

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

### SUMMER-17 EXAMINATION Model Answer

Subject code :

Page **1** of **26** 

17561

### Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.

2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.

3) The language errors such as grammatical, spelling errors should not be given more

Importance (Not applicable for subject English and Communication Skills.

4) While assessing figures, examiner may give credit for principal components indicated in the

figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.

5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.

6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.

7) For programming language papers, credit may be given to any other program based on equivalent concept.



# SUMMER-17 EXAMINATION Model Answer

Subject code :

17561

Page **2** of **26** 

| Answer                                                                                | Marks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Attempt any THREE                                                                     | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Definition:                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Static characteristics: Static characteristics are those that must be considered      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| when the instrument is used to measure a condition not varying with time.             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Dynamic characteristics: Dynamic characteristics are those that must be               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| considered when the instrument is used to measure a condition varying with            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| time.                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| List (any four)                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Calibration, accuracy, precision, repeatability, drift, sensitivity, resolution, dead | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| zone, static error.                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Seebeck effect:                                                                       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Seebeck discovered that when there is temperature difference between two              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| junctions of thermocouple ,anemf is developed between the junctions. This emf         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| causes electric current to flow through thermocouple circuit. This is called          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| thermo electric effect by which thermal energy is converted to electrical energy.     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Peltier effect:                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| It is defined as the change in heat content when 1 coulomb of charge crosses the      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| junction.                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| List direct level measurement methods:                                                | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Sight glass method, float type level Indicator                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Diagram:                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Sight glass method                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                       | Attempt any THREE         Definition:         Static characteristics: Static characteristics are those that must be considered when the instrument is used to measure a condition not varying with time.         Dynamic characteristics: Dynamic characteristics are those that must be considered when the instrument is used to measure a condition varying with time.         List (any four)         Calibration, accuracy, precision, repeatability, drift, sensitivity, resolution, dead zone, static error.         Seebeck effect:         Seebeck discovered that when there is temperature difference between two junctions of thermocouple ,anemf is developed between the junctions. This emf causes electric current to flow through thermocouple circuit. This is called thermo electric effect by which thermal energy is converted to electrical energy.         Peltier effect:         It is defined as the change in heat content when 1 coulomb of charge crosses the junction.         List direct level measurement methods:         Sight glass method, float type level Indicator         Diagram:         Sight glass method |







|       |                                        | Subject code :                                | 17561          | Page <b>4</b> of <b>26</b> |
|-------|----------------------------------------|-----------------------------------------------|----------------|----------------------------|
| I     | Diagram                                |                                               |                |                            |
| -     | TransducerB                            | Que de la | دالم           |                            |
| 5     | 11                                     | mail frage and                                | · sooin        |                            |
|       | Flow 10                                | to the to to t                                | vason          | 2                          |
|       |                                        | row & arity                                   | icipo          |                            |
| 2     | ban son San Transd                     | n betrezni, 8                                 | bau.           |                            |
|       | A vouberent interest                   | Change over Switc                             | 6<br>6         |                            |
| -     | Electronic                             | Detector Line                                 | ban            |                            |
| 2     | Oscillator                             |                                               | Paisin<br>Badd |                            |
| (.    | Any other type of ultrasonic flowmeter | · should be given due con                     | nsideration)   |                            |
| 1b A  | Attempt any ONE                        |                                               |                | 6                          |
| b-i ( | C shaped Bourdon tube pressure gaug    | je                                            |                |                            |
| I     | Diagram                                |                                               |                |                            |
|       |                                        |                                               |                |                            |
|       |                                        |                                               |                |                            |
|       |                                        |                                               |                |                            |
|       |                                        |                                               |                |                            |
|       |                                        |                                               |                |                            |
|       |                                        |                                               |                |                            |
|       |                                        |                                               |                |                            |





