

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER-18 EXAMINATION Model Answer

Subject: Heat Transfer Operation

Subject code: 17560

Page **1** of **23**

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q No.	Answer	marks
1 A	Any three	12
1A-(i)	Thermal conductivity : It is the ability of measure of the substance to conduct	
	heat. It is the quantity of heat passing through a material of a unit thickness	2
	with a unit heat flow area in unit time when a unit temperature difference is	
	maintained across the opposite faces of the material.	
	From Fourier's law	
	Q = -kA(dT/dx)	1
	Or $k = Q.dx/(A.dT)$	
	Substituting the units	
	$k = W.m/(m^2.K)$	1
	= W/mK or J/(s.m.K)	
1A-	Film heat transfer coefficient: Film heat transfer coefficient h is defined as	2
(ii)	the quantity of heat transferred in unit time through unit area at a temperature	
	difference of 1^0 between the surface and surrounding.	
	$1/U_o = 1/h_o + 1/h_i(D_o/D_i) + x_w/k(D_o/D_w) + R_d$	2 2
	$1/U_i = 1/h_i + 1/h_o(D_i/D_o) + x_w/k(D_i/D_w) + R_d$	
1A-	Stefan- Boltzman law:	
(iii)	It states that the total energy emitted (emissive power) per unit area per unit	2
	time by a black body is proportional to fourth power of its absolute	
	temperature.	
	$W_b \alpha T^4$	
	Or $W_b = \sigma T^4$	-
	Where $W_b = total$ energy emitted (emissive power) by a black body	
	$\sigma = \text{Stefan Boltzman constant} = 5.67 \times 10^{-8} \text{ W/m}^2 \text{ K}$	1

	T = absolute temperature	
1A-	Classification of shell and tube heat exchanger:	1 mark
(iv)	1. Fixed tube heat exchanger	each
	2. Floating head heat exchanger	
	3. U- tube type heat exchanger	
	4. Kettle/ Reboiler type heat exchanger	
1.B	Any one	
1B-(i)	Basis: 1 m length	
	$r_1 = 0.0525m \ r_2 = 0.0575m$	
	$r_L = (r_2 - r_1) / \ln(r_2/r_1) = 0.055m$	
	$A_{L1} = 2\pi r_L L = 0.3452 m^2$	
	$K_1 = 43.03 \text{ W/mK}$	
	$\mathbf{R}_{1}=\mathbf{B}_{1}/\mathbf{K}_{1}\mathbf{A}_{L1}$	
	= 0.005/43.03 * 0.3452	
	$= 3.37*10^{-4} \text{ K/W}$	
	$r_2 = 0.0575m \ r_3 = 0.1075m$	
	$r_L = (r_3 - r_2) / \ln(r_3/r_2) = 0.08m$	
	$A_{L2} = 2\pi r_L L = 0.5018 m^2$	
	$K_2 = 0.07 \text{ W/mK}$	
	$R_2 = B_2 / K_2 A_{L2}$	
	$= 0.05/0.07* \ 0.5018$	
	= 1.423 K/W	
	$R= R_1 + R_2$	
	= 1.4237 K/W	
	Temp.drop ΔT = 120 K	
	Heat loss $O = \Delta T / R$	

	= 84.29 W	
	$Q = (T_1 - T_2) / R_1$ where T_2 is the temperature at interface]
	$84.29 = (423 - T_2) / 3.37 * 10^{-4}$	
	$T_2 = 422.97 K$]
1B-	Methods of increasing the economy of an evaporator:	
(ii)	1. Using multiple effect evaporator	2
	2. Vapour recompression	
	A. Multiple effect evaporation: In this system, evaporators are arranged	
	in series so that the vapour produced in first effect is fed to the steam	
	chest of second effect as heating medium in which boiling takes place at	
	low pressure and temperature and so on.	
	B. Methods of increasing economy by vapour recompression methods are:	
	1. Mechanical recompression	
	2. Thermal recompression	
	Thermal recompression: To increase the economy of single effect evaporator,	
	the principle of thermal recompression is used. Here the vapour from the	
	evaporator is compressed to increase its temperature so that it will condense at a	2
	temperature higher enough to permit its use as heating media in the same	
	evaporator. In this method, vapour is compressed by means of jet ejectors. Here	
	the high pressure steam is used to draw and compress the major part of vapours	
	from the evaporator, while the remaining part of vapours is separately	
	condensed for compensating motive steam added.	

