

WINTER-17 EXAMINATION Model Answer

Subject: Heat Transfer Operation

Subject code: 17560

Page **1** of **25**

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.

2) The model answer and the answer written by candidate may vary but the examiner may try

to assess the understanding level of the candidate.

3) The language errors such as grammatical, spelling errors should not be given more

Importance (Not applicable for subject English and Communication Skills.

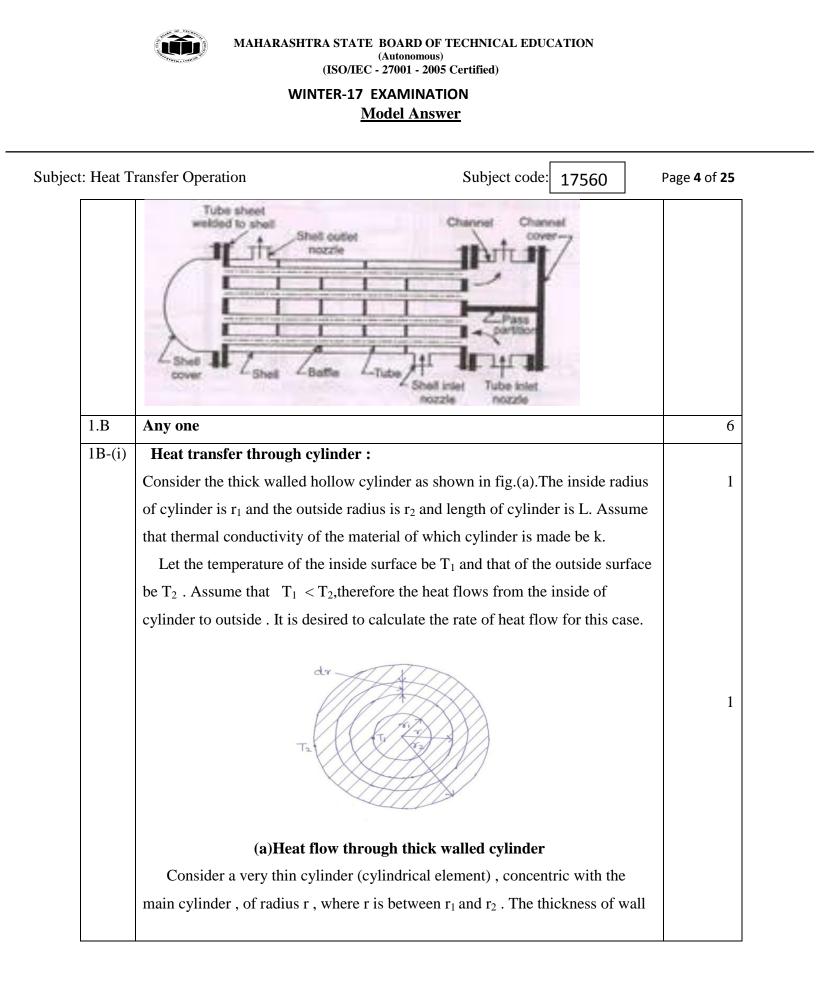
4) While assessing figures, examiner may give credit for principal components indicated in the

figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.

5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.

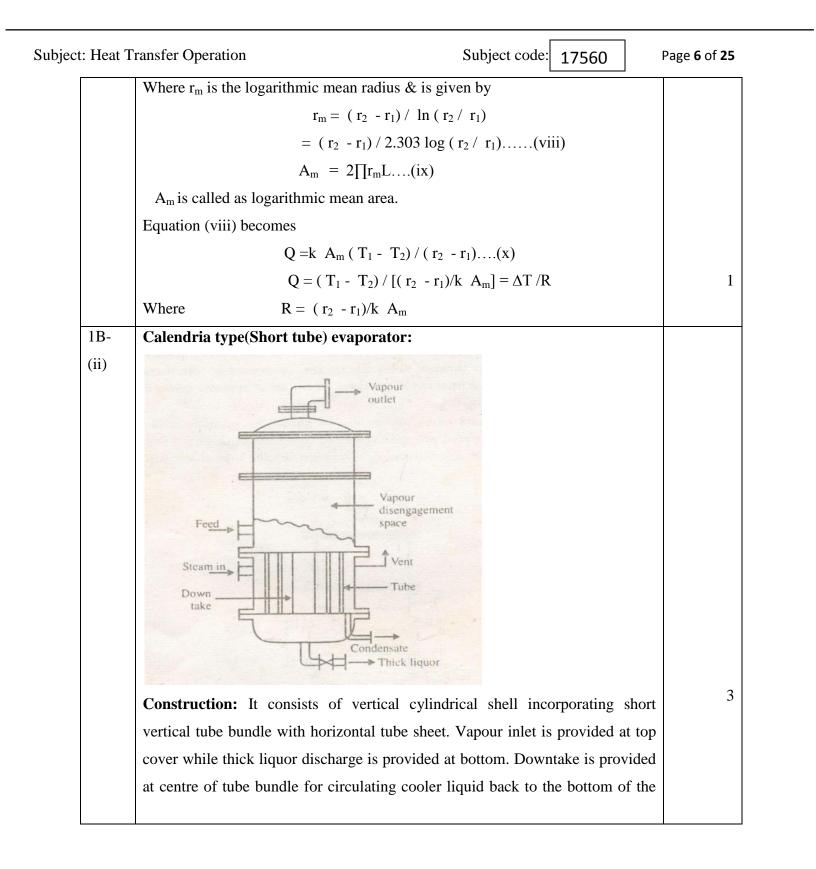
6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.