|    |                                                                                    |                                                                                                   | Subject code :                                                                                                            | 17561               | Page <b>6</b> of <b>26</b> |
|----|------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|---------------------|----------------------------|
|    | controller changing the set point of the slave (or secondary) controller. It       |                                                                                                   |                                                                                                                           |                     |                            |
|    | elimir                                                                             | nates the effect of disturbances                                                                  | and improves the dynamic re                                                                                               | sponse of           | 1                          |
|    | contro                                                                             | ol loop.                                                                                          |                                                                                                                           |                     |                            |
|    | Expla                                                                              | anation:                                                                                          |                                                                                                                           |                     |                            |
|    | The feedback controller attempts to maintain the process variable at its set point |                                                                                                   |                                                                                                                           | ıt                  |                            |
|    | in res                                                                             | ponse to all the disturbances a                                                                   | nd ensures zero steady state of                                                                                           | ffset for step      |                            |
|    | like d                                                                             | isturbances. Cascade control s                                                                    | system considers the likely dis                                                                                           | sturbances and      | d 2                        |
|    | tune t                                                                             | he control system to the distur                                                                   | bances that strongly degrades                                                                                             | the                 |                            |
|    | perfor                                                                             | rmance. It uses an additional se                                                                  | econdary measured process in                                                                                              | put variable        |                            |
|    | that h                                                                             | as the important characteristics                                                                  | s of indicating occurrence of t                                                                                           | he key              |                            |
|    | distur                                                                             | bances.                                                                                           |                                                                                                                           |                     |                            |
|    | Block                                                                              | x Diagram:                                                                                        |                                                                                                                           |                     |                            |
|    | Set-point                                                                          | Primary<br>Controller<br>Controller<br>Secondary Loop<br>Transformer<br>Secondary Loop<br>Block D | Process<br># 2<br>#<br>Process<br># 2<br>#<br>Sensor/<br>ansducer<br>#<br>Sensor/<br>ansducer<br>#<br>Sensor/<br>ansducer | Controlled Variable | 2                          |
| 2  | Atten                                                                              | npt any FOUR                                                                                      |                                                                                                                           |                     | 16                         |
| -a | Diffe                                                                              | rence between open loop and                                                                       | closed loop control system.                                                                                               |                     | 1 mark                     |
|    | Sr                                                                                 | Open loop control system                                                                          | Closed loop control system                                                                                                | n                   | each for                   |
|    | No.                                                                                |                                                                                                   |                                                                                                                           |                     | any 4                      |
|    | 1                                                                                  | Feedback doesn't exists                                                                           | Feedback exists                                                                                                           |                     | points                     |
|    | 2                                                                                  | Output measurement is not                                                                         | Output measurement is                                                                                                     |                     |                            |
|    |                                                                                    | necessary                                                                                         | necessary                                                                                                                 |                     |                            |



|     |       |                             | Subject code :                | 17561 | Page <b>7</b> of <b>26</b> |
|-----|-------|-----------------------------|-------------------------------|-------|----------------------------|
|     | 3     | Any change in output has    | Changes in output affects the | e     |                            |
|     |       | no effect on input          | input                         |       |                            |
|     | 4     | Error detector is absent    | Error detector is present     |       |                            |
|     | 5     | Inaccurate and unreliable   | Highly accurate and reliable  |       |                            |
|     | 6     | Highly sensitive to         | Less sensitive to disturbance | ;     |                            |
|     |       | disturbance                 |                               |       |                            |
|     | 7     | Highly sensitive to         | Less sensitive to environment | ntal  |                            |
|     |       | environmental changes       | changes                       |       |                            |
|     | 8     | Simple in construction and  | Complicated in construction   | and   |                            |
|     |       | cheap                       | hence costly                  |       |                            |
|     | 9     | Highly affected by non-     | Reduced effect of non-linear  | rity  |                            |
|     |       | linearities                 |                               |       |                            |
| 2-b | Devic | e used for measuring pressu | re below atmosphere:          |       |                            |
|     | Mcleo | od gauge.                   |                               |       | 1                          |
|     | Diagr | am:                         |                               |       |                            |
|     |       |                             |                               |       |                            |
|     |       |                             |                               |       |                            |
|     |       |                             |                               |       |                            |
|     |       |                             |                               |       |                            |
|     |       |                             |                               |       |                            |
|     |       |                             |                               |       |                            |
|     |       |                             |                               |       |                            |
|     |       |                             |                               |       |                            |
|     |       |                             |                               |       |                            |
|     |       |                             |                               |       |                            |
|     |       |                             |                               |       |                            |



