

Subject code : (17562)

Page **1** of **25**

Important Instructions to examiners:

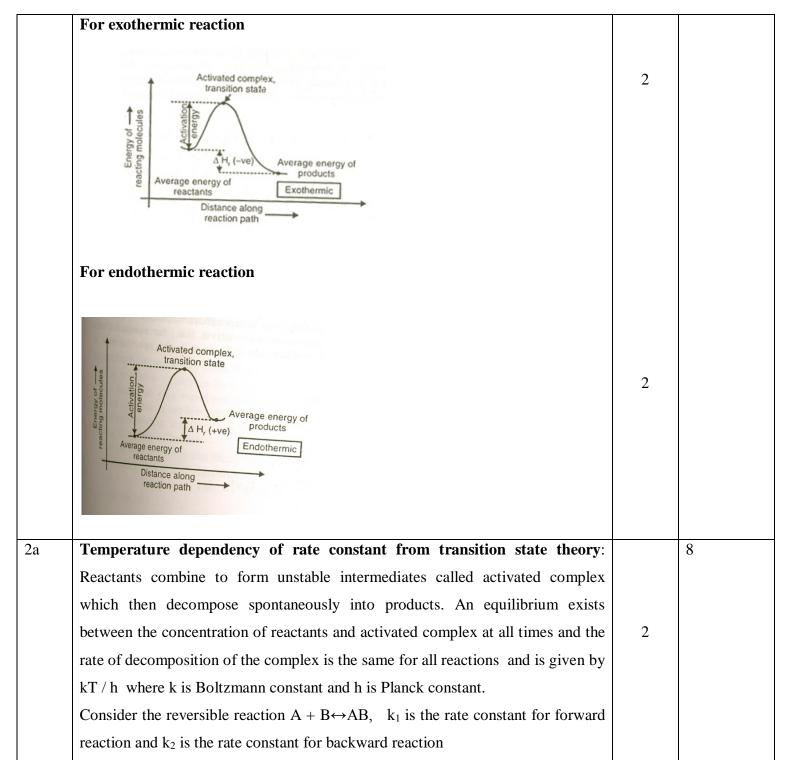
- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

WINTER-14 EXAMINATION Model Answer

Subject code : (17562)

Page 2 of 25

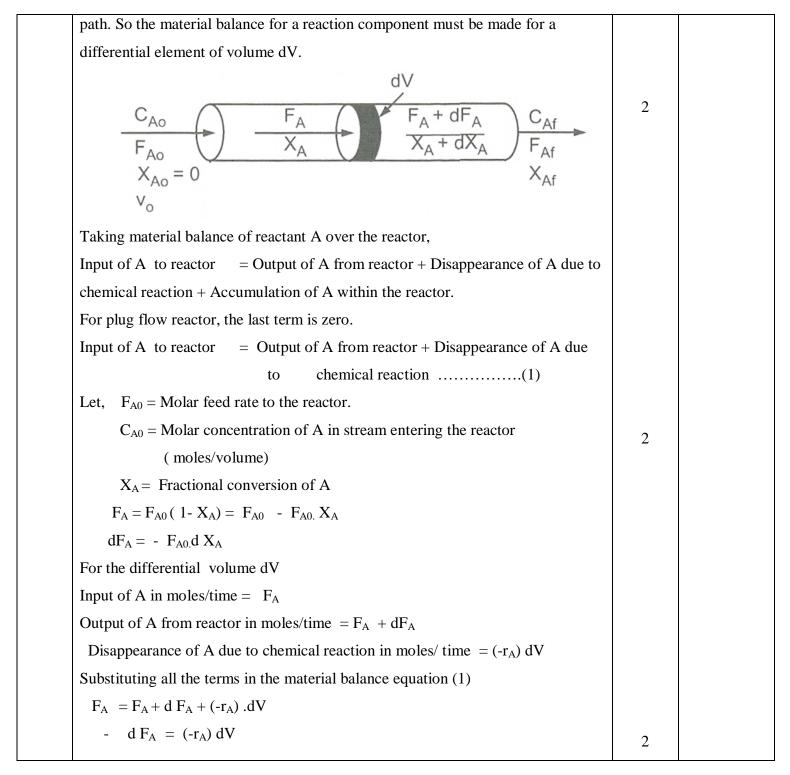
Q No.		Answ	er	 marks	Total marks
1A-a	Sr.No.	Transition State Theory	Collision Theory	2 marks each for any	4
	1	Prediction of reaction rates is more accurate with experiment.	Prediction of reaction rates is less accurate with experiment.	two points	
	2	The theory is based on statistical mechanics	The theory is based on kinetic theory of gases.		
	3	The theory views that the formation of activated complex is very rapid& decomposition of activated complex is slow.	The theory views that the formation of activated complex is slow & decomposition of activated complex is very rapid		
	4	Temperature Dependency is $k \propto T. e^{-E/_{RT}}$	Temperature Dependency is $k \propto T^{1/2} \cdot e^{-E/RT}$		
1A-b	configuratio	on and motion of the molecules	č	1 mark each.	4
	predicts the constant ter	e feasibility and equilibrium mperature and pressure.	ually available to do useful w conditions for chemical reacti e total disorder or randomness		