7) For programming language papers, credit may be given to any other program based on equivalent concept.


WINTER-17 EXAMINATION **Model Answer**

Subject: He

Heat Tr	ansfer	Operation Subject code: 17560	Page 2 of 25
Q No.		Answer	marks
1 A	Any th	ree	12
lA-(i)	Modes	s of heat transfer are:	1
	1.	Conduction	
	2.	Convection	
	3.	Radiation	
	1)	Conduction : If a temperature gradient exist in a continuous substance,	1
		heat can flow unaccompanied by any observable motion of mater. Heat	
		flow of this kind is called conduction. In metallic solids thermal	
		conduction results from the motion of unbound electrons. In most liquid	
		and solids which are poor conductors of electricity, thermal conduction	
		results from the transport of momentum of individual molecules. In	
		gases conduction occurs by the random motion of molecules.	
		Example: Heat flow in the metal wall of tube	
	2)	Convection : When a macroscopic particle of fluid crosses a specific	
		surface, it carries with it a definite quantity of enthalpy. Such a flow of	1
		enthalpy is called convection. Since convection is a macroscopic	
		phenomenon, it can occur only when forces act on the particle or stream	
		of fluid and maintain its motion against the force of friction. There are	
		two types of convection- natural and forced. If the currents are the result	
		of buoyancy forces generated by differences in density and the	
		differences in density are in turn caused by temperature gradient the	
		action is called natural convection.	
		Example: heating of water by hot surface	
		Forced convection : If the currents are set in motion by the action of a	
		mechanical device such as a pump or agitator, the flow is called forced	
		convection	


ject: Heat 7	Transfer Operation Subject code: 17560	Page 3 of 25
	Example: heat flow to a fluid pumped through a heated pipe	
	3) Radiation: Radiation is transfer of energy through space by	1
	electromagnetic waves. If radiation is passing through empty space, it is	
	not transformed into other forms of energy, nor is it diverted from its	
	path. If matter appears in its path, the radiation will be transmitted,	
	absorbed or reflected. It is only the absorbed energy that appears as heat.	
	Fused quartz transmits all radiation falling on it, a polished opaque	
	surface will reflect all the radiation and a black surface will absorb most	
	of the radiation receiving.	
	Example: Loss of heat from unlagged pipe.	
1A-	Film heat transfer coefficient: Film heat transfer coefficient h is defined as	2
(ii)	the quantity of heat transferred in unit time through unit area at a temperature	
	difference of 1^0 between the surface and surrounding.	
	Unit : W/m ² K	2
1A-	Stefan- Boltzman law:	
(iii)	It states that the total energy emitted (emissive power) per unit area per unit	2
	time by a black body is proportional to fourth power of its absolute	
	temperature.	
	$W_b \alpha T^4$	
	Or $W_b = \sigma T^4$	2
	Where $W_b = \text{total}$ energy emitted (emissive power) by a black body	
	σ = Stefan Boltzman constant= 5.67*10 ⁻⁸ W/m ² K	
	T = absolute temperature	
1A-	1-2 shell and tube heat exchanger:	4
(iv)		

Subject: Heat Transfer Operation	Subject code: 17560	Page 5 of 25
of this cylindrical element is dr.		
Q = - k 2∏I	L (dT / dr)(i)	
Equation (i) is similar to eqn (a). Here	e area perpendicular to heat flow is 2∏rI	
and dx of eqn (a) is equal to dr.		1
Rearranging the eqn (i), we get		
dr / r = -k (2)	[]L) /Q.dT(ii)	
Only variables in eqn (ii) are r and T (assuming k to be constant).	
Integrate the eqn (ii) between the li	mits	
When $\mathbf{r} = \mathbf{r}_1$, $\mathbf{T} = \mathbf{T}_1$		
When $r = r_2$, $T = T_2$		1
	etto	
$_{r2} \int^{11} dr / r = -k (2)$	$[L) / Q_{T1} \int^{T2} dT \dots (iii)$	
$\ln r_2 - r_1 = -k (2)$	TL) (T ₁ - T ₂)(iv)	
$\ln(r_2 / r_1) = k(2 \prod k)$	L) $(T_1 - T_2) / Q(v)$	
Rate of heat flow through thick walled	l cylinder :	1
$\therefore Q = k (2 \prod L) (T_1 - C_1)$	$(T_2) / \ln (r_2 / r_1)(vi)$	
Equation (a) can be used to calculate t	he flow of heat through a thick walled	
cylinder.	ne now or near through a three walled	
	n by expressing the rate of heat flow as :	
	$(T_2)/(r_2 - r_1)(vii)$	
	-/ \/ \ /	

