

Subject: Heat Transfer Operation

Subject code: 17560

Page **1** of **25**

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Subject: Heat Transfer Operation

Subject code: 17560

Page **2** of **25**

Q	Sub	Answer	marks
No	Q.N		
1	а	Any three	12
1a	(i)	It is necessary to study different modes of heat transfer because:	1
		In process industries there are many operations which involve transfer of	
		energy in the form of heat and also chemical reactions carried on a	
		commercial scale take place with evolution or absorption of heat. It is also	
		necessary to prevent the loss of heat from a hot vessel or a pipe system to	
		ambient air. In all these cases, the major problem is that of transfer of heat	
		at the desired rate.	
		Modes of heat transfer are:	
		1) Conduction : If a temperature gradient exist in a continuous	
		substance, heat can flow unaccompanied by any observable motion	
		of mater. Heat flow of this kind is called conduction. In metallic	1
		solids thermal conduction results from the motion of unbound	
		electrons. In most liquid and solids which are poor conductors of	
		electricity, thermal conduction results from the transport of	
		momentum of individual molecules. In gases conduction occurs by	
		the random motion of molecules.	
		Example: Heat flow in the metal wall of tube	
		2) Convection : When a macroscopic particle of fluid crosses a	
		specific surface, it carries with it a definite quantity of enthalpy.	
		Such a flow of enthalpy is called convection. Since convection is a	1
		macroscopic phenomenon, it can occur only when forces act on the	
		particle or stream of fluid and maintain its motion against the force	

ject: Heat Trar	sfer Operation Subject code: 17560 Page 3 o	f 25
	of friction. There are two types of convection- natural and forced. If	
	the currents are the result of buoyancy forces generated by	
	differences in density and the differences in density are in turn	
	caused by temperature gradient the action is called natural	
	convection.	
	Example: heating of water by hot surface	
	Forced convection : If the currents are set in motion by the action	
	of a mechanical device such as a pump or agitator, the flow is called	
	forced convection	
	Example: heat flow to a fluid pumped through a heated pipe	
	3) Radiation: Radiation is transfer of energy through space by	
	electromagnetic waves. If radiation is passing through empty space,	
	it is not transformed into other forms of energy, nor is it diverted	1
	from its path. If matter appears in its path, the radiation will be	
	transmitted, absorbed or reflected. It is only the absorbed energy that	
	appears as heat. Fused quartz transmits all radiation falling on it, a	
	polished opaque surface will reflect all the radiation and a black	
	surface will absorb most of the radiation receiving.	
	Example: Loss of heat from unlagged pipe.	
1a (ii)	Kirchhoff's Law :	
	Consider that the two bodies are kept into a furnace held at constant	2
	temperature of T K. Assume that, of the two bodies one is a black body&	
	the other is a non-black body i.e. the body having 'a' value less than one.	
	Both the bodies will eventually attain the temperature of T K & the bodies	
	neither become hotter nor cooler than the furnace. At this condition of	
	thermal equilibrium, each body absorbs and emits thermal radiation at the	
	same rate. The rate of absorption & emission for the black body will be	

ect: Heat Transfer Operation	Subject code: 1756	0 Page 4 of 25
different from that of the non-blac	ck body.	
Let the area of non-black body	be A_1 and A_2 respectively. Let '	I' be the
rate at which radiation falling on	bodies per unit area and E_1 and	E_2 be the
emissive powers (emissive power	er is the total quantity of radian	nt energy
emitted by a body per unit area	per unit time)of non-black & bla	ack body
respectively.		2
At thermal equilibrium, absorpt	tion and emission rates are equal,	thus,
$Ia_1 A_1 = A_1 E_1$		(1.1)
\therefore Ia ₁ = E ₁		.(1.2)
And $Ia_b A_2 = A_2 E_b$		(1.3)
$Ia_b = E_b$.(1.4)
From equation (1.1) and (1.4).we	get	
$\frac{E1}{a1} = \frac{Eb}{ab}$	(1.5)	
Where a_{1,a_b} = absorptivity of non-	black & black bodies respectively	<i>.</i>
If we introduce a second body (non-black) then for the second n	ion-black
body, we have :		
$I A_3 a_2 = E_2 A_3$	A ₃ (1.6)	
\therefore Ia ₂ = E ₂	(1.7)	
Where $a_1 = E_2$ are the absorptivity	and emissive power of the second	d non-
black body.		
Combining equations (1.2),(1.4)) and(1.7) we get,	
$\frac{E1}{a1} = \frac{E2}{a2} = \frac{E3}{a3} =$	$= E_b$ (1.8)	
1a (iii) Thermal conductivity: It is a n	neasure of the ability of the sub-	stance to 1