	e : (17562)		Page 3 of 25
	system or it is a measure of the unavailable energy to perform useful work.		
	Fugacity: It is a kind of fictitious pressure used for real gases.ie it is a measure of		
	pressure for real gases.		
1A-c	 1) Plot of concentration Vs time forZero order reaction. CAO Stope = - K CAO Stope = - K CAO + = CAO/K + = CAO/K 2) Plot of concentration Vs time forFirst order reaction. 	2	
1A-d	Space time:	1	4
	It is the time required to process one reactor volume of feed measured at specified		
	condition.		

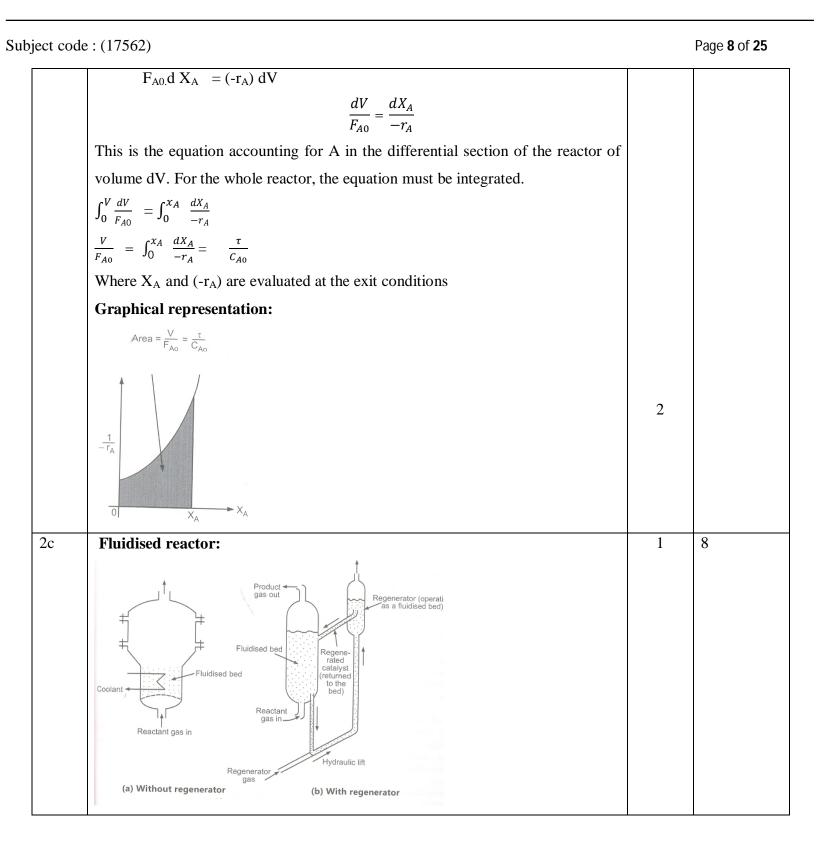
ect code	e : (17562)							Page 4 of 25
	$\tau = \frac{1}{s} = \frac{C_{A0V}}{F_{A0}} =$	$=\frac{V}{V_{c}}$					1	
	Unit is unit o	Ū	onds. minute.	etc)				
	Space veloci		,,)				
	-	•	r volume of f	eed at specifi	ied conditions	which can be	1	
	treated in uni							
	Equation an							
	$\mathbf{S} = \frac{1}{\tau} = \frac{F_{A0}}{C_{A0V}}$						1	
	Unit is <i>time</i>	⁻¹ (second	⁻¹ , minute ⁻	¹ etc)				
1B-a	Assume the	reaction is	of first orde	r:				
	The integrated form of equation for first order reaction is						1	
	ln(CA ₀ /	$C_A = kt$						
	$\mathbf{K} = \mathbf{ln}(\mathbf{C}\mathbf{A}_0 / \mathbf{C}_{\mathbf{A}}) / \mathbf{t}$							
	t min	0	10	20	30	40		
	C _A mol/lit	0.86	0.74	0.635	0.546	0.405	2	
	k	-	0.01502	0.01517	0.01514	0.0188		
	Since the k v	alues are al	most same, tl	ne reaction is	s of first orde	er.		
	Average k value is 0.0160075 minute ⁻¹						1	
	For first orde	r reaction, t ₁	$\frac{1}{2} = \frac{0.693}{k} = 4.$	3.29 minutes	•		2	
1B-b	Plot of lnK	$\frac{1}{T}$						
	ln k 1	$\rightarrow \frac{1}{T}$	E R				2	