t: Heat	Transfer Operation Subject code: 17560	Page 7 of 25
	tubes. Solution to be evaporated is inside the tubes and steam flows outside the	
	tubes in the steam chest. Baffles are incorporated in steam chest to promote	
	uniform distribution of steam. The condensate is withdrawn at a point near	
	lower tube sheet, while non condensable gas is vented to atmosphere from point	
	near top tube sheet.	
	Working: Thin liquor is introduced to the tube side and steam into steam chest	
	. The liquor covers top of tubes. Heat transfer to boiling liquid inside the tubes	3
	take place from condensing steam on outside of tubes. Vapours formed will rise	
	through the tubes, come to the liquid surface from which they are disengaged	
	into the vapour space and removed from the vapour outlet. Thick liquor is	
	removed from the bottom of the evaporator.	
2	Any four	16
2-a	Fourier's law of conduction:	
	It states that the rate of heat flow across an isothermal surface is proportional to	2
	the temperature gradient at the surface.	
	$\frac{dQ}{dA} = -k\frac{\delta T}{\delta n}$	1
	Q- rate of heat transfer	
	A- Area perpendicular to heat flow	1
	k- Thermal conductivity	
	T- Temperature	
2-b	Area $A=1 m^2$	
	Thickness $B = 0.5 \text{ m}$	
	K = 0.7 W/mK	2
	Temperature difference $\Delta T = 400-310 = 90$ K	
	$Q = k A \Delta T / B$	1
	= 0.7*1*90 / 0.5	

	= 126 W/m ²		1
2-c	Kirchhoff's Law :		
	Consider that the two bodies a	re kept into a furnace held at consta	int 2
	temperature of T K. Assume that, of	f the two bodies one is a black body& t	he
	other is a non-black body i.e. the body	dy having 'a' value less than one. Both t	he
	bodies will eventually attain the te	emperature of T K & the bodies neith	ner
	become hotter nor cooler than the	he furnace. At this condition of therm	nal
	equilibrium, each body absorbs and	emits thermal radiation at the same ra	te.
	The rate of absorption & emission fo	r the black body will be different from the	nat
	of he non-black body.		
	Let the area of non-black body be A	A_1 and A_2 respectively. Let 'I' be the rate	at
	which radiation falling on bodies pe	er unit area and E_1 and E_2 be the emissi	ve
	powers (emissive power is the tota	al quantity of radiant energy emitted by	a
	body per unit area per unit time)of no	on-black & black body respectively.	
	At thermal equilibrium, absorption	and emission rates are equal, thus,	2
	$Ia_1 A_1 = A_1 E_1$	(1.1)	
	\therefore Ia ₁ = E ₁	(1.2)	
	And $Ia_b A_2 = A_2 E_b$	(1.3)	
	$Ia_b = E_b$	(1.4)	
	From equation (1.1) and (1.4).we get		
	$\frac{E1}{a1} = \frac{Eb}{ab}$	(1.5)	
	Where $a_{1,}a_{b}$ = absorptivity of non-bla	ck & black bodies respectively.	
	If we introduce a second body (not	on black) then for the second non bla	ck

ct: Heat	Transfer Operation	Subject code: 17560	Page 9 of 25
	$I A_3 a_2 = E_2 A_3$	(1.6)	
	$\therefore Ia_2 = E_2$	(1.7)	
	Where $a_1 = E_2$ are the absorptivity and e	missive power of the second non-bla	nck
	body.		
	Combining equations (1.2),(1.4) and(1	1.7) we get,	
	$\frac{E1}{a1} = \frac{E2}{a2} = \frac{E3}{a3} = E_b$	(1.8)	
2-d	Viscous fluid : Viscous fluid is passed t	through shell side	1
	Reason : because of the presence of ba	ffles in the shell induce turbulence	and 1
	hence increases heat transfer rate.		
	High pressure fluid: High pressure fluid is passed through tube side		1
	Reason: To avoid expensive high pressure shells (in order to save the cost of		st of 1
	expensive material for shell).		
2-е	Single pass and multi pass:		1 mark
	Single pass	Multi pass	each for
	Simple in construction	Complex in construction	any 4
	Flow may be parallel or counter	Flow is parallel as well as coun	ter
	current	current	
	Inexpensive	Expensive	
	Heat transfer coefficients are low	Heat transfer coefficients are high	
	For a given duty, floor space	Floor space requirement is low	
	requirement is large		
	Frictional losses are low	Frictional losses are high	
	Heat transfer rates are low	Heat transfer rates are high	
	Fluid flow once through exchanger	Fluid flow number of times throu	gh
		exchanger	