. пеа	t frans		Subject code: 1/560	rage 3 01 25
		conduct heat. It is the amount of heat	passing through a material of a unit	
		thickness with a unit heat flow area in	unit time when a unit temperature	
		difference is maintained across the oppo	osite faces of the material.	
		Unit: W/ (m.K)		
		Relation between temperature and th	nermal conductivity:	
		For small temperature ranges, thermal of	conductivity is taken as constant but	2
		for large temperature changes, it varie	es linearly with temperature and is	
		given by		
		$K = a+bT+cT^2+$ where a,b and c are con	nstants and T is temperature in K	
1a	(iv)	Single pass and multi pass: (any 4)		1 mark
		Single pass	Multi pass	each
		Simple in construction	Complex in construction	
		Flow may be parallel or counter	Flow is parallel as well as count	
		current	current	
		Inexpensive	Expensive	
		Heat transfer coefficients are low	Heat transfer coefficients are high	
		For a given duty, floor space	Floor space requirement is low	
		requirement is large		
		Frictional losses are low	Frictional losses are high	
		Heat transfer rates are low	Heat transfer rates are high	•
		Fluid flow once through exchanger	Fluid flow number of times throug	- -
			exchanger	
1	b	Any one	1	6
1	Ib (i) Heat loss through a composite wall:			
1b	(i)	Heat loss through a composite wall:		

ct: Hea	: Heat Transfer Operation Subject code: 17560 P		
		the tubes take place from condensing steam on outside of tubes. Vapours	
		formed will rise through the tubes, come to the liquid surface from which	
		they are disengaged into the vapour space and removed from the vapour	
		outlet. Thick liquor is removed from the bottom of the evaporator.	
2		Any four	16
2	a	Sensible heat: Sensible heat the amount of heat required to change the	1
		temperature of a substance.	
		$Q = mCp\Delta T$	1
		where m - mass flow rate	
		Cp - specific heat	
		ΔT - Change in temperature	
		Latent heat: It is the amount of heat required to change the phase of a	1
		substance at constant temperature.	
		$Q=m\lambda$	1
		Where m- mass flow rate	
		λ – latent heat of vaporization/ condensation	
2	b	Area $A=1 m^2$	
		Thickness $B=0.5 \text{ m}$	
		K = 0.7 W/mK	2
		Temperature difference $\Delta T = 400-310 = 90 \text{ K}$	
		$Q = k A \Delta T / B$	1
		= 0.7*1*90 / 0.5	
		$= 126 \text{ W/m}^2$	1
2	c	The heat transfer area of the tube and pipe is increased substantially by	
		attaching the metal pieces. The metal pieces employed to extend or	
		increased the heat transfer surface are known as fing. Types of extended	

Subject: Heat Transfer OperationSubject			sfer Operation Subject code: 17560	Page 10 of 25
			It is defined as the fraction of radiation falling on a body which is getting	
	absorbed. Reflectivity (ρ) :		absorbed.	
			Reflectivity (ρ) :	
			It is defined as the fraction of radiation falling on a body which is getting	1
			reflected.	
	Transmissivity (τ) :		Transmissivity (τ):	
			It is defined as the fraction of radiation falling on a body which is getting	1
			transmitted.	
			$(\alpha)+(\rho)+(\tau)=1$	
			Material for which $(\alpha)+(\rho)=1$ is called an opaque material	1
	3	1	Any two	16
	3	a	At steady state : Heat gained by cold water = Heat removed from hot water	
			Q = mc Cpc (t2-t1) = mhCph (T1-T2)	1
			mc = mass flow rate of cold water = 8000 kg/s	
			mh = mass flow rate of hot water = 10000 kg/s	
			Cpc = 4.187 kJ/kg k	
			Cph =2.095 kJ/kg k	
			t2 =?, t1=298 k ,T1 = 353 K, T2 =323 K	
			Q= 8000 x 4.18 x (t2-298)	
			Q= heat gained by cold fluid = Heat lost by hot fluid	2
			8000 x 4.18 x (t2-298) = 10000 X 2.095 (353 – 323)	
			t2 = 316.8 K	1
			$\Delta T1=353-316.8=36.2K, \Delta T2=323-298=25 \text{ k}$	
			Δ Tlm= (36.2-25)/ln(36.2/25) = 30.26 K	2
			A= Q/ (U Δ Tlm) = 628500 X 10 ³ / 3600 (300 x 30.26) =19023 m ²	2
			HEAT TRANSFER AREA REQUIRED = 19.23 m^2	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