|                   | Subject code :                                                                                                                                                                                                                                                                                                                                    | 17561                                                                                                             | Page <b>8</b> of <b>26</b> |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------|
|                   | Applied pressure                                                                                                                                                                                                                                                                                                                                  |                                                                                                                   | 3                          |
|                   | Reference capillary                                                                                                                                                                                                                                                                                                                               |                                                                                                                   |                            |
|                   | hc h 22 Reference column                                                                                                                                                                                                                                                                                                                          |                                                                                                                   |                            |
| Measuri           | ing capillary                                                                                                                                                                                                                                                                                                                                     |                                                                                                                   |                            |
|                   |                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                   |                            |
| Cut               | Piston Piston                                                                                                                                                                                                                                                                                                                                     | Mercury reservoir                                                                                                 |                            |
|                   |                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                   |                            |
| 2-c <b>Differ</b> | rence between single seated and double seated valve                                                                                                                                                                                                                                                                                               |                                                                                                                   | 1 mark                     |
| 2-c Differ        | Single seated valve       Double seated                                                                                                                                                                                                                                                                                                           | ed valve                                                                                                          | 1 mark<br>each             |
| 2-c Differ        | Single seated and double seated valve         Single seated valve       Double seated         1. Only one plug is       Two plugs                                                                                                                                                                                                                 | ed valve                                                                                                          | 1 mark<br>each             |
| 2-c Differ        | Single seated and double seated valve         Single seated valve       Double seated         1. Only one plug is       Two plugs         present       Two plugs                                                                                                                                                                                 | ed valve                                                                                                          | 1 mark<br>each             |
| 2-c Differ        | rence between single seated and double seated valveSingle seated valveDouble seated1. Only one plug isTwo plugspresent2. Valve can be fullyIt cannot be                                                                                                                                                                                           | ed valve<br>e fully closed.                                                                                       | 1 mark<br>each             |
| 2-c Differ        | Single seated and double seated valve         Single seated valve       Double seated         1. Only one plug is       Two plugs         present       2. Valve can be fully       It cannot be         closed.       Therefore flow       Therefore f                                                                                           | ed valve<br>e fully closed.<br>low cannot be                                                                      | 1 mark<br>each             |
| 2-c Differ        | rence between single seated and double seated valveSingle seated valveDouble seated1. Only one plug isTwo plugspresent2. Valve can be fullyIt cannot beclosed.Therefore flowTherefore flowcan becompletelycompletely seated                                                                                                                       | ed valve<br>e fully closed.<br>low cannot be<br>topped.                                                           | 1 mark<br>each             |
| 2-c Differ        | rence between single seated and double seated valveSingle seated valveDouble seated1. Only one plug isTwo plugspresent2. Valve can be fullyIt cannot beclosed.Therefore flowTherefore flowcan be completelycompletely sstopped.1                                                                                                                  | ed valve<br>e fully closed.<br>low cannot be<br>topped.                                                           | 1 mark<br>each             |
| 2-c Differ        | Single seated and double seated valueSingle seated valueDouble seated1. Only one plug isTwo plugspresent2. Value can be fullyIt cannot beclosed. Therefore flowTherefore fcan be completelycompletely sstopped.3. Force require to operateForce require                                                                                           | ed valve<br>e fully closed.<br>low cannot be<br>topped.<br>red to move the                                        | 1 mark<br>each             |
| 2-c Differ        | Single seated and double seated valueSingle seated valueDouble seated1. Only one plug isTwo plugspresent2. Value can be fullyIt cannot beclosed. Therefore flowTherefore fcan be completelycompletely sstopped.3. Force require to operateForce requirethe value against thevalue is completely                                                   | ed valve<br>e fully closed.<br>low cannot be<br>topped.<br>red to move the<br>paratively less                     | 1 mark<br>each             |
| 2-c Differ        | Single seated valveDouble seated valveSingle seated valveDouble seated1. Only one plug is<br>presentTwo plugs2. Valve can be fully<br>closed. Therefore flow<br>can be completely<br>stopped.It cannot be<br>completely s3. Force require to operate<br>upward thrust is largeForce require<br>valve is completely                                | ed valve<br>e fully closed.<br>low cannot be<br>topped.<br>red to move the<br>paratively less                     | 1 mark<br>each             |
| 2-c Differ        | Single seated valveDouble seated valve1. Only one plug is<br>presentTwo plugs<br>Two plugs<br>present2. Valve can be fully<br>closed. Therefore flow<br>can be completely<br>stopped.It cannot be<br>completely s<br>stopped.3. Force require to operate<br>upward thrust is largeForce require<br>valve is completely<br>suitable for small flow | ed valve<br>e fully closed.<br>low cannot be<br>topped.<br>red to move the<br>paratively less<br>large flow rates | 1 mark<br>each             |



|     | Subject code : 17561                                                                                                                                               | Page <b>9</b> of <b>26</b> |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| 2-d | Man-machine interface(MMI):                                                                                                                                        |                            |
|     | <b>Definition:</b> Man-machine interface is the interface between the users ( such as                                                                              | 1                          |
|     | plant operator, computer specialists, instrumentation and maintenance engineers                                                                                    |                            |
|     | etc) and the computer control system.                                                                                                                              |                            |
|     | Explanation:                                                                                                                                                       |                            |
|     | MMI permits users to observe, monitor, log, diagnose, optimize and control the                                                                                     |                            |
|     | current state of the plant system. It also provides historical review, trending and                                                                                |                            |
|     | maintenance / updating of any control elements. The standard software                                                                                              | 3                          |
|     | packages typically provide a range of display types such as mimic diagram of                                                                                       |                            |
|     | plant / process overview, information on the control system associated with                                                                                        |                            |
|     | each area and loop displays giving extensive information on the details of a                                                                                       |                            |
|     | particular control loop. MMI devices consists of the following – Display unit,                                                                                     |                            |
|     | key board, input unit, printing unit, control panel and recorders.                                                                                                 |                            |
| 2-е | Diagram of Programmable logic controller                                                                                                                           | 4                          |
|     | Programming device<br>Power supply<br>CPU<br>Memory<br>I/O Bus<br>I/O System mudules<br>Output device<br>Solenoids, motor<br>starters<br>Switches, push<br>buttons |                            |
| 2-f | Valve positioner:                                                                                                                                                  |                            |
|     | Function:                                                                                                                                                          |                            |
|     | It is that part of the control valve which is used along with the actuator to                                                                                      | 2                          |
|     | correctly position the stem when static frictional forces are large                                                                                                |                            |
|     | 1. To correctly position the valve stem in response to the control signal.                                                                                         |                            |
|     | 2. Improves the speed of response and reduces the hysteresis effect                                                                                                |                            |