2

1

Г

WINTER-17 EXAMINATION **Model Answer**

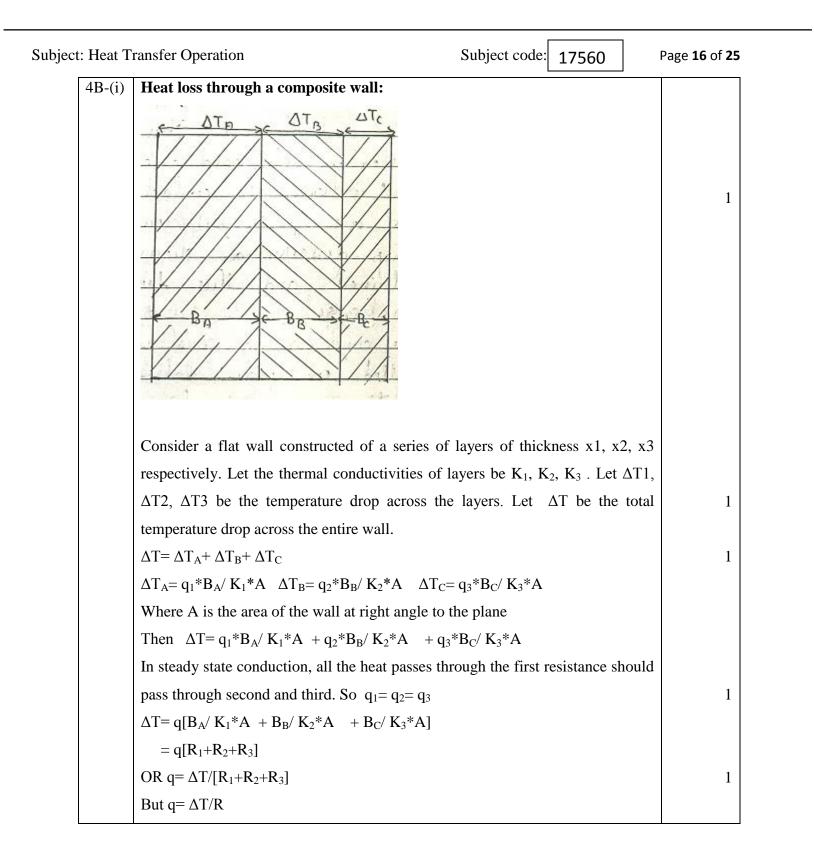
Subject: He

Heat Transfer Operation	Subject code: 17560	Page 10 of 25
3 Any two		16
3-a Heat transfer in boiling liquids:	chai g x ST ^{1·2S} iny oiling	2

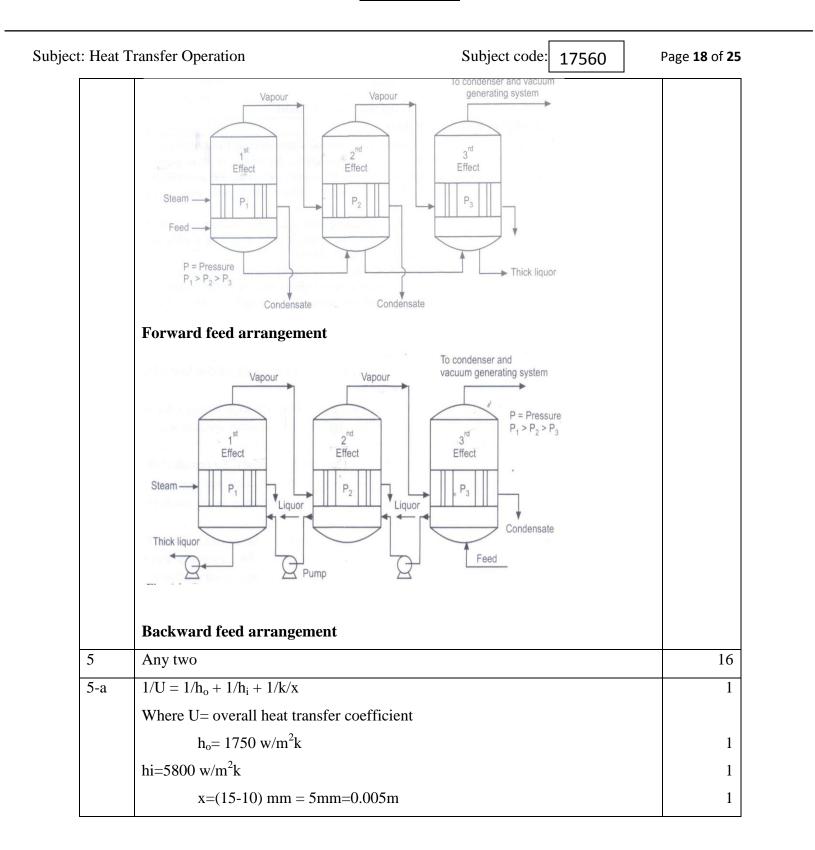
Consider a horizontal tube immersed in a vessel containing boiling liquid. Assume that Q/A, the heat flux and ΔT , the difference between the temperature of the tube wall and that of the boiling liquid, are measure. A plot of Q/A vs ΔT on log coordinates is drawn. This curve can be divided into four segments. At low temperature drops, the line AB is straight and has slope of 1.25.Here heat transfer is by natural convection. Bubbles formed on the surface of the heater, are released from it, raise the surface and are disengaged in to the vapour space.