: Heat '	Transfer Operation Subject code: 17560	Page 6 of 23
	Total cost	1
	Optimum Thickness Of Insulation	
2-b	Fourier's law of conduction:	
	It states that the rate of heat flow across an isothermal surface is proportional to	2
	the temperature gradient at the surface.	
	$\frac{dQ}{dA} = -k\frac{\delta T}{\delta n}$	1
	Q- rate of heat transfer	
	A- Area perpendicular to heat flow	1
	k- Thermal conductivity	
	T- Temperature	
2-c	Kirchhoff's Law :	
	Consider that the two bodies are kept into a furnace held at constant	2
	temperature of T K. Assume that, of the two bodies one is a black body& the	
	other is a non-black body i.e. the body having 'a' value less than one. Both the	
	bodies will eventually attain the temperature of T K & the bodies neither	
	become hotter nor cooler than the furnace. At this condition of thermal	
	equilibrium, each body absorbs and emits thermal radiation at the same rate.	
	The rate of absorption & emission for the black body will be different from that	
	of he non-black body.	
	Let the area of non-black body be A_1 and A_2 respectively. Let 'I' be the rate at	

ct: Heat Transfer Operation	Subject code: 17560	Page 7 of 23
which radiation falling on bodies pe	er unit area and E_1 and E_2 be the emissive	
powers (emissive power is the tota	al quantity of radiant energy emitted by a	
body per unit area per unit time)of no	on-black & black body respectively.	
At thermal equilibrium, absorption	and emission rates are equal, thus,	2
$Ia_1 A_1 = A_1 E_1$	(1.1)	
\therefore Ia ₁ = E ₁	(1.2)	
And $Ia_b A_2 = A_2 E_b$	(1.3)	
$Ia_b = E_b$	(1.4)	
From equation (1.1) and (1.4).we get		
$\frac{E1}{a1} = \frac{Eb}{ab}$	(1.5)	
Where a_{1,a_b} = absorptivity of non-bla	ck & black bodies respectively.	
If we introduce a second body (ne	on-black) then for the second non-black	
body,we have :		
$I A_3 a_2 = E_2 A_3$	3(1.6)	
$\therefore Ia_2 = E_2$	(1.7)	
Where $a_1 = E_2$ are the absorptivity and	d emissive power of the second non-black	
body.		
Combining equations (1.2),(1.4) an	.d(1.7) we get,	
$\frac{E1}{a1} = \frac{E2}{a2} = \frac{E3}{a3} =$	E _b (1.8)	
2-d Application of finned tube hea	at exchanger: When the heat transfer	2
coefficient of one of the process fluid	ds is very low as compared to the other, the	
overall heat transfer coefficient be	comes approximately equal to the lower	
coefficient. This reduces the capacity	y per unit area of the heat transfer surface	

SUMMER-18 EXAMINATION Model Answer

Subject: Heat Transfer Operation

Subject code: 17560

Page **9** of **23**

	$A = 19.95 m^2$			1
)	Dropwise and f	ilmwise condensation:		2 marks
	Points	Dropwise condensation	Filmwise	each for
			condensation	any 4
	mechanism	In case of drop-wise condensation	In case of film-wise	
		the condensate (condensed liquid)	condensation the	
		does not wet the surface and	condensed liquid wets	
		collects to grow for a while and	the surface and forms a	
		then fall from the surface, leaving	continuous film of	
		bare metal surface for further	condensate through	
		condensation.	which heat transfer	
			takes place. This	
			condensate flows down	
			due to action of gravity	
	Heat transfer	Heat transfer coefficient are very	Heat transfer	
	coefficient	high in case of drop-wise	coefficients are	
		condensation since the heat does	relatively very low in	
		not have to flow through film by	case of film-wise	
		conduction	condensation since the	
			heat does have to flow	
			through film by	
			conduction	
	Surface type	Oily or greasy surfaces seem to	Smooth, clean surfaces	
		tend towards drop-wise	seem to tend towards	
		condensation	film-wise condensation	
	Stability	Drop-wise condensation is very	Film-wise	