# SUMMER-17 EXAMINATION Model Answer

Г

-

|     | Subject code :                                                                                                                                                                                                                    | 17561                                                                | Page <b>10</b> of <b>26</b> |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------|
|     | Diagram:<br>pilot amplifier<br>air supply<br>nozzle<br>input<br>input bellows                                                                                                                                                     | output                                                               | 2                           |
| 3   | Attempt any FOUR                                                                                                                                                                                                                  |                                                                      | 16                          |
| 3-а | Principle:<br>According to Stefan Boltzmann's law, the intensity of radia                                                                                                                                                         | nt energy emitted                                                    |                             |
|     | Operation of radiation pyrometer is based upon the mea<br>energy emitted by the hot body. In radiation pyrometer, t<br>focused on radiation detector which converts it into pr<br>signal, which indicates the target temperature. | surement of radiant<br>he radiant energy is<br>oportional electrical | 2                           |
|     | Advantages:                                                                                                                                                                                                                       |                                                                      | ¹∕₂ mark                    |
|     | 1. They are able to measure high temperature                                                                                                                                                                                      |                                                                      | each for                    |
|     | 2. There is no need for contact with target of measurem                                                                                                                                                                           | nent.                                                                | any two                     |
|     | 3. Fast speed of response                                                                                                                                                                                                         |                                                                      | points                      |
|     | 4. High output and moderate cost                                                                                                                                                                                                  |                                                                      |                             |
|     | 1. Their scale is non linear                                                                                                                                                                                                      |                                                                      | 1                           |
|     |                                                                                                                                                                                                                                   |                                                                      |                             |



|     | Subject code : 17561                                                                                                                                                                                                                                    | Page <b>11</b> of <b>26</b> |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
|     | 2. Emissivity of target material affect measurement                                                                                                                                                                                                     |                             |
| 3-b | Capacitance level indicator                                                                                                                                                                                                                             |                             |
|     | Advantages                                                                                                                                                                                                                                              |                             |
|     | 1. It is useful in a small system                                                                                                                                                                                                                       | 1 mark                      |
|     | 2. It is very sensitivity                                                                                                                                                                                                                               | each for                    |
|     | 3. There are no moving parts exposed to fluid                                                                                                                                                                                                           | any two                     |
|     | 4. It is good for use with slurries                                                                                                                                                                                                                     | points                      |
|     | Disadvantages                                                                                                                                                                                                                                           |                             |
|     | 1. The performance of a capacitance level indicators is severely affected                                                                                                                                                                               |                             |
|     | by dirt and other contaminants, because they change the dielectric                                                                                                                                                                                      | 2                           |
|     | constant                                                                                                                                                                                                                                                |                             |
|     | 2. Its sensitivity is adversely affected by change in temperature                                                                                                                                                                                       |                             |
|     | Gauge under test<br>Piston<br>Piston<br>Oil reservoir<br>Check valve<br>Displacement pump                                                                                                                                                               |                             |
|     | It consists of a very accurately machined, bored and finished piston which is<br>inserted into a close-fitting cylinder. The cross sectional areas of both the piston<br>and the cylinder are known. At the top of the piston is provided a platform on |                             |
|     | with a check value at its bottom is also provided. The oil from the reservoir can                                                                                                                                                                       |                             |
|     | when a check where a his couch is also provided. The on from the reservoir can                                                                                                                                                                          |                             |