3b $1/U = 1/h_0 + 1/h_1 + 1/k/x$ 23b $1/U = 1/h_0 + 1/h_1 + 1/k/x$ 2Where U= overall heat transfer coefficient $h_0 = 1750 \text{ w/m}^2 k$ 2hi=5800 w/m^2 k2x=(15-10) mm = 5mm=0.005m k=46.52 w/m^2 k21/U=1/1750 + 1/5800 + 1/46.52/0.0052U=1175 w/m^2 k23cRelation between individual and overall heat transfer coefficients: Consider a hot fluid flowing through a circular pipe & a cold fluid flowing on the outside of the pipe.Heat is flowing from the bulk of hot fluid to the bulk of cold fluid through a metal wall of pipe.(i) When heat is flowing from bulk of hot fluid to the metal wall , although heat transfer in bulk fluid takes by convection current ,there is a very small layer of fluid near the pipe in which heat transfer takes place by conduction. This is because flow in this layer is laminar & there is no mixing of molecules. This layer is known as viscous sublayer. This thin film of fluid flowing in Laminar flow is of great importance in determining the rate of heat transfer. The Thermal conductivity of fluid is very low so that resistance offered by this film is very large through the film is thin. (ii) When heat transfer takes place from metal to the bulk of fluid thre exists a thin film of cold fluid which has a high resistance. (iv) Heat then flows from this thin film to bulk of cold fluid by convection.	oject: Hea	at Tran	sfer Operation Subject code: 17560	Page 11 of 2
Where U= overall heat transfer coefficient $h_o = 1750 \text{ w/m}^2 \text{k}$ 2hi=5800 w/m^2 k2x=(15-10) mm = 5mm=0.005m k=46.52 w/m^2 k21/U=1/1750 + 1/5800 + 1/46.52/0.0052U= 1175 w/m^2 k23cRelation between individual and overall heat transfer coefficients: Consider a hot fluid flowing through a circular pipe & a cold fluid flowing on the outside of the pipe. Heat is flowing from the bulk of hot fluid to the bulk of cold fluid through a metal wall of pipe. (i) When heat is flowing from bulk of hot fluid to the metal wall , although heat transfer in bulk fluid takes by convection current ,there is a very small layer of fluid near the pipe in which heat transfer takes place by conduction. This is because flow in this layer is laminar & there is no mixing of molecules. This layer is known as viscous sublayer. This thin film of fluid flowing in Laminar flow is of great importance in determining the rate of heat transfer. The Thermal conductivity of fluid is very low so that resistance offered by this film is very large through the film is thin. (ii) When heat transfer takes place from metal to the bulk of fluid there exists a thin film of cold fluid which has a high resistance. (iv) Heat then flows from this thin film to bulk of cold fluid by convection.	3	b	$1/U = 1/h_o + 1/h_i + 1/k/x$	2
h_o=1750 w/m²k2 $k=45.5800 w/m²k$ 2 $x=(15-10) mm = 5mm=0.005m$ 2 $k=46.52 w/m²k$ 2 $1/U=1/1750 + 1/5800 + 1/46.52/0.005$ 2 $U=1175 w/m²k$ 23cRelation between individual and overall heat transfer coefficients: Consider a hot fluid flowing through a circular pipe & a cold fluid flowing on the outside of the pipe. Heat is flowing from the bulk of hot fluid to the bulk of cold fluid through a metal wall of pipe.(i) When heat is flowing from bulk of hot fluid to the metal wall , although heat transfer in bulk fluid takes by convection current ,there is a very small layer of fluid near the pipe in which heat transfer takes place by conduction. This is because flow in this layer is laminar & there is no mixing of molecules. This layer is known as viscous sublayer. This thin film of fluid flowing in Laminar flow is of great importance in determining the rate of heat transfer. The Thermal conductivity of fluid is very low so that resistance offered by this film is very large through the film is thin. (ii) When heat transfer takes place from metal to the bulk of fluid there exists a thin film of cold fluid which has a high resistance. (iv) Heat then flows from this thin film to bulk of cold fluid by convection.			Where U= overall heat transfer coefficient	
hi=5800 w/m²k2 $x=(15-10) mm = 5mm=0.005m$ $k=46.52 w/ m²k$ $1/U=1/1750 + 1/5800 + 1/46.52/0.005$ 2 $U=1175 w/ m²k$ 23 cRelation between individual and overall heat transfer coefficients:Consider a hot fluid flowing through a circular pipe & a cold fluid flowing on the outside of the pipe.Heat is flowing from the bulk of hot fluid to the bulk of cold fluid through a metal wall of pipe.(i) When heat is flowing from bulk of hot fluid to the metal wall , although heat transfer in bulk fluid takes by convection current ,there is a very small layer of fluid near the pipe in which heat transfer takes place by conduction. This is because flow in this layer is laminar & there is no mixing of molecules. This layer is known as viscous sublayer. This thin film of fluid flowing in Laminar flow is of great importance in determining the rate of heat transfer. The Thermal conductivity of fluid is very low so that resistance offered by this film is very large through the film is thin.(ii) When heat transfer takes place from metal to the bulk of fluid there exists a thin film of cold fluid which has a high resistance.(iv) Heat then flows from this thin film to bulk of cold fluid by convection.			$h_0 = 1750 \text{ w/m}^2 \text{k}$	
x=(15-10) mm = 5mm=0.005m k=46.52 w/m²k21/U=1/1750 + 1/5800 + 1/46.52/0.005 U= 1175 w/m²k23cRelation between individual and overall heat transfer coefficients: Consider a hot fluid flowing through a circular pipe & a cold fluid flowing on the outside of the pipe. Heat is flowing from the bulk of hot fluid to the bulk of cold fluid through a metal wall of pipe.(i) When heat is flowing from bulk of hot fluid to the metal wall , although heat transfer in bulk fluid takes by convection current ,there is a very small layer of fluid near the pipe in which heat transfer takes place by conduction. This is because flow in this layer is laminar & there is no mixing of molecules. This layer is known as viscous sublayer. This thin film of fluid flowing in Laminar flow is of great importance in determining the rate of heat transfer. The Thermal conductivity of fluid is very low so that resistance offered by this film is very large through the film is thin. (ii) When heat transfer takes place from metal to the bulk of fluid there exists a thin film of cold fluid which has a high resistance. (iv) Heat then flows from this thin film to bulk of cold fluid by convection.			hi=5800 w/m ² k	2
k=46.52 w/ m²k2 $1/U=1/1750 + 1/5800 + 1/46.52/0.005$ 2U=1175 w/ m²k23 cRelation between individual and overall heat transfer coefficients: Consider a hot fluid flowing through a circular pipe & a cold fluid flowing on the outside of the pipe. Heat is flowing from the bulk of hot fluid to the bulk of cold fluid through a metal wall of pipe.(i) When heat is flowing from bulk of hot fluid to the metal wall , although heat transfer in bulk fluid takes by convection current ,there is a very small layer of fluid near the pipe in which heat transfer takes place by conduction. This is because flow in this layer is laminar & there is no mixing of molecules. This layer is known as viscous sublayer. This thin film of fluid flowing in Laminar flow is of great importance in determining the rate of heat transfer. The Thermal conductivity of fluid is very low so that resistance offered by this film is very large through the film is thin. (ii) When heat transfer takes place from metal to the bulk of fluid there exists a thin film of cold fluid which has a high resistance. (iv) Heat then flows from this thin film to bulk of cold fluid by convection.			x=(15-10) mm = 5mm=0.005m	
1/U=1/1750 + 1/5800 + 1/46.52/0.005 2 3 c Relation between individual and overall heat transfer coefficients: Consider a hot fluid flowing through a circular pipe & a cold fluid flowing on the outside of the pipe. Heat is flowing from the bulk of hot fluid to the bulk of cold fluid through a metal wall of pipe. (i) When heat is flowing from bulk of hot fluid to the metal wall , although heat transfer in bulk fluid takes by convection current ,there is a very small layer of fluid near the pipe in which heat transfer takes place by conduction. This is because flow in this layer is laminar & there is no mixing of molecules. This layer is known as viscous sublayer. This thin film of fluid flowing in Laminar flow is of great importance in determining the rate of heat transfer. The Thermal conductivity of fluid is very low so that resistance offered by this film is very large through the film is thin. (ii) When heat across metal wall resistance is comparatively low. (iii) When heat transfer takes place from metal to the bulk of fluid there exists a thin film of cold fluid which has a high resistance.			$k=46.52 \text{ w/m}^2 \text{k}$	2
U=1175 w/ m²k 2 3 c Relation between individual and overall heat transfer coefficients: Consider a hot fluid flowing through a circular pipe & a cold fluid flowing on the outside of the pipe. Heat is flowing from the bulk of hot fluid to the bulk of cold fluid through a metal wall of pipe. Heat is flowing from bulk of hot fluid to the metal wall , although heat transfer in bulk fluid takes by convection current ,there is a very small layer of fluid near the pipe in which heat transfer takes place by conduction. This is because flow in this layer is laminar & there is no mixing of molecules. This layer is known as viscous sublayer. This thin film of fluid flowing in Laminar flow is of great importance in determining the rate of heat transfer. The Thermal conductivity of fluid is very low so that resistance offered by this film is very large through the film is thin. (ii) When heat across metal wall resistance is comparatively low. (iii) When heat transfer takes place from metal to the bulk of fluid there exists a thin film of cold fluid which has a high resistance. (iv) Heat then flows from this thin film to bulk of cold fluid by convection.			1/U=1/1750 + 1/5800 + 1/46.52/0.005	