		difficult to achieve a	nd unstable	condensation is easily	
				obtainable and stable	
	equations	If the students write e	equations for	If the students write	
		film coefficients on v	vertical and	equations for film	
		horizontal surfaces m	arks should	coefficients on vertical	
		be given		and horizontal surfaces	
				marks should be given	
3-c	Comparison of	square pitch and trian	gular pitch(a	ny 4)	1.5 mark
	Sq	uare pitch	Tr	iangular pitch	each
	Permits externa	al cleaning of the tubes	Difficult to c	lean	
	Causes low pre	essure drop on the shell	Causes more	pressure drop	
	side fluid				
	Less no.	of tubes can be	Larger no.	of tubes can be	
	accommodated	than with triangular	accommodat	ed in a given shell	
	pitch	d			
	Creates c	Creates comparatively less		Creates large turbulence in the shell	
	turbulence	turbulence		side fluid	
	Can be used for dirty fluids also Used for clean fluid				
	Use of baffle:				
	1. To incre	1. To increase the rate of heat transfer by increasing the velocity and			
	turbulen	turbulence of the shell side fluid.			each
	2. Structura	al support for the tubes a	and dampers ag	gainst vibration.	
4 A	Any three				12
4A-(i)	Heat transfer t	hrough single flat furn	ace wall :		2
1				1 1 1 77 0 1 0	

t: Heat	Transfer Operation	Subject code:	17560	Page 11 of 23
	independent of temperature & heat losses t	to atmosphere is negli	gible. Hot face	e
	is at a temperature T_1 & cold face is at a te	emperature T ₂ . The dir	ection of heat	
	flow is perpendicular to the wall & T varie	es in direction of X-ax	is.	
	T face dt cold face x=0 KH dx	e		
	At Steady State, there can be neither accum a plane wall &Q is constant along heat flow requires that the differential eqn is integrat	mulation nor depletion w. The ordinary use of ted over entire path fro	of heat within f Fourier's Latom $x = 0, x = x$	n w
	At Steady State, there can be neither accum a plane wall &Q is constant along heat flow requires that the differential eqn is integrat $\therefore Q = -K A$	mulation nor depletion w. The ordinary use of ted over entire path fro AdT/dx	of heat within f Fourier's Latom $x = 0, x = x$	n w
	At Steady State, there can be neither accum a plane wall &Q is constant along heat flow requires that the differential eqn is integrat $\therefore Q = -K A$ Q dx = -K A	mulation nor depletion w. The ordinary use of ted over entire path fro AdT/dx A dT	of heat within f Fourier's Lat om x = 0,x = x	n w 2
	At Steady State, there can be neither accum a plane wall &Q is constant along heat flow requires that the differential eqn is integrat $\therefore Q = -K A$ Q dx = -K A OR	mulation nor depletion w. The ordinary use of ted over entire path fro AdT/dx A dT	of heat within f Fourier's Lat om x = 0,x = x	n w 2
	At Steady State, there can be neither accur a plane wall &Q is constant along heat flow requires that the differential eqn is integrat $\therefore Q = -K A$ Q dx = -K A OR $Q_0 \int^x dx = -K A$	mulation nor depletion w. The ordinary use of ted over entire path fro AdT/dx A dT A T1 ^{JT2} .dt	of heat within f Fourier's Latom x = 0,x = x	n w 2
	At Steady State, there can be neither accur a plane wall &Q is constant along heat flow requires that the differential eqn is integrat $\therefore Q = -K A$ Q dx = -K A OR $Q_0 \int^x dx = -K A$ Q.x = -K A	mulation nor depletion w. The ordinary use of ted over entire path fro AdT/dx A dT A $_{T1}\int^{T2}$.dt A $(T_2 - T_1)$	of heat within f Fourier's Lay om x = 0,x = x	n w 2
	At Steady State, there can be neither accur a plane wall &Q is constant along heat flow requires that the differential eqn is integrat $\therefore Q = -K A$ Q dx = -K A OR $Q_0 \int^x dx = -K A$ Q.x = -K A OR	mulation nor depletion w. The ordinary use of ted over entire path fro AdT/dx A dT A $_{T1}\int^{T2}$.dt A $(T_2 - T_1)$	of heat within f Fourier's Lav om x = 0,x = x	n w 2
	At Steady State, there can be neither accur a plane wall &Q is constant along heat flow requires that the differential eqn is integrat $\therefore Q = -K A$ Q dx = -K A Q dx = -K A Q.x = -K A Q.x = -K A Q.x = -K A	mulation nor depletion w. The ordinary use of ted over entire path fro AdT/dx A dT A $_{T1}\int^{T2}$.dt A $(T_2 - T_1)$	of heat within f Fourier's Lav om x = 0,x = x	n w 2
4A-	At Steady State, there can be neither accur a plane wall &Q is constant along heat flow requires that the differential eqn is integrat $\therefore Q = -K A$ Q dx = -K A Q dx = -K A Q x = -K A	mulation nor depletion w. The ordinary use of ted over entire path fro AdT/dx A dT A $_{T1}\int^{T2}$.dt A $(T_2 - T_1)$	of heat within f Fourier's Lay om x = 0,x = x	n w 2 1 mark
4A- (ii)	At Steady State, there can be neither accur a plane wall &Q is constant along heat flow requires that the differential eqn is integrat $\therefore Q = -K A$ Q dx = -K A Q dx = -K A Q x = -K A	mulation nor depletion w. The ordinary use of ted over entire path fro AdT/dx A dT A $_{T1}\int^{T2}$.dt A $(T_2 - T_1)$ gements: (any 4) Backward fee	of heat within f Fourier's Lay om x = 0,x = x	n w 2 1 mark each
4A- (ii)	At Steady State, there can be neither accur a plane wall &Q is constant along heat flow requires that the differential eqn is integrat $\therefore Q = -K A$ Q dx = -K A Q dx = -K A Q x = -K A	mulation nor depletion w. The ordinary use of ted over entire path fro AdT/dx A dT A $_{T1}$ \int^{T2} .dt A $(T_2 - T_1)$ gements: (any 4) Backward fee Flow of solution to be of	of heat within f Fourier's Lay om $x = 0, x = x$ d concentrated i	n w 2 1 mark each