|     | Subject code : 17561                                                                | Page <b>12</b> of <b>26</b> |
|-----|-------------------------------------------------------------------------------------|-----------------------------|
|     | be sucked by a displacement pump on its upward stroke.                              |                             |
|     | For calibration purpose, first a known (calculated) weight is placed on the         |                             |
|     | platform and the fluid pressure is applied on the other end of the piston until     |                             |
|     | enough force is developed to lift the piston-weight combination and the piston      |                             |
|     | floats freely within the cylinder when the fluid gauge pressure equals the dead     |                             |
|     | weight divided by the piston area.                                                  |                             |
| 3-d | Electromagnetic flow meter                                                          |                             |
|     | Diagram                                                                             |                             |
|     |                                                                                     | 2                           |
|     | Magnetic Coil                                                                       |                             |
|     | Pipe E Working:                                                                     |                             |
|     | As the conducting fluid flows through the pipe, due to the magnetic field           |                             |
|     | around the pipe, an emf is induced between the electrodes. This emf induced is      | 2                           |
|     | proportional to the velocity of the conductor. As the flow rate varies, velocity of |                             |
|     | fluid changes and hence the induced emf changes.                                    |                             |
|     | E = CBLV                                                                            |                             |
|     | Where, $E =$ induced voltage in volts                                               |                             |
|     | C = dimensional constant                                                            |                             |
|     | $B = Magnetic field in weber/m^2$                                                   |                             |



|      | Subject code : 17561                                                            | Page <b>13</b> of <b>26</b> |
|------|---------------------------------------------------------------------------------|-----------------------------|
|      | L = Length in conductor (fluid) m                                               |                             |
|      | V = velocity of the conductor in m/sec                                          |                             |
| 3-е  | Servo and regulator operation:                                                  |                             |
|      | Servo control system is used to control a physical variable such as position or |                             |
|      | motion. A servo control system is a feedback system which maintains an output   | 1                           |
|      | position or motion in close correspondence with an input reference signal.      |                             |
|      | Eg. Servo control system is extensively used in various applications such as in | 1                           |
|      | Robotics for control of each joint in the robotic arm, in numerical control of  |                             |
|      | machines to control motion of the tool, to position the recording pen in a      |                             |
|      | recorder, power steering system of automobiles, etc.                            |                             |
|      | Regulator operations are self - contained, direct - operated control devices    | 1                           |
|      | which use energy from the controlled system to operate whereas control valves   | 1                           |
|      | require external power sources, transmitting instruments, and control           |                             |
|      | instruments.                                                                    |                             |
|      | Eg Continuous chemical process in which the flow of process materials is        | 1                           |
|      | maintained at a constant value.                                                 | 1                           |
| 4a   | Attempt any THREE                                                               | 12                          |
| 4a-i | Bimetallic thermometer                                                          |                             |
|      | Principle:                                                                      | 1                           |
|      | When heated different solids expand differently depending on their coefficient  |                             |
|      | of thermal expansion.                                                           |                             |
|      | Diagram                                                                         |                             |
|      |                                                                                 |                             |
|      |                                                                                 |                             |
|      |                                                                                 |                             |
|      |                                                                                 |                             |
|      |                                                                                 |                             |





|        | Subject code : 17561                                                         | Page <b>15</b> of <b>26</b> |
|--------|------------------------------------------------------------------------------|-----------------------------|
|        | Kelvin                                                                       | 1                           |
|        | ${}^{0}K = 273.15 + {}^{0}C$                                                 |                             |
|        | $47^{0}C = 320.15^{0}Kelvin$                                                 |                             |
|        | Rankine                                                                      | 1                           |
|        | ${}^{0}R = {}^{0}F + 459.7$                                                  |                             |
|        | $47^{0}C = 576.27^{0}Rankine$                                                |                             |
| 4a-iii | Principle of positive displacement meter                                     |                             |
|        | As the liquid flows through the meter, it separates the flow of liquid into  | 2                           |
|        | separate known volumetric increments which are counted and totaled. The sum  |                             |
|        | of the increments gives the measurement of the total volume of liquid passed |                             |
|        | through the meter.                                                           |                             |
|        | Advantages of rotating vane meter                                            |                             |
|        | 1. It allows low pressure loss                                               |                             |
|        | 2. It has relatively high temperature and pressure rating                    | 1 mark                      |
|        | 3. It has a good accuracy                                                    | each for                    |
|        | 4. It is available in numerous construction material                         | any two                     |
|        |                                                                              | points                      |
| 4a-iv  | Thermal flow meter                                                           |                             |
|        | Diagram                                                                      |                             |
|        | •                                                                            |                             |
|        | - Thermocouple-                                                              |                             |
|        | Flow                                                                         | 2                           |
|        | 6 6 6 6 6 6                                                                  |                             |