Page 5 of 25

WINTER-14 EXAMINATION Model Answer


WINTER-14 EXAMINATION **Model Answer**

ect code : (17562)		Page 6 of 25
k ₃		
According to transition theory, $A + B \leftrightarrow AB^* \rightarrow AB$		
k_4 k_5	2	
$\mathbf{K}_{c} = \mathbf{k}_{3} / \mathbf{k}_{4} = \mathbf{C}_{AB} * / \mathbf{C}_{A} \cdot \mathbf{C}_{B}$		
$K_5 = kT/h$		
$r_{AB,forward}$ = (concentration of activated complex) . (rate of		
decomposition of activated complex)		
$= C_{AB}^*$. (kT / h)		
= (kT / h). K _c . C _A . C _B		
From thermodynamics, $\Delta G = \Delta H - T\Delta S = -RT \ln K_c$		
$\ln K_{\rm c} = - (\Delta G / RT)$	2	
$\mathbf{K}_{\mathbf{c}} = \mathbf{e}^{-(\Delta \mathbf{G} / \mathbf{RT})} = \mathbf{e}^{-(\Delta \mathbf{H} / \mathbf{RT}) + \Delta \mathbf{S} / \mathbf{R}}$		
$r_{AB,forward} = (kT / h).C_A. C_B . e^{-(\Delta H / RT) + \Delta S / R}$		
= a constant . T. $e^{-(\Delta H/RT)} C_A$. $C_B = k C_A$. C_B		
where $k = a \text{ constant} \cdot T. e^{-(\Delta H/RT)}$		
$e^{\Delta S/R}$ is less temperature sensitive compared to the other terms so that it can be		
taken as constant.		
For forward reaction, $k_1 \alpha T e^{-(\Delta H_1/RT)}$		
For backward reaction, $k_2 \alpha T e^{-(\Delta H_2/RT)}$		
For relating ΔH and Arrhenius activation energy, analogy from thermodynamics		
is used.	2	
$E = \Delta H$ - RT for liquids and solids		
$E = \Delta H$ - (molecularity – 1) RT for gases		
The difference between E and ΔH is small and of the order RT. Hence transition		
theory predicts that K α T e ^{-(E/RT)}		
2b Performance equation of steady state plug flow reactor:		8
In PFR, the composition of the fluid varies from point to point along the flow		



Subject code : (17562)

Page 7 of 25

Subject code : (17562)

Multitubular fixed bed reactor:	1	
Thilds I and the		
b Reastant lyas m		
Application of fluidized bed reactor:		
1. Used when frequent regeneration of catalyst is required for reactions with	1 mark	
very high heat effects.	for any	
2. Used when large quantities of feed are to be handled and good	two	
temperature control is required.	applicat	
3. Used in petroleum and petrochemical industry	ion	
4. Used in radioactive waste solidification		
Application of multitubular fixed bed reactor:	1 mark	
1. used to catalyse gas phase reactions	for any	
2. Used when high conversion per unit weight of catalyst is required.	two	
3. Used in automobile exhaust purification.	applicat	
4. Used to treat harmful and toxic substances	ion	
S2 - S1 = nCp * ln (T2 / T1) + nR * ln (P1 / P2)	2	
n= 3 mols,P1=0.2 atm,P2=2 atm,T1=300K,T2=1000K		
$\Delta S = 3*7*\ln(1000/300) + \{3*1.987*\ln(0.2/2)\}$	1	
Δ S = 11.55 Cal/K	1	

Page 9 of 25

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

3-b	Steps involved in analysis of kinetic data by integral method	4	
00	The procedure for integral method of analysis is as follows :		
	1. In a constant volume system, the rate expression for the disappearance of		
	reactant A will be of the following form		
	$-\mathbf{r}_{A} = -\mathbf{d}\mathbf{C}_{A} / \mathbf{dt} = \mathbf{k}\mathbf{f}(\mathbf{c})$	3	
	2. Rate equation is rearranged as		
	$-dC_A / f(c) = kdt$		
	$f(c)$ involves the concentration of materials which may be expressed in terms of C_A		
	3. Above equation is integrated with appropriate $limitsC_A t$		
	$-\int (dC_A / f(c)) = k \int dt$		
	C_{A0} 0		
	4. The concentration function is proportional to time, so a plot of		
	concentration vs time gives a straight line of slope k for this particular		
	rate equation.		
	5. From experiment, determine the numerical value for the above integral		
	and plot these at the corresponding time.		
	6. If the data fall on a reasonable straight line, then it may said that the		
	particular rate equation being tested satisfactorily fits the data. If the data		
	are being fitted by a curve, the rate equation and mechanism are rejected		
	and another rate equation is tried.		
	Graph:		