Subject: Heat Tra	ansfer Operation	Subject code: 17560	Page 11 of 25
	The segments BC is also straight but slope is	greater than AB. The rate	te of
	bubble production is large enough for the stream	of bubbles moving up thr	ough
	the liquid to increase the velocity of the circulat	tion currents and coefficie	ent of 1
	heat transfer becomes greater than that in undist	turbed natural convection.	This
	is called nucleate boiling .		
	In the segments CD the flux decreases as the	e temperature drop raises	and
	reaches a minimum at point D. As the tempera	ture drop is raised, more	e and
	more bubbles are present that they tend to coal	lesce on the heating surface	ce to 1
	formed and layer of insulating vapour. This type	is called transition boiling	g.
	In DE the flux again increases with ΔT and at la	rge temperature drop surpa	asses
	the previous maximum reached. The hot surface	e becomes covered with a	film 1
	of vapour through with heat is transferred by con-	nduction and by radiation.	.This
	is known as film boiling .		
3-b		Cold fluid	
	$303 \text{ K} \xrightarrow{\text{Cold fluid}} 328 \text{ K} \qquad (t_1) 303 \text{ K}$	Cold fluid \rightarrow 328 K (t ₂)	
	$383 \text{ K} \xrightarrow{\text{Thermic fluid}} T_2 \text{ K} T_2$	Thermic fluid 383 K (T	ı) 1
	Co-current flow Counte	r current flow	
	Mass flow rate of water (cold fluid) = Volumetrie	c flow rate \times density	
	$=15 \times 10$	000	
	$m_c = 15000$	kg/h	
	Mass flow rate of thermic fluid = Volumetr	ic flow rate \times density	1
	$=21 \times 95$	50	
	$m_t = 19950 H_{c}$	kg/h	

ect: Heat	Transfer Operation Subject code:	17560	Page 12 of 25
	The heat balance over the exchanger is		
	Heat lost by the thermic fluid = Heat gained by the cold	fluid	1
	$m_t C_{pt} (T_1 - T_2) = m_c C_{pc} (t_2 - t_1)$		
	$T_1 = 383 \text{ K}, t_2 = 328 \text{ K}, t_1 = 303 \text{ K}$		
	$19950 \times 2.72 (383 - T_2) = 15000 \times 4.187 \times (328 - T_2)$	- 303)	
	\therefore T ₂ = 354 K (81°C)		1
	LMTD for co current flow,		
	$\Delta T_1 = T_1 - t_2 = 383 - 303 = 80 \text{ K}$		
	$\Delta T_2 = T_2 - t_1 = 354 - 328 = 26 \; \text{K}$		1
	LMTD = $\frac{\Delta T1 - \Delta T2}{\ln(\frac{\Delta T1}{\Delta T2})} = \frac{80 - 26}{\ln(\frac{80}{26})} = 48K$		1
	LMTD for counter current flow,		
	$\Delta T_1 = T_1 - t_2 = 383 - 328 = 55 \text{ K}$		
	$\Delta T_2 = T_2 - t_1 = 354 - 303 = 51 \text{ K}$		1
	$LMTD = \frac{\Delta T1 - \Delta T2}{\ln(\frac{\Delta T1}{\Delta T2})} = \frac{55 - 51}{\ln(\frac{55}{51})} = 53K$		1
	LMTD for cocurrent flow = 48 K		
	LMTD for counter current flow = 53 K		
3-с	Graphite block heat exchanger:		2
	Graphite heat exchangers are well suited for handling corrosi	ive fluids.	
	Graphite is inert towards most corrosive fluids and has very hig	h thermal	
	conductivity. Graphite being soft, these exchangers are made in	cubic or	
	cylindrical blocks. In cubic exchangers, parallel holes are drille	d in a solid cu	be
	such that parallel holes of a particular row are at right angles to	the holes of the	ne