|      | Subject code : 17561                                                                | Page <b>16</b> of <b>26</b> |
|------|-------------------------------------------------------------------------------------|-----------------------------|
|      | Explanation:                                                                        |                             |
|      | It consists of an electric immersion heater for the heating of flowing fluid. Two   |                             |
|      | thermocouples (or resistance thermometers) T1 and T2 are placed at each side        |                             |
|      | of the heater. The thermocouple T1 measures the temperature of fluid before it      |                             |
|      | is heated, while the thermocouple T2 measures the temperature so after. The         |                             |
|      | power supply to the heater equals the heat transferred to the fluid, i.e. Q, and is | 2                           |
|      | measured by a wattmeter. Thus by measuring the values of Q, T1 and T2 the           |                             |
|      | flow rate W of liquid is determined from the equation                               |                             |
|      | $W = Q/Cp(T_2-T_1)$                                                                 |                             |
|      | Where                                                                               |                             |
|      | Q=heat transfer                                                                     |                             |
|      | W= mass flow rate of fluid                                                          |                             |
|      | Cp= specific heat of fluid                                                          |                             |
|      | $T_1$ =initial temperature of the fluid after heat has been transferred             |                             |
|      | $T_2$ =final temperature after heating the fluid.                                   |                             |
| 4b   | Attempt any ONE                                                                     | 6                           |
| 4b-i | Selection of control valve:                                                         | 1 mark                      |
|      | The basic steps in control valve selection are                                      | each                        |
|      | 1. The first step in control valve selection involves collecting all relevant       |                             |
|      | data and completing the ISA Form S20.50. The piping size must be set                |                             |
|      | prior to valve sizing, and determining the supply pressure may require              |                             |
|      | specifying a pump                                                                   |                             |
|      | 2. The size of the valve is required; select the smallest valve $C_v$ that          |                             |
|      | satisfies the maximum $C_v$ requirement at 90% opening. While                       |                             |
|      | performing these calculations, checks should be made regarding                      |                             |
|      | flashing, cavitation, sonic flow and Reynolds number to ensure that the             |                             |
|      | proper equation and correction factors are used. As many difficulties               |                             |



|       | Subject code : 17561                                                                                                                     | Page <b>17</b> of <b>26</b> |  |
|-------|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--|
|       | occur due to oversized valves as to undersized valves. Adding lots of                                                                    |                             |  |
|       | "safety factors" will result in a valve that is nearly closed during normal                                                              |                             |  |
|       | <ul><li>operation and has poor rangeability.</li><li>3. The trim characteristic is selected to provide good performance; goals</li></ul> |                             |  |
|       |                                                                                                                                          |                             |  |
|       | are usually linear control loop behavior along with acceptable rangeability.                                                             |                             |  |
|       | 4. The valve body can be selected. The valve size is either equal to the                                                                 |                             |  |
|       | pipe size or slightly less, for example, a 3-inch pipe with a 2-inch globe                                                               |                             |  |
|       | valve body. When the valve size is smaller than the process piping, an                                                                   |                             |  |
|       | inlet reducer and outlet expander are required to make connections to                                                                    |                             |  |
|       | the process piping.                                                                                                                      |                             |  |
|       | 5. The actuator is now selected to provide sufficient force to position the                                                              |                             |  |
|       | stem and plug.                                                                                                                           |                             |  |
|       | 6. Finally, auxiliaries can be added to enhance performance. A booster                                                                   |                             |  |
|       | can be increase the volume of the pneumatic signal for long pneumatic                                                                    |                             |  |
|       | lines and large actuators. A positioner can be applied for slow feedback                                                                 |                             |  |
|       | loops with large valves or valves with high actuator force or friction. A                                                                |                             |  |
|       | hand wheel is needed if manual operation of the valve is expected.                                                                       |                             |  |
| 4b-ii | Basic functions of computer aided process control                                                                                        | 1 mark                      |  |
|       | Basic Functions of Computer aided Process Control System are as                                                                          | each for                    |  |
|       | follows.                                                                                                                                 | any 6                       |  |
|       | 1) Measurement and data acquisition                                                                                                      | points                      |  |
|       | 2) Data conversion with scaling and checking                                                                                             |                             |  |
|       | 3) Data accumulation and formatting                                                                                                      |                             |  |
|       | 4) Visual display                                                                                                                        |                             |  |
|       | 5) Comparing with limits and alarm raising                                                                                               |                             |  |
|       | 6) Recording and monitoring of events, sequence and trends                                                                               |                             |  |



|          | 7) Data logging and computation                                                 |
|----------|---------------------------------------------------------------------------------|
|          | 8) Control action                                                               |
| 16       | Attempt any FOUR                                                                |
|          | Rotameter:                                                                      |
|          | Diagram:                                                                        |
| 2        | Flow Out<br>-90<br>-90<br>-90<br>-90<br>-90<br>-90<br>-90<br>-90                |
|          | Disadvantages:                                                                  |
| 1 mark   | 1. It should always be mounted vertically.                                      |
| each for | 2. Graduations on a given rotameter will only be accurate for a given substance |
| any two  | at a given temperature. Either separate rotameters for different densities and  |
| points   | viscosities may be used, or multiple scales on the same rotameter can be used.  |
|          | 3. Since the float must be read through the flowing medium, some fluids may     |
|          | obscure the reading.                                                            |
|          | 4. They are not generally manufactured in sizes greater than 6 inches/150 mm.   |
|          | 5. They are not easily adapted for reading by machine; although magnetic floats |
|          | that drive a follower outside the tube are available.                           |
|          | that drive a follower outside the tube are available.     Air purge method:     |