3 c Relation between individual and overall heat transfer coefficients: Consider a hot fluid flowing through a circular pipe & a cold fluid flowing on the outside of the pipe. Heat is flowing from the bulk of hot fluid to the bulk of cold fluid through a metal wall of pipe. (i) When heat is flowing from bulk of hot fluid to the metal wall , although heat transfer in bulk fluid takes by convection current ,there is a very small layer of fluid near the pipe in which heat transfer takes place by conduction. This is because flow in this layer is laminar & there is no mixing of molecules. This layer is known as viscous sublayer. This thin film of fluid flowing in Laminar flow is of great importance in determining the rate of heat transfer. The Thermal conductivity of fluid is very low so that resistance offered by this film is very large through the film is thin. (ii) When heat across metal wall resistance is comparatively low. (iii) When heat transfer takes place from metal to the bulk of fluid there exists a thin film of cold fluid which has a high resistance.			$U=1175 \text{ w/m}^2 \text{k}$	2
Consider a hot fluid flowing through a circular pipe & a cold fluid flowing on the outside of the pipe. Heat is flowing from the bulk of hot fluid to the bulk of cold fluid through a metal wall of pipe. (i) When heat is flowing from bulk of hot fluid to the metal wall , although heat transfer in bulk fluid takes by convection current ,there is a very small layer of fluid near the pipe in which heat transfer takes place by conduction. This is because flow in this layer is laminar & there is no mixing of molecules. This layer is known as viscous sublayer. This thin film of fluid flowing in Laminar flow is of great importance in determining the rate of heat transfer. The Thermal conductivity of fluid is very low so that resistance offered by this film is very large through the film is thin. (ii) When heat transfer takes place from metal to the bulk of fluid there exists a thin film of cold fluid which has a high resistance. (iv) Heat then flows from this thin film to bulk of cold fluid by convection.	3	c	Relation between individual and overall heat transfer coefficients:	
 on the outside of the pipe. Heat is flowing from the bulk of hot fluid to the bulk of cold fluid through a metal wall of pipe. (i) When heat is flowing from bulk of hot fluid to the metal wall , although heat transfer in bulk fluid takes by convection current ,there is a very small layer of fluid near the pipe in which heat transfer takes place by conduction. This is because flow in this layer is laminar & there is no mixing of molecules. This layer is known as viscous sublayer. This thin film of fluid flowing in Laminar flow is of great importance in determining the rate of heat transfer. The Thermal conductivity of fluid is very low so that resistance offered by this film is very large through the film is thin. (ii) When heat across metal wall resistance is comparatively low. (iii) When heat transfer takes place from metal to the bulk of fluid there exists a thin film of cold fluid which has a high resistance. (iv) Heat then flows from this thin film to bulk of cold fluid by convection. 			Consider a hot fluid flowing through a circular pipe & a cold fluid flowing	
 Heat is flowing from the bulk of hot fluid to the bulk of cold fluid through a metal wall of pipe. (i) When heat is flowing from bulk of hot fluid to the metal wall , although heat transfer in bulk fluid takes by convection current ,there is a very small layer of fluid near the pipe in which heat transfer takes place by conduction. This is because flow in this layer is laminar & there is no mixing of molecules. This layer is known as viscous sublayer. This thin film of fluid flowing in Laminar flow is of great importance in determining the rate of heat transfer. The Thermal conductivity of fluid is very low so that resistance offered by this film is very large through the film is thin. (ii) When heat across metal wall resistance is comparatively low. (iii) When heat transfer takes place from metal to the bulk of fluid there exists a thin film of cold fluid which has a high resistance. (iv) Heat then flows from this thin film to bulk of cold fluid by convection. 			on the outside of the pipe.	
a metal wall of pipe.(i) When heat is flowing from bulk of hot fluid to the metal wall , although heat transfer in bulk fluid takes by convection current ,there is a very smalllayer of fluid near the pipe in which heat transfer takes place by conduction.This is because flow in this layer is laminar & there is no mixing of molecules. This layer is known as viscous sublayer. This thin film of fluid flowing in Laminar flow is of great importance in determining the rate of heat transfer. The Thermal conductivity of fluid is very low so that resistance offered by this film is very large through the film is thin.(ii) When heat transfer takes place from metal to the bulk of fluid there exists a thin film of cold fluid which has a high resistance. (iv) Heat then flows from this thin film to bulk of cold fluid by convection.			Heat is flowing from the bulk of hot fluid to the bulk of cold fluid through	
 (i) When heat is flowing from bulk of hot fluid to the metal wall, although heat transfer in bulk fluid takes by convection current, there is a very small layer of fluid near the pipe in which heat transfer takes place by conduction. This is because flow in this layer is laminar & there is no mixing of molecules. This layer is known as viscous sublayer. This thin film of fluid flowing in Laminar flow is of great importance in determining the rate of heat transfer. The Thermal conductivity of fluid is very low so that resistance offered by this film is very large through the film is thin. (ii) When heat across metal wall resistance is comparatively low. (iii) When heat transfer takes place from metal to the bulk of fluid there exists a thin film of cold fluid which has a high resistance. (iv) Heat then flows from this thin film to bulk of cold fluid by convection. 			a metal wall of pipe.	
111<			(i) When heat is flowing from bulk of hot fluid to the metal wall, although	
Image:			heat transfer in bulk fluid takes by convection current ,there is a very small	1
This is because flow in this layer is laminar & there is no mixing of molecules. This layer is known as viscous sublayer. This thin film of fluid flowing in Laminar flow is of great importance in determining the rate of heat transfer. The Thermal conductivity of fluid is very low so that resistance offered by this film is very large through the film is thin. (ii) When heat across metal wall resistance is comparatively low. (iii) When heat transfer takes place from metal to the bulk of fluid there exists a thin film of cold fluid which has a high resistance. (iv) Heat then flows from this thin film to bulk of cold fluid by convection.			layer of fluid near the pipe in which heat transfer takes place by conduction.	
 molecules. This layer is known as viscous sublayer. This thin film of fluid flowing in Laminar flow is of great importance in determining the rate of heat transfer. The Thermal conductivity of fluid is very low so that resistance offered by this film is very large through the film is thin. (ii) When heat across metal wall resistance is comparatively low. (iii) When heat transfer takes place from metal to the bulk of fluid there exists a thin film of cold fluid which has a high resistance. (iv) Heat then flows from this thin film to bulk of cold fluid by convection. 			This is because flow in this layer is laminar & there is no mixing of	
 flowing in Laminar flow is of great importance in determining the rate of heat transfer. The Thermal conductivity of fluid is very low so that resistance offered by this film is very large through the film is thin. (ii) When heat across metal wall resistance is comparatively low. (iii) When heat transfer takes place from metal to the bulk of fluid there exists a thin film of cold fluid which has a high resistance. (iv) Heat then flows from this thin film to bulk of cold fluid by convection. 			molecules. This layer is known as viscous sublayer. This thin film of fluid	
 heat transfer. The Thermal conductivity of fluid is very low so that resistance offered by this film is very large through the film is thin. (ii) When heat across metal wall resistance is comparatively low. (iii) When heat transfer takes place from metal to the bulk of fluid there exists a thin film of cold fluid which has a high resistance. (iv) Heat then flows from this thin film to bulk of cold fluid by convection. 			flowing in Laminar flow is of great importance in determining the rate of	
 resistance offered by this film is very large through the film is thin. (ii) When heat across metal wall resistance is comparatively low. (iii) When heat transfer takes place from metal to the bulk of fluid there exists a thin film of cold fluid which has a high resistance. (iv) Heat then flows from this thin film to bulk of cold fluid by convection. 			heat transfer. The Thermal conductivity of fluid is very low so that	
 (ii) When heat across metal wall resistance is comparatively low. (iii) When heat transfer takes place from metal to the bulk of fluid there exists a thin film of cold fluid which has a high resistance. (iv) Heat then flows from this thin film to bulk of cold fluid by convection. 			resistance offered by this film is very large through the film is thin.	
(iii) When heat transfer takes place from metal to the bulk of fluid there exists a thin film of cold fluid which has a high resistance.(iv) Heat then flows from this thin film to bulk of cold fluid by convection.			(ii) When heat across metal wall resistance is comparatively low.	
exists a thin film of cold fluid which has a high resistance.(iv) Heat then flows from this thin film to bulk of cold fluid by convection.			(iii) When heat transfer takes place from metal to the bulk of fluid there	
(iv) Heat then flows from this thin film to bulk of cold fluid by convection.			exists a thin film of cold fluid which has a high resistance.	
			(iv) Heat then flows from this thin film to bulk of cold fluid by convection.	
The process of heat transfer from bulk of hot fluid to bulk of cold fluid is			The process of heat transfer from bulk of hot fluid to bulk of cold fluid is	
represented by fig.			represented by fig.	