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

bject: Heat T	ransfer Operation Subject code: 17560	Page 14 of 23
	conductivity. Graphite being soft, these exchangers are made in cubic or	
	cylindrical blocks. In cubic exchangers, parallel holes are drilled in a solid cube	
	such that parallel holes of a particular row are at right angles to the holes of the	
	row above & below. Headers bolted to the opposite sides of the vertical faces of	
	the cube provide the flow of process fluid through the block. The headers	
	located on the remaining vertical faces direct the service fluid through the	
	exchanger in a cross flow.	
		2
4 B	Any one	6
4B-(i)	let area = 1 m^2	
	Thermal resistance o fire brick = $x_1/k_1 A$	1
	$R_1 = 0.23/1.21 x 1 = 0.190 k/w$	
	Similarly $R_2 = x_2/k_2 A = 0.075/0.121x1 = 0.62 k/w$	
	$R_3 = x_3/k_3 A = 0.089/0.865x1 = 0.103 k/w$	
	$\mathbf{R} = \mathbf{R}_1 + \mathbf{R}_2 + \mathbf{R}_3$	2
	R = 0.913 k/w	
	The heat loss per unit area is $Q = \Delta T/R$	
	$\Delta T = (1073 - 333) = 740 \text{ k}$	
	Q=740/0.913 = 810.51W	1
	Q= (T_1-T_2) / R_1 where T_2 is the temp at interface between fire brick and	
	insulating brick	
1		1

