}{\left(M+X_{A e}\right)}\left(X_{A e}-X_{A}\right)$
$\int_{0}^{X_{A}} \frac{d X_{A}}{X_{A e}-X_{A}}=\frac{k_{1}(M+1)}{\left(M+X_{A e}\right)} \int_{0}^{t} d t$
$-\ln \left(\frac{X_{A e}-X_{A}}{X_{A e}}\right)=\frac{(M+1)}{\left(M+X_{A e}\right)} k_{1} t$
eq. IV

Model Answer

Subject code :(17562)

		1	
5-b	Comparison of mixed flow reactor(CSTR/ MFR) \& plug flow reactor(PFR): 1) For any given duty \& for all positive reaction orders, size of MFR is always larger than that of PFR.The volume ratio $\mathrm{Vm} / \mathrm{Vp}$ increases with reaction order. 2) For low values of conversion, the reactor performance is only slightly affected by type of flow, the volume ratio approaching unity as conversion approaches zero. The size ratio increases very rapidly at high values of conversion. 3) Design of reactor is affected by density variation during reaction. Expansion(density decrease) during reaction increases the size ratio, but	1 mark each for any four points	

Model Answer

decreases, the effectiveness of CSTR with respect to PFR. The densityincrease during reaction has the opposite effect.
4) For a given space time, conversion in a PFR is higher than in MFR.

5) The performance equation for MFR is

$$
\tau_{m} \cdot C_{A 0}^{n-1}=\left(\frac{C_{A 0} V}{F_{A 0}}\right)_{m}=\frac{X_{A}\left(1+\varepsilon_{A} \cdot X_{A}\right)^{n}}{k\left(1-X_{A}\right)^{n}}
$$

The performance equation of PFR is

$$
\tau_{p} \cdot C_{A 0}^{n-1}=\left(\frac{C_{A 0 . .}^{n} \cdot V}{F_{A 0}}\right)_{p}=\frac{1}{K} \int_{0}^{X A} \frac{(1+\varepsilon A X A)^{n}}{\left(1-X_{A}\right)^{n}} \cdot d X_{A}
$$

6) It is possible to operate MFR under isothermal conditionswhere as with PFR it is difficult.
7) MFR have long residence time compared to PFR
8) MFR is not suitable for high pressure reactionswhere as PFR is suitable.

Applications of MFR/CSTR:

Used for maintain good temperature control in reactor,operating reactor under isothermal reaction conditions, useful for liquid phase reactions.
Applications of PFR: for high pressure reactions as it can use small diameter tubes, for reactions with high heat effects as rate of heat transfer per unit volume of reaction mixture is high,used for gas phase reactions.
Data:

Reactor is Mixed flow reactor
$\mathrm{X}_{\mathrm{A}}=0.5$
Reaction $\mathrm{A} \rightarrow \mathrm{R}$
$-r_{A}=\mathrm{k} C_{A}^{2}$

WINTER-15 EXAMINATION

Model Answer

Subject code :(17562)
The performance equation of MFR is
$\frac{V}{F_{A 0}}=\frac{X_{A}}{\left(\mathrm{k} C_{A}^{2}\right)}=\frac{.(0.5)}{k . C_{A O}^{2}(1-0.5)^{2}}$
$\frac{V}{F_{A 0}}=\quad=\frac{2 . K}{k \cdot C_{A O}^{2}}$
$K=\frac{2 . F_{A 0}}{V C_{A O}^{2}} \ldots . .1$
As per new condition where volume of reactor is six times $\left(\mathrm{V}_{1}=6 \mathrm{~V}\right)$ greater than in case of first condition(other terms kept constant), the equation can be written as

$$
\begin{gathered}
\frac{V}{F_{A 0}}=\frac{X_{A}}{\left(-r_{A}\right)} \\
\frac{6 V}{F_{A 0}}=\frac{X_{A}}{\left(K \cdot C_{A O}^{2}\left(1-X_{A}\right)^{2}\right)} \text { Substituting the value of Kfrom equation } 1 \\
6 \mathrm{~V}=\frac{X_{A}}{\frac{2 \cdot F_{A 0}}{V C_{A O}^{2} C_{A O}^{2}\left(1-X_{A}\right)^{2}}} \\
6=\frac{X_{A}}{2\left(1-X_{A}\right)^{2}} \\
12=\frac{X_{A}}{\left(1-X_{A}\right)^{2}} \\
12-24 X_{A}+12 X_{A}^{2}=X_{A} \\
12 X_{A}^{2}-25 X_{A}+12=0
\end{gathered}
$$

Model Answer

Subject code :(17562)

	Roots of quadratic equation $\begin{gathered} X_{A}=\frac{25 \pm \sqrt{\left(25^{2}-4 * 12 *(-12)\right)}}{2 * 12} \\ X_{A}=\frac{25 \pm \sqrt{49}}{24} \\ X_{A}=\frac{25 \pm 7}{24} \\ X_{A}=1.33 \text { and } 0.75 \end{gathered}$ since X_{A} cannot be greater than 1 , the value to be taken as 0.75	2	
6	Attempt any FOUR		16
6-a	Method of feeding when Plug flow reactors are connected in parallel: For PFR's connected in parallel,the whole system can be treated as a single plug flow reactor of volume equal to total volume of the individual units if the feed is distributed in such a manner that fluid stream which meet have the same composition. Thus for reactors in parallel, V/F or τ must be the same for each parallel line. Any other way of feeding is inefficient. V/F should be identical if the conversion is to be the same in each branch. $\begin{gathered} (\mathrm{V} / \mathrm{F})_{\mathrm{A}}=(\mathrm{V} / \mathrm{F})_{\mathrm{B}} \\ \mathrm{ie} \frac{F_{A}}{F_{B}}=\frac{V_{A}}{V_{B}}=\frac{40}{20}=2 \end{gathered}$	4	4