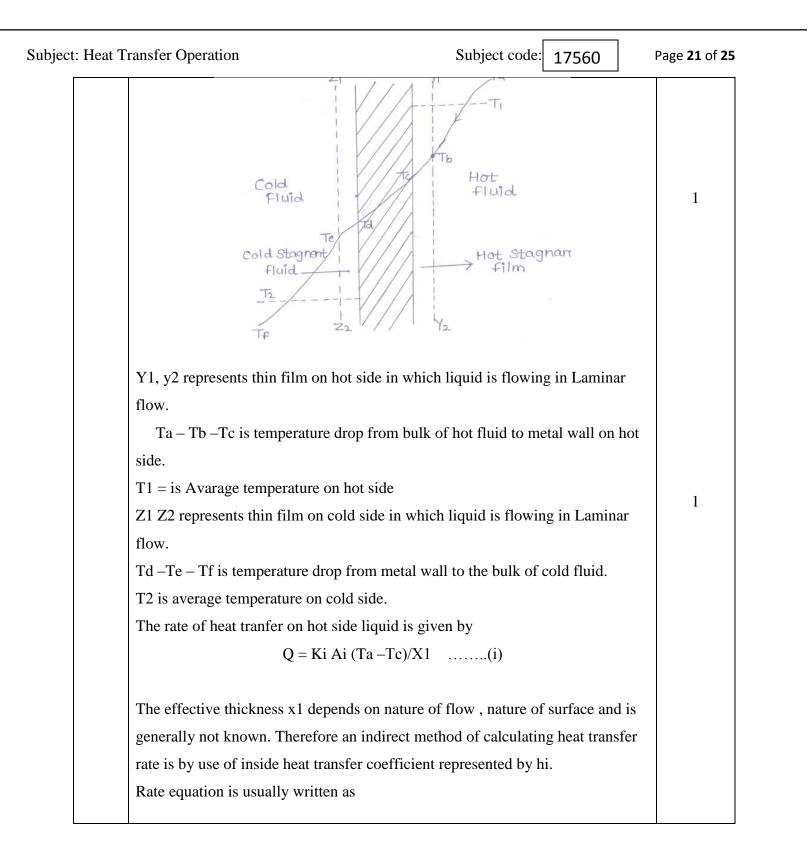

Subject: Heat T	ransfer Operation	Subject code: 17560	Page 13 of 25
	row above & below. Headers bolted to the opposi	te sides of the vertical face	es of
	the cube provide the flow of process fluid through	1 the block. The headers	
	located on the remaining vertical faces direct the	service fluid through the	
	exchanger in a cross flow.		
			2
	Advantages of it over Shell & Tube Heat Excha	anger :	
	i) Rate of Heat transfer is very High.		2
	ii) It can be used for handling corrosive liquids		
	Applications of graphite block h.e.		2
	i) It is used for very explosive liquid.		2
	ii) It can be used for Corrosive Fluid.		
4 A	Any three		12
4A-(i)	Let we consider 1 meter length of pipe.		
	$Q = \frac{KA\Delta T}{L} \qquad \Delta T = 400 - L$	250 = 150	
	$\mathbf{K} = 1.2 \frac{Kcal}{\Box r.m.K}$		
	$A = 1.8 m^2$		2
	L = 40cm = 40/100 = 0.4 m		

Subject: Heat	Transfer OperationSubject code: 17560	Page 14 of 25
	$Q = \frac{1.2 \times 1.8 \times 150}{0.4}$	1
	$= 810 \frac{Kcal}{hr.}$	1
4A- (ii)	The capacity of an evaporator is defined as the number of kilogram of wat evaporated per hour.	er 1
	The economy of an evaporator is defined as the number of kilogram of wat evaporated per kilogram of steam fed to the evaporator.	er 1
	Most of the evaporators use low pressure steam for heating purpose .Due addition of heat of solution in evaporator by condensation of steam, the solution	
	in the evaporator will boil. If vapours leaving the evaporator are fed to som form of condenser then heat associated with vapour will be lost and system	is
	said to make poor use of steam. The vapour coming out evaporator can be use as heating media for another evaporator which will be operating at low	er
	pressure than the pressure in the evaporator from which vapours are issuing as to provide sufficient temperature gradient for heat transfer in that evaporate	or.
	When single evaporator is put into service and vapours leaving the evaporate are condensed and discarded the method is known as single effect evaporation	
	Methods of increasing the economy of an evaporator: 1. Using multiple effect evaporator	2
	2. Vapour recompressionA. Multiple effect evaporation: In this system, evaporators are arrange	
	in series so that the vapour produced in first effect is fed to the stea chest of second effect as heating medium in which boiling takes place	
	low pressure and temperature and so on.	