| radioactive isotope like cobalt60 fixed either inside or outside the vessel,<br>radiation receiving element fixed to the side of the vessel directly across the<br>source along with the indicator. As the liquid level inside the vessel changes,<br>the amount and intensity of radioactive radiations received by the receiver<br>changes. Larger the level of liquid inside the vessel, smaller is the intensity of |          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| radiation receiving element fixed to the side of the vessel directly across the<br>source along with the indicator. As the liquid level inside the vessel changes,<br>the amount and intensity of radioactive radiations received by the receiver<br>changes. Larger the level of liquid inside the vessel, smaller is the intensity of                                                                                 |          |
| source along with the indicator. As the liquid level inside the vessel changes,<br>the amount and intensity of radioactive radiations received by the receiver<br>changes. Larger the level of liquid inside the vessel, smaller is the intensity of                                                                                                                                                                    |          |
| the amount and intensity of radioactive radiations received by the receiver changes. Larger the level of liquid inside the vessel, smaller is the intensity of                                                                                                                                                                                                                                                          | 2        |
| changes. Larger the level of liquid inside the vessel, smaller is the intensity of                                                                                                                                                                                                                                                                                                                                      |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                         |          |
| radiation and vice versa.                                                                                                                                                                                                                                                                                                                                                                                               |          |
| 5-d Importance of electrical pressure transducer in monitoring pressure                                                                                                                                                                                                                                                                                                                                                 | 4        |
| Pressure transducers, when connected to an appropriate electrical source and                                                                                                                                                                                                                                                                                                                                            |          |
| exposed to a pressure source, will produce an electrical output signal (voltage,                                                                                                                                                                                                                                                                                                                                        |          |
| current, or frequency) proportional to the pressure. Most transducers are                                                                                                                                                                                                                                                                                                                                               |          |
| designed to produce output that is linear with the applied pressure and                                                                                                                                                                                                                                                                                                                                                 |          |
| independent of other system variables - the most important of these being                                                                                                                                                                                                                                                                                                                                               |          |
| temperature. Most outputs are mV, V, mA, and, sometimes, as a frequency.                                                                                                                                                                                                                                                                                                                                                |          |
| Pressure transducers have a sensing element of constant area and respond to                                                                                                                                                                                                                                                                                                                                             |          |
| force applied to this area by the pressure source. This force deflects a                                                                                                                                                                                                                                                                                                                                                |          |
| diaphragm, bellows, or Bourdon tube. In turn, these deflections, strains, or                                                                                                                                                                                                                                                                                                                                            |          |
| tensions are converted to electrical outputs.                                                                                                                                                                                                                                                                                                                                                                           |          |
| 5-e Bellows:                                                                                                                                                                                                                                                                                                                                                                                                            |          |
| (i) Material : Brass, bronze, monel, copper, stainless steel, rubber(any one)                                                                                                                                                                                                                                                                                                                                           | ¹∕₂ mark |
| (ii)Pressure range: 5 inches of water to 100 psi                                                                                                                                                                                                                                                                                                                                                                        | each     |
| (iii) Application : Refineries and petrochemical processing, to hydraulic and                                                                                                                                                                                                                                                                                                                                           |          |
| pneumatic installations.(any one)                                                                                                                                                                                                                                                                                                                                                                                       |          |
| (iv) Diagram:                                                                                                                                                                                                                                                                                                                                                                                                           |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                         |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                         |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                         |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                         |          |



| Subject code :                                                   | 17561                  | Page <b>21</b> of <b>26</b> |
|------------------------------------------------------------------|------------------------|-----------------------------|
| Link to pointer<br>Bellow<br>Bellow<br>Bellow<br>Constant Spring | and<br>ws<br>a<br>b    |                             |
| Diaphragm:                                                       |                        |                             |
| (i) Material : Stainless steel, phosphor bronze, copp            | per, leather, Teflon,  |                             |
| rubberized fabric etc (any one)                                  |                        | <sup>1</sup> /2 mark        |
| (ii)Pressure range: 10 mbar down to $10^{-11}$ mbar              |                        | each                        |
| (iii) Application: Used for measuring gauge pressure of fur      | mace drafts, air ducts |                             |
| etc (any one)                                                    |                        |                             |
| (iv) Diagram:                                                    |                        |                             |