MAHAR

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-14 EXAMINATION Model Answer

Subject code : (17562)

Page 11 of 25

	s slope = k t	1	
3-с	Consider the reaction $aA + bB + \dots \rightarrow rR + sS \dots$		4
	$K_{c} = (C_{R}^{r} \cdot C_{S}^{s}) / (C_{A}^{a} \cdot C_{B}^{b})$	01	
	For ideal gas $C_i = p_i / RT$	01	
	Therefore $K_c = \{(p_R / RT)^r . (p_S / RT)^s\} / \{(p_A / RT)^a . (p_B / RT)^b\}$ $= (p_R^r . p_S^s) / (p_A^a . p_B^b) . (1 / RT)^{(r+s+(a+b=))}$ R is the ideal gas constant = 0.0821 L•atm/mol•K T the absolute temperature in K P is the pressure in atm $ieK_c = K_p . (1 / RT)^{\Delta n}$ where $K_p = (p_R^r . p_S^s) / (p_A^a . p_B^b)$ $\Delta n = (r + s +(a + b +))$ is the difference in the number of moles of product and reactant	01	
3-d	Or $K_p = K_c \times (RT) \Delta^n$ The rate of a chemical reaction is affected by several factors like:		4
3-u	The rate of a chemical reaction is anected by several factors like:	1 /2	4
	1) Concentration of reactants	1 /2	
	2) Pressure	mark	
	<u>3) Temperature</u>	each for any	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-14 EXAMINATION Model Answer

Subject code : (17562)

four	
1	
factors	
01	
01	
01	4
oss of	
02	
01 monte	
-	
one	
	01 01 01

Page 12 of 25

WINTER-14 EXAMINATION **Model Answer**

ject cod	e : (17562)		Page 13 of 25
4A-a	$2A \rightarrow \text{product}$		4
	In terms of concentration	01	
	$-\mathbf{r}_{\mathrm{A}} = -\mathbf{d}_{\mathrm{CA}}/\mathrm{dt}$		
	$= kC_A^2$		
	$-d_{CA}/C_{A}^{2}=kdt$		
	On integration		
	$K=1/t(1/C_{A}-1/C_{A0})$	01	
	In terms of conversion		
	$-r_{\rm A} = -d_{\rm CA}/dt$		
	$= kC_A^2$	01	
	$C_A = C_{A0}(1-X_A)$		
	$d_{CA} = -C_{A0}.d_{XA}$		
	$- \mathbf{d}_{\mathrm{CA}} = \mathbf{C}_{\mathrm{A0}} \cdot \mathbf{d}_{\mathrm{XA}}$		
	$C_{A0} (d_{XA}/dt) = k. C_{A0}^{2} (1-X_A)^{2}$		
	On integrating	01	
	$1/C_{A0}\{X_A/(1-X_A)\}=kt$		
4A-b	Fixed-bed reactors Advantages	¹∕₂ mark	4
	1. Flexible- large variation in operating conditions and contact times is	each	
	possible	for any	
	2. Efficient- long residence time enables a near complete reaction	four	
	3. Generally low-cost, low-maintenance reactors		
	4. Little loss or attrition		
	5. Usually a high ratio of catalyst to reactants		
	6. Little wear on catalyst and equipment		
	7. Only practical, economical reactor at very high pressures		
	Fluidised-bed reactors Advantages		
	1. Frequent regeneration of the catalyst possible.	¹∕₂ mark	
		1	

ect code	e : (17562)			Page 14 of 2 !	
	2. Rapid mixing of solids in fluid beds means uniform gas composition.each				
	3. Isothermal operation and efficient temperature control is practical. for any				
	4. Small-diameter particles in flu	id minimize pore diffusional resistance.	four		
	5. Improved thermal efficiency b	because of high heat transfer rates.			
	6. In the case of highly exotherm	nic, liquid phase reactions, slurry reactors			
	are less complex and less expe	ensive than heat-exchange-tubular systems.			
4A-c	$\boldsymbol{\xi}_{A} =$ It is the ratio of change in total m	umber of moles of reacion system when	01	4	
	reaction is complete to the total numb	per of moles fed to the reactor			
	OR				
	It is the fractional change in volume of				
	complete conversion of reactant A				
	Basis : 100 mol of initial reaction mix				
	40 mol of A	01			
	60 mol of inert				
	Moles at no conversion	Moles after conversion	01		
	A=40 mol	R= 120 mols	01		
	Inert=60 mol	Inert=60 mols			
	100 mols	180 mols			
	E _A =(180-100)/100= 0.8				
4A-d	$CO + 0.5O_2 \rightarrow CO_2$			4	
	$Kp = P_{CO2} / \{P_{CO}^* (P_{O2})^{1/2}\}$				
	$Kp=3.354 (atm)^{-1/2}$				
	Total Pressure=P=0.6+0.4+0.2=1.2 at	tm	01		