t: Heat 7	Transfer OperationSubject code: 17560	Page 15 of 2 5
	B. Methods of increasing economy by vapour recompression methods	
	are:	
	1. Mechanical recompression	
	2. Thermal recompression	
4A-	Rate of heat transfer by radiation	
(iii)	Assume length of pipe $= 1 \text{ m}$	
	$e=0.9$ $\sigma = 5.67*10-8 \text{ w/(m^2.k^4)}$	
	$T_1 = 395 \text{ K}$ $T_2 = 293 \text{ K}$ $Do = 70 \text{mm} = 0.07 \text{m}$	
	Outside surface area per 1 meter length of pipe is	1
	$A = \pi$ Do $L = \pi \times 0.07 \times 1 = 0.2198 \text{ m}^2$	
	The net radiation rate per 1 m length of pipe is	
	$Qr = e\sigma A (T1^4 - T2^4)$	1
	$= 0.9 \times 5.67 \times 10-8 \times 0.2198 \ (395^4 - 293^4)$	
	= 190.384 w/m	2
4A-	Heat transfer equipment (any 4)	1 mark
(iv)	1. Cooler: To cool process fluid by means of water or atmospheric air.	each
	2. Condenser: To condense a vapour or mixture of vapours.	
	3. Chiller: To cool a process fluid to a temperature below that can be	
	obtained by using water as a cooling media	
	4. Heater: Which imparts sensible heat to process fluid.	
	5. Vaporiser: Which vaporizes part of liquid.	
	6. Reboiler: Employed to meet latent heat requirement at the bottom of	
	distillation column.	
	7. Evaporator: To concentrate a solution by evaporating water.	
4 B	Any one	6

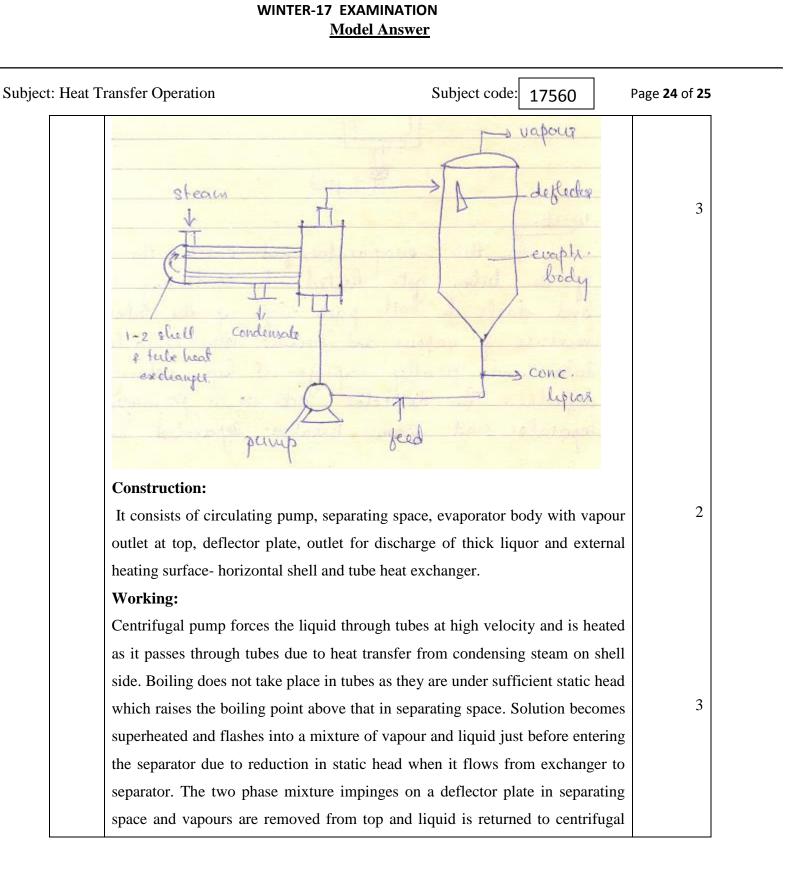


Subject: Heat	Transfer Operation	Subject code: 17560	Page 17 of 25	
	Therefore : $R = R_1 + R_2 + R_3$			
	In heat flow through a series of layers the overall resistance is equal to the sum			
	of individual resistances.		1	
4B-	Forward feed and backward feed arrangements (any 4)			
(ii)	Forward feed	Backward feed	each	
	Flow of solution to be concentrated is	Flow of solution to be concentrated is		
	parallel to steam flow.	in opposite direction to steam flow.		
	Does not need pump for moving the	Need pump for moving the solution		
	solution from effect to effect.	from effect to effect.		
	As all heating of cold feed solution is	Solution is heated in each effect,		
	done in first effect, less vapour is	result in better economy.		
	produced, so lower economy.			
	The most concentrated liquor is in	The most concentrated liquor is in		
	the last effect where temperature is	the first effect where temperature is		
	lowest and viscosity is highest, leads	highest and viscosity is lowest, Thus		
	to reduction in capacity.	high overall coefficient.		
	Maintenance charges and power cost	Maintenance charges and power cost		
	are low	are more.		
	Most common as it is simple to	Not very common as it need pump.		
	operate			
	More economical in steam.	At low values of feed temperature		
		higher economy.		
L				