| Subject code : 17561                                                            | Page <b>24</b> of <b>2</b> |
|---------------------------------------------------------------------------------|----------------------------|
| Inherent flow characteristics are plotted when constant pressure drop i         | s                          |
| maintained across the valve. There are two different inherent flow              | v                          |
| characteristics- linear and equal percent.                                      |                            |
| Linear Opening characteristics: Linear characteristics valve has linea          | r                          |
| relation between valve opening and flow rate at constant pressure drop          | 2                          |
| $\mathbf{Q} = \mathbf{b}\mathbf{y}$                                             |                            |
| Q- Flow rate at constant pressure drop                                          |                            |
| b - constant                                                                    |                            |
| y - valve opening / valve stem travel                                           |                            |
| Generally used                                                                  |                            |
| For slow process                                                                |                            |
| • When more than 40% of the system pressure drop occurs across the              | e                          |
| valve.                                                                          |                            |
| Equal Percentage characteristics : In equal percentage valve equal increment    | 2                          |
| of the stem travels give equal % change of the existing flow                    |                            |
| $Q = be^{ay}$                                                                   |                            |
| Q= Flow rate at constant pressure drop                                          |                            |
| a& b = constant                                                                 |                            |
| e = base of natural logarithms                                                  |                            |
| y = valve opening / valve stem travel                                           |                            |
| Generally used                                                                  |                            |
| • For fast processes                                                            |                            |
| • When high rangeability is required                                            |                            |
| At heat exchangers where an increase in product rate requires much              | h                          |
| greater increase in heating and cooling medium.                                 |                            |
| Installed flow characteristics are plotted when the differential pressure acros | s 2                        |
| the valve changes.                                                              |                            |



|     | Subject code : 17561                                                                                                                                                                                                              | Page <b>25</b> of <b>26</b> |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
|     | Quick opening – In this there is maximum flow for minimum travel                                                                                                                                                                  |                             |
|     | It is approximately linear when the flow rate is less but beyond 30% the                                                                                                                                                          |                             |
|     | flow increases rapidly with valve opening                                                                                                                                                                                         |                             |
|     | It gives approximately 90% flow at 30% travel                                                                                                                                                                                     |                             |
|     | Generally used                                                                                                                                                                                                                    |                             |
|     | • For on – off control                                                                                                                                                                                                            |                             |
|     | When maximum valve capacity must be obtained quickly.                                                                                                                                                                             |                             |
| 6-с | Distributed control system:                                                                                                                                                                                                       |                             |
|     | Block diagram:                                                                                                                                                                                                                    |                             |
|     | OPERATOR ENGINEERING<br>USER INTERFACES<br>COMMUNICATION MODULES<br>COMMUNICATION MODULES<br>COMMUNICATION MODULES<br>CONTROLLER MODULES<br>LOCALI/O BUS<br>LOCALI/O BUS<br>FROCESS IN STRUMENTS<br>PROCESS<br>PROCESS<br>PROCESS | 4                           |
|     | Explanation:                                                                                                                                                                                                                      |                             |
|     | in DCS equipment is separated in functional area and is installed in different<br>work areas of a process plant. The plant operator monitors and manipulates the                                                                  |                             |
|     | set_points of the process parameter from central control room                                                                                                                                                                     |                             |
|     | Controlling portion of the DCS distributed at various location performs                                                                                                                                                           |                             |
|     | following two function at each location                                                                                                                                                                                           |                             |
|     | 1 Measurement of analog variable and discrete inputs                                                                                                                                                                              |                             |
|     | <ol> <li>Weasurement of analog variable and discrete inputs</li> <li>Generation of output signals to actuators that can change process condition</li> </ol>                                                                       |                             |
|     | 2. Generation of output signals to actuators that can change process condition                                                                                                                                                    |                             |



| Subject code :                                                        | 17561         | Page <b>26</b> of <b>26</b> |
|-----------------------------------------------------------------------|---------------|-----------------------------|
| In Figure above the operator console in the conrol room is connect    | ted through   | a                           |
| data highway to several distributed system components.                |               |                             |
| A DCS consist of the following modules:                               |               |                             |
| 1 Operator stations that use microprocessor based CRT display         | and keyboar   | d 4                         |
| communication with control device and displays                        |               |                             |
| 2 Remote multifunction microprocessor based controllers (PLCs         | s)            |                             |
| 3 A digital data link (data highway) that connects the                | multifunctio  | n                           |
| controllers with the central operator stations.                       |               |                             |
| The first priority of DCS is to provide operator interfacing and real | l time proces | s                           |
| control. DCS has flexibility of implementation of sequential          | control an    | d                           |
| integration among the various types of control.                       |               |                             |