ect code	e : (17562)		Page 15 of 2 !
	$Kc=Kp(RT)^{-\Delta^n}$	01	
	Δ n=1-(1+1/2)= -1/2		
	$Kc = 3.354\{(0.08206)^*(3000)^{1/2}\}$		
	$Kc = 54.64 \text{ mol}^{-1/2}.lit^{-1/2}$	01	
4B-a	T ₂ =1100 K	01	6
	$T_1 = 1000 \text{ K}$		
	$r_2 = 20 r_1$	01	
	$Ln(r_2/r_1) = E/R\{1/T_1-1/T_2\}$	02	
	Е=273973 Ј/К	01	
	= 274 KJ/ K = 65477.72 cal/K	01	
4-B-b	Consider the reaction $aA + bB \rightleftharpoons rR + sS$		6
	ΔG reaction = ΔG product - ΔG reactant.	1	
	$= (r \ \mu_R + s \ \mu_S) - (a \ \mu_A + b \ \mu_B).$	1	
	At equilibrium there is no Gibb's free energy change, $\Delta G = 0$		
	$(r \ \mu_R + s \ \mu_S) - (a \ \mu_A + b \ \mu_B) = 0$	1	
	$r(\mu_R^0 + RT \ln p_R) + s(\mu_S^0 + RT \ln p_S) = a(\mu_A^0 + RT \ln p_A) + c(\mu_B^0 + RT \ln p_A) $		
	b($\mu_B^0 + RT \ln p_B$)	1	
	RT ln $\left(\frac{p_R^r}{p_A^a}\frac{p_S^s}{p_B^b}\right) = (a \mu_A^0 + b \mu_B^0) - (r \mu_R^0 + s \mu_S^0)$		
	= - (ΔG product - ΔG reactant)	1	
	$= -\Delta G$ reaction.		
	$\ln \left(\frac{p_R^r}{p_A^a} \frac{p_S^s}{p_B^b}\right) = \frac{-\Delta G \text{ reaction}}{RT}$	1	
	But $\left(\frac{p_R^r}{p_A^s}\frac{p_S^s}{p_B^b}\right) = K_p$		
		1	
	Therefore $\Delta G = -RT \ln K_p$		
5-a	Given: $C_{A0} = 1 \text{ mol/l}$		8
	$X_{A} = 0.80$ when $t = 8$ min.		

Subject code : (17562)	Page 16 of 25
$X_A = 0.90$ when $t = 80$ min Let us first assume reaction is of some order. Therefore the integrated equation	
Let us first assume reaction is of zero order. Therefore the integrated equation for zero order reaction in terms of fractional conversion is	
$\begin{array}{ll} C_{A0}X_A &= kt\\ Case 1) \text{ Where } X_A &= 0.80 \text{ when } t = 8 \text{ min.} \end{array}$	1
1*0.8 = k*8 k = 0.1 (min) ⁻¹ (mol / l)	
Case 2) Where $X_A = 0.90$ when $t = 80$ min. 1* 0.9 = k*80	1
$k = 0.01125 \text{ (min)}^{-1}$	
Our assumption is wrong as values of rate constants are not same. The reaction is not of zero order	1
Let us now assume reaction is of First order. Therefore the integrated equation of first order reaction in terms of fractional conversion is	1
$\ln\left[\frac{1}{1-X_A}\right] = kt$	
Case 1) Where $X_A = 0.80$ when $t = 8$ min.	
$\ln \left[\frac{1}{1 - 0.8} \right] = k^* 8$ k = 0.201 (min) ⁻¹	1
Case 2) Where $X_A = 0.90$ when $t = 80$ min.	
$\ln \left[\frac{1}{1 - 0.9} \right] = k * 80$ k = 0.028 (min) ⁻¹	1
Let us guess it is of Second order. Therefore the integrated equation of second	1
order reaction wrt A in terms of fractional conversion is	1
$\left \frac{X_A}{1-X_A}\right = kC_{A0}t$	1
Case 1) Where $X_A = 0.80$ when $t = 8$ min. & C _{A0} = 1 mol/l $\left \frac{0.8}{1-0.8} \right = k * 1 * 8$	
$k = 0.5 \text{ (mol/l)}^{-1} \text{ (min)}^{-1}$	
Case 2) Where $X_A = 0.90$ when $t = 80$ min. & C $_{A0} = 1$ mol/l	1