et: Heat '	Transfer Operation Subject code: 17560	Page 16 of 23	
	pipe connecting the vapour space to the bottom of the exchanger is	2	
	provided for natural circulation of a unvapourised liquid. It is provided with		
	inlet connection for feed, steam and outlet connections for vapour, thick		
	liquor, condensate etc.		
	Working:		
	In this evaporator feed enters the bottom of the tubes, gates heated by the		
	condensing steam, starts to boil part way up the tubes and the mixture of		
	vap. and liquid comes out from the top of the tubes and finally impinges at		
	high velocity on a deflector. The deflector acts both as a primary separator		
	and foam breaker. The separated liquid enters the bottom of the exchanger		
	and parts of this liquid is taken out as a product.	2	
	This type of evaporator is widely used for handling of foamy, frothy		
	liquids.		
	It is typically used for the production of condensed milk and concentrating		
	black liquor in the pulp and paper industry.		
5	Any two	16	
5-a	To derive Q=UA ΔT _{lm}		
	Assumptions:		
	1. Overall coefficient U is constant throughout the exchanger	2	
	2. Specific heats of hot and cold fluids are constant		
	3. Heat flow to and from the ambient is negligible		
	4. Flow is steady and may be parallel or counter current type		
	5. Temperatures of both the fluids are uniform over a given cross section		
	and may be represented by their bulk temperature.		

oject: Heat	Transfer Operation S	ubject code:	17560	Page 18 of 23
	$\int_{\Delta Ti} d(\Delta T) / \Delta T = - (1/(mh Cph) + 1/(mc Cpc)) U$	$B \int_0^L dx$		
	$\ln (\Delta Te/\Delta Ti) = - (1/(mh Cph) + 1/(mc Cpc)) UA$			-(6)
	where $\Delta Te = T_{he} - T_{ce}$			1
	$\Delta Ti = T_{hi} - T_{ci}$			
	Now if q is the total rate of heat transfer in the heat	exchanger, t	then	
	$q = m_h C p_h (T_{hi} - T_{he})$ (7)			
	= mc Cpc (T _{ce} - T _{ci})(8)			
	Substituting equations (7) and (8) into equation (6),	,		1
	$\ln (\Delta Te/\Delta Ti) = -1/q[(T_{hi}-T_{he}) + (T_{ce}-T_{ci})]U A$			
	q= U A (Δ Ti- Δ Te)/ ln (Δ Ti/ Δ Te)	(9)		
	Equation (9) is the performance equation for a para	llel-flow hea	ıt exchanger	
	$Q = U A \Delta T lm$			
	Where $\Delta Tlm = (\Delta Ti - \Delta Te) / ln (\Delta Ti / \Delta Te)$			1
5-b	Material balance equation for single effect evapo	orator:		
	Consider that the evaporator is fed with $m_f kg/h$ of	weak solutio	n containing	$g w_1$
	% solute & thick liquor is withdrawn at m' kg/h con	ntaining w ₂ %	% solids by	1
	weight. Let m_v be the kg/h of water evaporated. The	en :		

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

: Heat	Transfer Operation Subject code: 17560	Page 20 of 2
	Heat transfer to solution in evaporator by condensing steam (in absece of heat	
	losses) is utilised to heat the feed solution from Tf to T and for vaporisation of	1
	water from solution.	
	Qs = Q	
	$= m_f \operatorname{Cpf} (T - T_f) + (m_f - m') \lambda_v \dots \dots (vii)$	
	m_s . $\lambda_s = mf \ Cpf \ (T - T_f) + (m_f - m') \lambda_v \dots (viii)$	
	where $Cp_f =$ specific heat of feed solution	
	λ_v = latent heat of evaporation from thick liquor	
	For negligible boiling point rise $\lambda v = \lambda$	
	Where λ =latent heat of vaporisation of water at pressure in the	
	Vapour space & can be read from steam tables.	1
	Above equation (viii) becomes :	
	$m_s \lambda_s = m_f C p_f (T - T_f) + (m_f - m^2) \lambda(ix)$	
	$m_s \lambda_s = m_f C p_f (T - T_f) + m_v \lambda(x)$	
5-c	The Sider – Tate equation is	2
	hi Di/k = 0.023 (NRe ^{) 0.8} (Npr) ^{1/3} ($\mu/\mu w$) ^{0.14}	
	Substituting all the values in the equation we get	
	hi $(0.02)/0.25 = 0.023 \text{ x} (15745)^{0.8} (36)^{1/3} \text{ x} ((550 \text{ x} 10^{-6})/(900 \text{ x} 10^{-6}))^{0.14}$	2
	hi (0.02)/0.25 = 0.023 x 2278.84 x 3.3 x 0.933	
	hi (0.02)/0.25 = 161.37	2
	hi= 2017	
	Inside heat transfer coefficient = 2017 W/m ² .K	2
6	Any two	16
6-a	Dimensional Analysis :	2
	It is a method of correlating a number of variables into a single equation	
	expressing an effect.	