ct: Heat Tr	ansfer Operation Subject code: 17560	Page 13 of 2 !
	Q =hi Ai (Ta – Tc)(ii)	
	Comparing equation (i) & (ii),	1
	hi = K1/x1	
	Resistance for heat tranfer is given as	
	$R = X/K_A = 1/K/x(A) = 1/hiAi$	
	Resistance offered by film on hot side= 1/hiAo	
	= Resistance of metal wall = L/KmAm	
	= Resistance of thin film on cold fluid =1/hoAo	1
	So effectively heat transfer is across this there is $Q_1 + Q_2 + Q_3$ films.	
	At Steady State,	
	$Q_1 = Q_2 = Q_3 = Q$ =Constant	
	$\therefore Q = \Delta t / R_1 + R_2 + R_3$	
	$\therefore Q = T_1 - T_2 / [(1/hiAi) + (Lm/R Am) + (1/hoAo)] \dots (i)$	
	We multiply N & D by Ai=area of heat transfer on hot side, we get	
	$Q = (T_1-T_2)Ai/[(1/hiAi)+(Lm/Km.Am)+(1/ho.Ao)] Ai$	
	=(T ₁ -T ₂)Ai[(1/hi)+(Lm/Km.Ai/Am)+(1/ho.Ai/Ao)]	1
	Since pipes are circular,	
	$A = 2 \prod rl$	
	= $(T_1-T_2)Ai[(1/hi)+(Lm/Km.2\prod r_i L/2\prod r_m L)+(1/ho.2\prod r_i /2\prod r_o)]$	1
	= $(T_1-T_2)Ai[(1/hi)+(Lm/Km. r_i/r_m)+(1/ho. r_i/r_o)]$	
	We assume a new parameter,	
	$U_i = Overall$ heat transfer coefficient on inside liquid.	1
	$\therefore 1/\text{Ui} = 1/\text{hi} + \text{Lm}/.\text{ri/rm} + 1/\text{ho ri/ro} \dots(i)$	
4 a	Any three	12
4a (i)	Solution :	
	$\sigma = 5.67 \times 10^{-8} \text{ w/(m}^2 \text{.k}^4)$	1