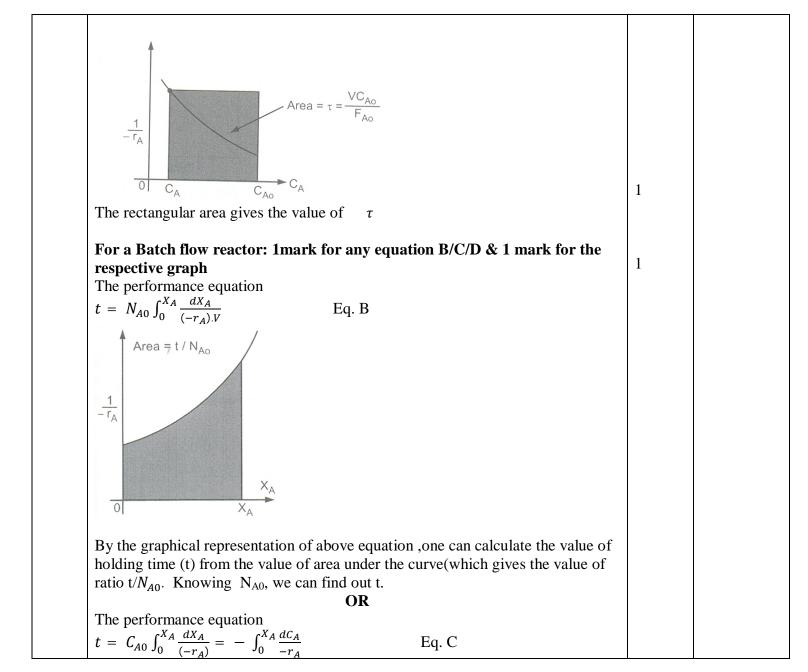
ect cod	ect code : (17562)					
	$\begin{bmatrix} 0.9\\ 1-0.9 \end{bmatrix} = k * 1 * 80 k = 0.1125 (mol/l)^{-1} (min)^{-1}$					
	Our assumption is wrong as values of rate constants are not same. The reaction is not of second order . (<i>Data given in the question is wrong. So if the students have written the correct formula and steps, it should be given due consideration.</i>)					
5-b	Performance equation of mixed flow reactor:Here the composition of the reactants is uniform throughout the reactor.Taking material balance of reactant A over the reactor as a whole,Input of A to reactor = Output of A from reactor + Disappearance of A due tochemical reaction + Accumulation of A within the reactor.	1	8			
	For mixed flow reactor at steady state the last term is zero. Input of a to reactor = Output of A from reactor + Disappearance of A due to chemical reaction	1				
	Let, $F_{A0} =$ Molar feed rate to the reactor V = Volume of reactor $C_{A0} =$ Molar concentration of A in stream entering the reactor (moles/volume) $v_0 =$ Volumetric flow rate(volume/time) $X_A =$ Fractional conversion of A					
	$\begin{array}{l} F_{A0} = C_{A0.} \ v_{0} \\ \mbox{The molar rate at which A is entering in the reactor} = F_{A0.} \ X_{A} \\ F_{A0.} \ X_{A} = Moles \ of A \ fed \ / \ time \ x \ Moles \ of A \ reacted \ moles \ of A \ fed \\ \ Moles \ of A \ reacted \ / \ time \ = F_{A0.} \ X_{A} \\ \mbox{Molar flow rate of A leaving the reactor} = F_{A} \\ \ Molar \ flow \ rate \ Molar \ rate \ at \ which \ A \ - \ A \ is \ consumed \ = \ A \ leaves \ the \ reactor \ is \ fed \ to \ reactor \ at \ a$	1				
	$F_{A0} - F_{A0} X_A = F_A$ Output of A from reactor = $F_A = F_{A0} (1 - X_A)$ Rate Disappearance of A due to chemical reaction = $(-r_A) . V$ $F_{A0} = F_{A0} (1 - X_A) + (-r_A) . V$ Rearranging, we get	1 1 1				
		1				