ubject: Heat Transfer Operation	Subject code: 17560	Page 21 of 23
Dimensional analysis is a method o	f reducing the number of variables required	L L
to describe a given physical situatio	n by making use of the information implied	b
by the units of the physical quantiti	es involved. It is also known as the "theory	y
of similarity".		
Dittus – Bolter equation:		
$hD/k = 0.023[(Du\rho/\mu)^{0.8}(Cp \mu/k)^{a}$		1
where $a = 0.4$ for heating		
a=0.3 for cooling.		
where h= film heat transfer coeffici	ent	
D= diameter of pipe line		
μ = viscosity of the liquid		2
μ w= viscosity of the liquid at the wa	all surface temp	
Cp= specific heat of the liquid		
L= length of pipe.		
k= thermal conductivity		
u= velocity of flow		
The Sider – Tate equation is		
hi Di/k = 0.023 (NRe) ^{0.8} (Npr) ^{1/3} (μ	$(\mu w)^{0.14}$	1
where $h = film$ heat transfer coeffici	ent	
D= diameter of pipe line		
μ = viscosity of the liquid		
μ w= viscosity of the liquid at the wa	all surface temp	
Cp= specific heat of the liquid		2
L= length of pipe.		
k= thermal conductivity		
u= velocity of flow		
		1

ct: Heat '	Transfer Operation	Subject code: 17560	Page 22 of 2 3
6-b	328 K Cold fluid 358 K	(t ₁) 328 Cold fluid \rightarrow 358 K (t ₂)	
	578 K Thermic fluid 433 K (T_1)	433 K Thermic fluid 578	К 2
	Co-current flow	Counter current flow	
	co current flow		
	$\Delta T_1 =$	578 - 328 = 250 K	
	$\Delta T_2 = -$	433 – 358 = 75 К	1
	$LMTD = \frac{\Delta T1}{\ln t}$	$\frac{\Delta T2}{\left(\frac{\Delta T1}{\Delta T2}\right)} = \frac{250 - 75}{\ln\left(\frac{250}{75}\right)} = 145.35 \text{K}$	
	Total heat transferred $Q = U A L$	MTD	1
	= 700 * 5	500 * 145.35	
	= 508732	242.14 W or 50873.242 kW	
	counter current flow		1
ΔT_1		433 – 328 = 105 K	-
	$\Delta T_2 =$	578 – 358 = 220 K	1
	$LMTD = \frac{\Delta T1}{\ln t}$	$\frac{\Delta T2}{\left(\frac{\Delta T1}{\Delta T2}\right)} = \frac{105 - 220}{\ln\left(\frac{105}{220}\right)} = 155.48 \text{K}$	
	Total heat transferred $Q = U A L$	MTD	1
	= 700 * 5	500 * 155.48	
	= 544163	364.83 W or 54416.364 kW	
6-c	Basis: 5000 kg/hr feed is fed to th	ne evaporator.	
	Material balance of solids:		

Subject: Heat Transfer OperationSubject code: 17560	Page 23 of 23
Solids in feed= solids in the thick liquor	1
0.01x5000=0.4 x m'	
m'=1250kg/h.	
overall Material balance:	
kg/h feed= kg/h water evaporated + kg/h thick liquor	1
water evaporated(m_v)=5000-1750=3750kg/h	
Energy balance is	
$m_s \ \lambda_s = m^* c_{pf} \ ^* (T\text{-}T_f) + m_v \ \ \lambda_v$	1
$m_s 2162 = 5000*4.187*(373-313) + 3750$ (2676-419)	
steam fed(m_s)= 4495.77 kg/h	1
steam economy= kg/h water evaporated/kg/h steam consumed	
= 3750/4495.77= 0.834	1
$Q = U^*A^*\Delta T$	1
4495.77*2162*1000/ 3600 = 1750 * A*(373-313)	
$A = 45.38 m^2$	2