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

ubject: Hea	at Trans	sfer Operation Subject code: 17560	Page 14 of 25
		$T_1 = 377 \text{ K}$ $T_{2 } = 283 \text{ K}$	
		The heat loss by radiation is	
		$Qr/A = e\sigma (T_1^4 - T_2^4)$	1
		$= 0.9 * 5.67 * 10^{-8} * (377^4 - 283^4)$	
		$= 703.5 \text{ w/m}^2$	2
4a	(ii)	Heat transfer equipment (any 4)	1 mark
		1. Cooler: To cool process fluid by means of water or atmospheric air.	each
		2. Condenser: To condense a vapour or mixture of vapours.	
		3. Chiller: To cool a process fluid to a temperature below that can be	
		obtained by using water as a cooling media	
		4. Heater: Which imparts sensible heat to process fluid.	
		5. Vaporiser: Which vaporizes part of liquid.	
		6. Reboiler: Employed to meet latent heat requirement at the bottom of	
		distillation column.	
		7. Evaporator: To concentrate a solution by evaporating water.	
4a	(iii)	Capacity of an evaporator is defined as the number of kilogram of water	2
		evaporated per hour.	
		Economy of an evaporator is defined as the number of kilogram of water	
		evaporated per kilogram of steam fed to the evaporator.	2
4a	(1V)	Factors on which rate of heat transfer depends are:	
		1. Area perpendicular to heat flow	
		2. Thermal conductivity of the material	2
		3. Temperature gradient	
		4. Distance normal to the surface	
		The relationship is given by Fourier's law.	
		Fourier's law of conduction:	