Page 18 of 25

WINTER-14 EXAMINATION Model Answer

	¥7 ¥7		
	$\frac{V}{F_{A0}} = \frac{X_A}{-r_A}$		
	$\frac{V}{F_{A0}} = \frac{\tau}{C_{A0}} = \frac{X_A}{(-r_A)}$	1	
	$\tau = \frac{1}{s} = \frac{V}{v_0} = \frac{V \cdot C_{A0}}{F_{A0}} = \frac{C_{A0}X_A}{-r_A}$		
	Where X_A and $(-r_A)$ are evaluated at the exit conditions, which are same as conditions prevailing within reactor(ex.composition, temp.) The above equation is the performance equation for a mixed flow reactor.		
5-c	Given: $X_A = 0.70$, t = 13 min		8
	For batch reactor with first order chemical reaction $-r_A = k.C_A$ $-ln(1 - X_A) = kt$ -ln(1-0.70) = k * 13 $k = 0.0926 \text{ min}^{-1}$ For Mixed flow reactor :	1	
	$\tau = \frac{C_{A0} \cdot X_A}{(-r_A)}$ $\tau = \frac{C_{A0} \cdot X_A}{-r_A} = \frac{C_{A0} \cdot X_A}{kC_{A0}(1 - X_A)}$	1	
	$\tau = \frac{0.70}{0.0926(1-0.7)} = 25.2$ min.	1	
	Space velocity = s = $1/\tau$ = $1/25.2 = 0.03968 \text{ min}^{-1}$	1	
	For Plug flow reactor & constant –density systems:		
	$\frac{V}{F_{A0}} = \int_0^{X_A} \frac{dX_A}{-r_A} = \frac{\tau}{C_{A0}}$	1	
	$\tau = C_{A0 \int_0^X A \frac{dX_A}{k.C_{A0.}(1-X_A)}}$	1	
		1	

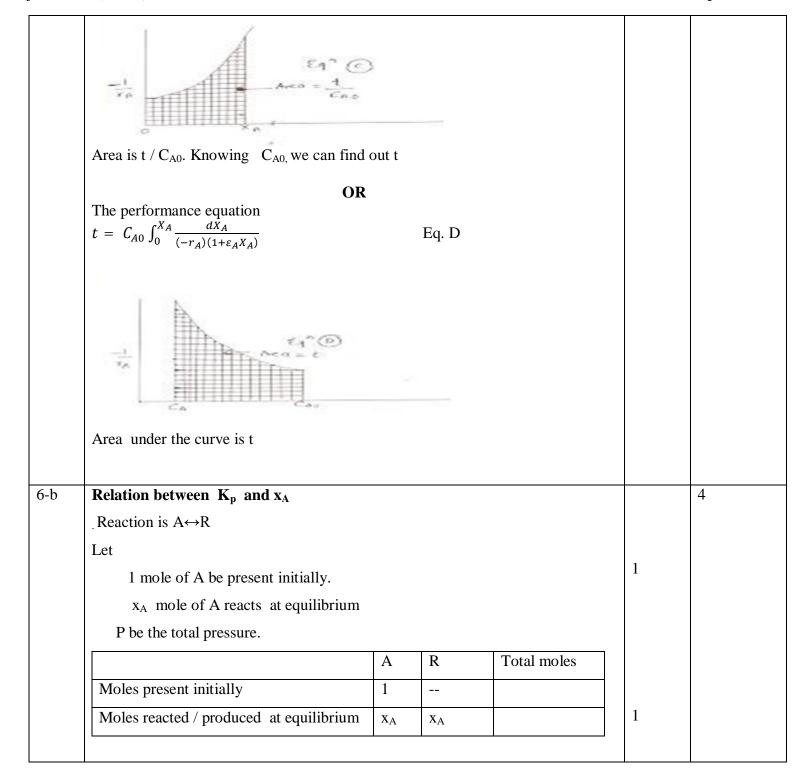
WINTER-14 EXAMINATION Model Answer


Subject code : (17562)

	$\tau = \int_{0}^{X_{A}} \frac{dX_{A}}{k \cdot (1 - X_{A})}$ $\tau = \frac{1}{k} (-\ln(1 - XA)) = \frac{1}{0.0926} (-\ln(1 - 0.7)) = 13 \text{ min.}$ Space velocity = s = 1/ τ = 1/13 = 0.07692 min ⁻¹	1	
6			4
6-a	For a Mixed flow reactor the performance equation is $\tau = \frac{1}{s} = \frac{V}{v_0} = \frac{V.C_{A0}}{F_{A0}} = \frac{C_{A0}.X_A}{-r_A} \qquad \text{Eq. A}$	1	4
	Where τ is the space time ,V is the volume of reactor, v_0 is yhe volumetric flow rate of feed. The graphical representation of the performance equation in terms of fractional conversion is as below $Area = \frac{\tau}{C_{AO}} = \frac{V}{F_{AO}}$ $Area = \frac{\tau}{C_{AO}} = \frac{V}{F_{AO}}$ $\frac{1}{r_A}$ The rectangular area gives the value of $\frac{\tau}{c_{AO}}$. knowing C _{AO} , we can find out τ . OR The graphical representation of the performance equation in terms of concentration for constant density system is as below.	1	

Page 19 of 25

WINTER-14 EXAMINATION Model Answer



WINTER-14 EXAMINATION Model Answer

Subject code : (17562)

Page 21 of 25

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-14 EXAMINATION Model Answer

Subject code : (17562)