WINTER-15 EXAMINATION

Model Answer

Subject code :(17562)

	$\mathrm{F}_{\mathrm{A}}=2 \mathrm{~F}_{\mathrm{B}}$ $\frac{2}{3}$ rd of the feed must be fed to branch A and $\frac{1}{3}$ rd must be fed to branch B		
6-b	Relation between K_{p} and K_{c} Consider the reaction $\mathrm{aA}+\mathrm{bB}+\ldots . \rightarrow \mathrm{rR}+\mathrm{sS} \ldots \ldots$. $\mathrm{K}_{\mathrm{c}}=\left(\mathrm{C}_{\mathrm{R}}{ }^{\mathrm{r}} \cdot \mathrm{C}_{\mathrm{S}}{ }^{\mathrm{s}}\right) /\left(\mathrm{C}_{\mathrm{A}}{ }^{\mathrm{a}} \cdot \mathrm{C}_{\mathrm{B}}{ }^{\mathrm{b}}\right)$ For ideal gas $\mathrm{C}_{\mathrm{i}}=\mathrm{p}_{\mathrm{i}} / \mathrm{RT}$ Therefore $K_{c}=\left\{\left(p_{R} / R T\right)^{r} .\left(p_{S} / R T\right)^{s}\right\} /\left\{\left(p_{A} / R T\right)^{a} \cdot\left(p_{B} / R T\right)^{b}\right\}$ $=\left(p_{R}{ }^{\mathrm{r}} \cdot \mathrm{p}_{\mathrm{S}}{ }^{\mathrm{s}}\right) /\left(\mathrm{p}_{\mathrm{A}}{ }^{\mathrm{a}} \cdot \mathrm{p}_{\mathrm{B}}{ }^{\mathrm{b}}\right) \cdot(1 / \mathrm{RT})^{(\mathrm{r}+\mathrm{s}+\ldots-(\mathrm{a}+\mathrm{b}=\ldots))}$ R is the ideal gas constant T the absolute temperature in K P is the pressure in atm $\text { ieK } K_{c}=K_{p} \cdot(1 / R T)^{\Delta n} \text { where } K_{p}=\left(p_{R}{ }^{\mathrm{r}} \cdot \mathrm{p}_{\mathrm{S}}{ }^{\mathrm{s}}\right) /\left(\mathrm{p}_{\mathrm{A}}{ }^{\mathrm{a}} \cdot \mathrm{p}_{\mathrm{B}}{ }^{\mathrm{b}}\right)$ $\Delta \mathrm{n}=(\mathrm{r}+\mathrm{s}+\ldots-(\mathrm{a}+\mathrm{b}+\ldots)$.$) is the difference in the number of moles of$ product and reactant Or $K_{p}=K_{c} \times($ RT $) \Delta^{n}$	01 01 01 01	4
6-c	Units of rate constant	1 mark each	4
6-d	Autocatalytic reactions:A reaction in which one of the products of the reaction acts as a catalyst is called as an autocatalytic reactions. Example: Oxidation of a solution of oxalic acid by an acidified solution of KMnO_{4}. $2 \mathrm{MnO}_{4}^{-}+6 \mathrm{H}^{+}+5(\mathrm{COOH})_{2} \rightarrow 2 \mathrm{Mn}^{2+}+10 \mathrm{CO}_{2}+8 \mathrm{H}_{2} \mathrm{O}$	2	4

	Oxalic acid The reaction is very slow at room temp .The reaction is catalyzed by manganese ions $\left(\mathrm{Mn}^{2+}\right)$ that are not present at start of reaction, hence the rate of reaction is extremely slow..Once reaction starts, $M n^{2+}$ ions are formed ,the rate of reaction speeds up.	2	
6-e	Classification of Reactors: 1) Based on mode of operation: 1) Batch reactors: Reactants added at beginning into reactor,left to react for certain time \& products are withdrawn at a subsequent time. 2) Continuous reactors:Feeding of reactants,chemical reaction \& removal of product occur simultaneously, 3) Semi batch reactor:One of the reactant added initially\& the other is continuously added to a reactor over a certain time under agitation. 2)Based on shape of reactor: 1) Tank reactor:A cylindrical vessel with a mechanical stirrer \& provision for heat transfer. Ex. Continuous stirred tank reactor(CSTR) 2)Tubular reactor:A single continuous long tube or several tubes arranged in parallel. Ex. Plug flow reactor(PFR) 3)Based on packing of catalysts: 4) Fixed bed reactor:Catalyst particles are stationary \& gas flows	2	4

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)
(ISO/IEC - 27001-2005 Certified)
WINTER-15 EXAMINATION
Model Answer

Subject code :(17562)