It states that the rate of heat flow across an isothermal surface is proportional to the temperature gradient at the surface.2 $\frac{dQ}{dA} = -k\frac{\delta T}{\delta n}$ 2Q- rate of heat transfer A- Area perpendicular to heat flow k- Thermal conductivity T- Temperature2
proportional to the temperature gradient at the surface.2 $\frac{dQ}{dA} = -k\frac{\delta T}{\delta n}$ 2Q- rate of heat transfer4A- Area perpendicular to heat flow4k- Thermal conductivity7- Temperature
$\frac{dQ}{dA} = -k\frac{\delta T}{\delta n}$ Q- rate of heat transfer A- Area perpendicular to heat flow k- Thermal conductivity T- Temperature
Q- rate of heat transfer A- Area perpendicular to heat flow k- Thermal conductivity T- Temperature
A- Area perpendicular to heat flow k- Thermal conductivity T- Temperature
k- Thermal conductivity T- Temperature
T- Temperature
4 bAny one6
4b (i) Consider the hollow sphere of inside radius r_1 and the outside radius r_2 .
Assume that thermal conductivity of the material of which sphere is made
be k
(constant).
Let the temperature of the inside surface be T_1 and that of the outside
surface be
T_2 . Assume that $T_1 > T_2$, therefore the heat flows from the inside of
sphere to
outside . It is desired to calculate the rate of heat flow for this case.
Consider a spherical element at any radius r , where r is between r_1 and
r ₂ .
The rate if heat flow according to Fourier's Law is goven by,
$Q = -k (4 \prod r^2) (dT / dr)(i)$
Rearranging the eqn (i), we get
$dr / r^2 = -k (4\Pi) / Q.dT(ii)$ 1
Only variables in eqn (ii) are r and T (assuming k to be constant).
Integrate the eqn (ii) between the limits
When $\mathbf{r} = \mathbf{r}_1$, $\mathbf{T} = \mathbf{T}_1$

bject: Heat Trans	fer Operation Subject code: 17560	Page 16 of 25
	When $\mathbf{r} = \mathbf{r}_2$, $\mathbf{T} = \mathbf{T}_2$	
	$_{r1} \int r^2 dr / r^2 = -k (4 \prod) / Q_{T1} \int r^2 dT \dots$ (iii)	1
	r_2 [-1/r] $_{r_1}$ = -k (4])/Q (T ₂ - T ₁)(iv)	
	$[1/r_1 - 1/r_2] = k (4 \prod)/Q (T_1 - T_2) \dots (v)$	
	Rate of heat flow through sphere is :	1
	: $Q = k (4 \prod) (T_1 - T_2) / [1/r_1 - 1/r_2]$ vi)	
	It can be put into more convinient form by expressing the rate of heat flow	
	as :	
	$Q = k (4 \prod) (T_1 - T_2) \{ (r_1 \cdot r_2) / [r_2 - r_1] \} \dots (vii)$	
	Where r_m is the logarithmic mean radius & is given by	
	$\mathbf{r}_{\mathrm{m}}=\sqrt{(\mathbf{r}_{1}.\mathbf{r}_{2})}$	1
	$r_{m}^{2} = r_{1}.r_{2}$	
	$A_{\rm m} = 4 \prod r_{\rm m}^2 \dots (ix)$	
	A _m is called as logarithmic mean area.	
	Equation (viii) becomes	
	$Q = k A_m (T_1 - T_2) / (r_2 - r_1)(x)$	1
	$Q = (T_1 - T_2) / [(T_2 - T_1)/k A_m] = \Delta T / R$	
	Where $\mathbf{R} = (\mathbf{r}_2 - \mathbf{r}_1)/\mathbf{k} \mathbf{A}_m$	
4b (ii)	Advantages of short tube evaporator :	1 mark
	i) Relatively inexpensive	each for
	ii) As scaling occurs inside the tubes, it can be easily removed by	any 3
	mechanical or chemical means.	
	iii) Provides moderately good heat transfer at a reasonable cost.	

ct: Hea	at Tran	sfer Operat	ion Subject code: 17560	Page 17 of 2
		iv)	Can be put into more rigorous services than horizontal tube evaporator.	
		Disadvar	ntages of short tube evaporator :	
		i)	Floor space required is large	1 mark
		ii)	Amount of liquid hold up in the evaporator is large	each
		iii)	Since there is no circulation, these units are not suitable for	
			viscous liquid.	
5		Any two		16
5	a	Multiple	effect evaporation: This is used to increase the economy of	an
		evaporato	or. In this system, evaporators are arranged in series so that t	he 2
		vapour pr	roduced in first effect is fed to the steam chest of second effect	as
		heating 1	medium in which boiling takes place at low pressure a	nd
		temperatu	are and so on. The different feed arrangements are	
		1.Forwar	d feed arrangement: In this arrangement, the liquid feed flows	in 3 marks
		the same	direction as the vapour flows. Fresh feed enters the first effect a	nd each for
		steam is a	also fed to the steam chest of first effect. The vapours produced	in any two
		first effec	et are fed to steam chest of second effect as heating media a	nd
		concentra	ted liquor from first effect is fed to the next effect in series. T	he
		pressure i	n the second effect is less than in the first effect and so on.	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