Page 22 of 25

	_	- XA	X _A	1	_		
Mole fr	raction 1	- X _A	X _A				
Partial	pressure F	P (1-	P x _A				
	x	(A)				1	
$K_p = \frac{P}{P(1)}$	$\frac{x_A}{-x_A} = \frac{x_A}{1-x_A}$			l		-	
K _p (1- x	$(\mathbf{x}_{A}) = \mathbf{x}_{A}$						
K _p - K _p	$x_A = x_A$					1	
$K_p = x_A$	$(1 + K_p)$						
$x_A = \frac{K_I}{1+I}$	<u>p</u>						
	Kp Ice between Molecularity& Order	of re	action(any	4 points)		1 mark	4
		0110		• '		each	1
Sr.No.	Molecularity		Order of	f reaction		for any	
1	Molecularity is the number of		Order of	f reaction is the s	sum e	4 pts	
	molecules, atoms or ions in a chemi	ical	exponer	nts of the concent	tratic		
	reaction.		-	volved in the rat			
2	Molecularity always have an integer value 1,2,3	er	Order of fraction	f reaction can ha al value.	ve a		
3	Molecularity refers only to an elementary reactions			f reaction refers t ally found rate on.	to an		
4	Molecularity has no meaning for or reaction specially in complex react Reaction can be unimolecular ,bimolecular etc.		one,two	f reaction can be ,three & has def g for overall reac	inite		
5	Molecularity is a theoretical quant	ity		f reaction is entir ental value.	ely a		

ject cod	le : (17562)		Page 23 of 2
6-d	Integrated equation for First order reaction (variable volume system)		4
	For first order reaction, the Rate equation		
	Can be written as $-RA = \frac{-1}{V} \frac{dNA}{dt} = KCA \cdots$	1	
	But $N_A = N_{AO}(1-\chi_A)$ $dN_A = -N_{AO} d\chi_A$		
	F 11 11 Holima Sustern V = Vo (1+ EAXA) - (2)		
		1	
	Substituting in Equation ()		
	$-\mathcal{R}_{A} = \frac{N_{AO} dx_{A}}{V_{O} (1 + \varepsilon_{A} \mathcal{R}_{A}) dt} = \frac{k (C_{AO} (1 - \chi_{A})}{1 + \varepsilon_{A} \mathcal{R}_{A}}$		
	Vo (ItEA TA) dt ItEA TA		
	CAO dxA - KCAO (1-XA) dt		
		1	
	$\frac{dx_A}{1-x_A} = k dt$ Integrating the above equation, we get $-\ln(1-x_A) = kt -3$		
	Eqn 2 can be written as V = Vo + Vo EAXA		
	V-VO = VO EAXA AV = VO EAXA		
		1	
	X _A = <u>AV</u> Vo E _A Substituting X _A from equation (4) into equation (3)		
	Substituting NA trom Equation		
	$-\ln\left(1-\frac{4V}{V_{0}E_{A}}\right)=kt$		
б-е	Difference between Fixed &Fluidised bed reactors	1 mark	4
		each	

WINTER-14 EXAMINATION Model Answer

Subject code : (17562)

Page 24 of 25

No.	Point	Fixed bed reactor	Fluidised bed reactor	for any	
1	Movement of catalyst	Catalyst particles are stationary and gas flows through it	Catalyst particles are suspended in the gas stream	4 pts.	
2	Nature of flow	Approximates plug flow.	Complex.		
3	Temperature control	difficult	Can maintain isothermal conditions		
4	size of catalyst	Cannot use very small size of catalyst because of plugging and high pressure drop	Can use small size of catalyst		
5	Regeneration of catalyst	difficult	Easily regenerated		
6	Temperature Control	difficult	Can maintain isothermal conditions		
7	Hot spot formation	Chances are there	No hot spot formation		
8	Size of reactor	Small diameter multi- tubular units	Large diameter vessels		
9	Recovery units	Catalyst loss is not there,so recovery units are not required	Catalyst loss is there, so recovery units are necessary	<i>.</i>	
10	conversion	Highest conversion per unit weight of catalyst	Low conversion		
11	Applications	Suitable for small commercial units	Suitable for large commercial	units	
Datah	Reactor:			2 marks	4

WINTER-14 EXAMINATION Model Answer

Subject code : (17562)

Page 25 of 25

-		er agitation during which no n t mixture is withdrawn at a su	naterial is fed or removed from it, bsequent time.	2 advanta ges & 2
	Sr. no.	Advantages	Disadvantages	marks for any
	1	Simple in construction & operation	High labour costs per unit volume of production.	two disadva
	2	Equipment cost low	Requires considerable time to empty ,clean out & refill	ntages.
	3	Gives highest conversion by leaving the reactants for longer periods in reactor.	Poorer quality control of product	
	4	Requires small instrumentation & less supporting equipments	Large scale production is difficult.	