ject: Heat Tra	nsfer Operation Subject code: 17560	Page 20 of 2 !
	$Q_{h} = m_{h} Cp_{h} (T_{hi}-T_{ho})$ = 5000 * 2.72*(423-363) = 816000 kJ/h	2
	Heat gained by cold fluid	
	$Q_{c}=m_{c} Cp_{c} (T_{co}-T_{ci})$	2
	= 15000*4.187*(Tco - 303)	
	$Q_h = Q_c$	2
	816000 = 15000*4.2*(Tco - 303)	
	Outlet temperature of water = 316 K	2
5 c	Area = $\pi d^2/4$	
	$= 3.14 \times 10^{-4} \mathrm{m}^2$	1
	Velocity = Volumetric flow rate/ area	
	$= 300 \times 10^{-6} / 3.14 \times 10^{-4}$	
	= 0.955 m/s	1
	$N_{Re} = Du\rho/\mu$	1
	D =20 mm = 0.02 m, u =0.955m/s	
	$\mu = 0.8 \text{ kg/m.s}$	
	$\rho = 1100 \text{ kg/m}^3$	
	$N_{Re} = 0.02 \times 0.955 \times 1100 / 0.8 = 26.26$	1
	$N_{Pr} = Cp \ \mu/k = 1.26 \ x \ 10^3 x \ 0.8/0.384 = 2625$	1
	The equation to find out heat transfer coefficient for turbulent flow	
	$N_{NU} = 1.86[N_{Re}x N_{Pr} x D/L]^{1/3} (\mu/\mu_w)^{0.14}$	1
	$= 1.86[26.26)(2625)0.02/5]^{1/3} [0.8/1.0]^{0.14}$	
	= 11.71	1
	Nu = hD/k	
	h=11.71x0.384/0.02	
	h=225 W/m ² .k	1
6	Any two	16

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

ct: Heat Transfer Operation		sfer Operation	Subject code: 17560	Page 21 of 25	
6	a	a Basis: 5000 kg/hr feed is fed to the evaporator.			
		Material balance of solids:		1	
		Solids in feed= solids in the thick liqu	ior		
		0.05x5000=0.2 x m'			
		m'=1250kg/h.		1	
		overall Material balance:			
		kg/h feed= kg/h water evaporated + k	g/h thick liquor		
		water evaporated(m_v)=5000-1250=3'	750kg/h	1	
		Energy balance is			
		$m_s \ \lambda_s = m^* c_{pf} \ ^* (T\text{-}T_f) + m_v \ \lambda_v$		1	
		$m_s 2185 = 5000*4.187*(378-298) + 3$	750 *2259		
		steam fed(m_s)= 4643.5 kg/h		1	
		steam economy= kg/h water evaporat	ed/kg/h steam consumed		
		= 3750/4643.5= 0.808		1	
		$Q = U^*A^*\Delta T$			
		4643.5*2185*1000/ 3600 = 2350 * .	A*(399-378)	1	
		$A = 57.1 m^2$		1	
6	b	To derive ΔTlm= (ΔTi- ΔTe)/ ln (Δ	ATi/ ΔTe)		

Subject: Heat Transfer Operation	Subject code: 17560	Page 23 of 25
equation (5), we ob		
$d(\Delta T)/\Delta T$ = - (1/(mh Cph) + 1/(m	c Cpc)) U B dx	
ΔΤε		
$\int_{\Delta Ti} d(\Delta T) / \Delta T = - (1/(mh \ Cph) -$	+ 1/(mc Cpc)) U $B \int_0^L dx$	1
$\ln (\Delta Te/\Delta Ti) = - (1/(mh Cph) + 1)$./(mc Cpc)) U A	
(6)		
where $\Delta Te = T_{he} - T_{ce}$		
$\Delta Ti = T_{hi} - T_{ci}$		
Now if q is the total rate of heat tra	ansfer in the heat exchanger, then	
$q = m_h C p_h (T_{hi} - T_{he}) - \cdots - $	(7)	
$= mc Cpc (T_{ce} - T_{ci}) - \cdots$	(8)	
Substituting equations (7) and (8)	into equation (6),	1
$\ln (\Delta Te/\Delta Ti) = -1/q[(T_{hi}-T_{he}) + (T_{hi}-T_{he})]$	$\Gamma_{ce} - T_{ci}$]U A	
$q = U A (\Delta Ti - \Delta Te) / \ln (\Delta Ti / \Delta Te)$	(9)	
Equation (9) is the performance eq	uation for a parallel-flow heat exchanger.	. 1
$Q = U A \Delta T lm$		
Where $\Delta Tlm = (\Delta Ti - \Delta Te) / ln (\Delta T)$	i/ ΔTe)	

Subject: Heat Tran	sfer Operation	Subject code:	17560	Page 25 of 2 !
	bubble production is large enough for the	e stream of bub	bles movin	ng up 2
	through the liquid to increase the velocity	of the circulat	ion currents	s and
	coefficient of heat transfer becomes greater	than that in uno	disturbed na	atural
	convection. This is called nucleate boiling .			
	In the segments CD the flux decreases as	the temperature	drop raises	s and 1
	reaches a minimum at point D. As the temp	erature drop is r	aised, more	e and
	more bubbles are present that they tend to c	oalesce on the h	eating surfa	ace to
	formed and layer of insulating vapour.	This type is c	alled trans	sition
	boiling.			
	In DE the flux again increases with ΔT	and at large to	emperature	drop 1
	surpasses the previous maximum reached. T	The hot surface b	becomes cov	vered
	with a film of vapour through with heat is t	ransferred by co	nduction ar	nd by
	radiation .This is known as film boiling .			