WINTER-17 EXAMINATION **Model Answer**

ect: Heat	Transfer Operation	Subject code: 17560	Page 19 of 25
	k=46.52 w/ m ² k		
	1/U=1/1750 + 1/5800 + 1/46.52/0.005		2
	$U=1175 \text{ w/ } m^2 \text{k}$		2
5-b	Basis: 30000 kg/hr feed is fed to the evapo	orator.	
	Material balance of solids:		
	Solids in feed= solids in the thick liquor		
	0.05x30000=0.30 x m'		
	m'=5000kg/h.		2
	overall Material balance:		
	kg/h feed= kg/h water evaporated + kg/h t	hick liquor	
	water evaporated= mv=30000-5000=2500)0kg/h	1
	Enthalpy balance is		
	$m_s\lambda_s = m_fCp_f(T\text{-}T_f) + m_v\lambda_v$		1
	$m_s *2185 = 30000*4.1(380-298) + 25000$	* 2257	1
	steam fed= 30439.8 kg/h		1
	steam economy= kg/h water evaporated/k	g/h steam consumed	1
	= 30440/25000 = 0.82		1
5-c	Heat lost by hot fluid		
	$Q_{h}=\ m_{h}\ Cp_{h}\left(T_{hi}-T_{ho}\right)$		2
	= 5000 * 2.72*(423-363) = 816000 kJ/	ĥ	
	Heat gained by cold fluid		
	$Q_{c}=m_{c}\ Cp_{c}\left(T_{co}-T_{ci}\right)$		2
	= 15000*4.2*(Tco - 303)		
	$Q_h = Q_c$		1
	816000 = 15000*4.2*(Tco - 303)		1
	Outlet temperature of water = 316 K		2
6	Any two		16

6-a	Relation between individual and overall heat transfer coefficients:	
	Consider a hot fluid flowing through a circular pipe & a cold fluid flowing on	
	the outside of the pipe.	
	Heat is flowing from the bulk of hot fluid to the bulk of cold fluid through a metal wall of pipe.	
	(i) When heat is flowing from bulk of hot fluid to the metal wall, although heat	
	transfer in bulk fluid takes by convection current , there is a very small layer of	2
	fluid near the pipe in which heat transfer takes place by conduction. This is	
	because flow in this layer is laminar & there is no mixing of molecules. This	
	layer is known as viscous sublayer. This thin film of fluid flowing in Laminar	
	flow is of great importance in determining the rate of heat transfer. The	
	Thermal conductivity of fluid is very low so that resistance offered by this film	
	is very large through the film is thin.	
	(ii) When heat across metal wall resistance is comparatively low.	
	(iii) When heat transfer takes place from metal to the bulk of fluid there exists	
	a thin film of cold fluid which has a high resistance.	
	(iv) Heat then flows from this thin film to bulk of cold fluid by convection. The	
	process of heat transfer from bulk of hot fluid to bulk of cold fluid is	
	represented by fig.	



Subject: Heat T	ransfer Operation	Subject code: 17560	Page 22 of 25
	Q =hi Ai (Ta – Tc)	(ii)	
	Comparing equation (i) & (ii), hi = K1/x1		1
	$\Pi = \mathbf{K} \mathbf{I} / \mathbf{X} \mathbf{I}$		1
	Resistance for heat tranfer is given as		
	$\mathbf{R} = \mathbf{X}/\mathbf{K}_{\mathbf{A}} = 1/\mathbf{K}/\mathbf{x}(\mathbf{A})$	= 1/hiAi	
	. Resistance offered by film on hot side= 1/hi.	Ao	
	= Resistance of metal wall = L/KmAm		
	= Resistance of thin film on cold fluid =1/hoA	0	
	So effectively heat transfer is across this there is	s $Q_1 + Q_2 + Q_3$ films.	
	At Steady State,		
	$Q_1 = Q_2 = Q_3 = Q = C$	onstant	1
	$\therefore Q = \Delta t/R_1 + R_2 + R_3$		
	$\therefore Q = T_1 - T_2 / [(1/hiAi) + (Lm/R Am)]$)+(1/hoAo)](i)	
	We multiply N & D by Ai=area of heat	transfer on hot side, we get	
	$Q = (T_1 - T_2)Ai/[(1/hiAi) + (Lm/Km)]$.Am)+(1/ho.Ao)] Ai	
	= $(T_1-T_2)Ai[(1/hi)+(Lm/Km.Ai)]$	/Am)+(1/ho.Ai/Ao)]	
	o 1		
	Since pipes are circular,		1
	$A = 2 \prod rl$		
	$= (T_1 - T_2) Ai[(1/hi) + (Lm/Km.2] r_i L/2]$		
	= $(T_1-T_2)Ai[(1/hi)+(Lm/Km. r_i/r_m)+(1/ho)]$	D r_i / r_0]	
	We assume a new parameter,		

	U_i = Overall heat transfer coefficient on inside liquid.	1
	$\therefore 1/\text{Ui} = 1/\text{hi} + \text{Lm}/.\text{ri/rm} + 1/\text{ho ri/ro} \dots (i)$	
6-b	Dimensionless groups	
	1. Reynold s number $N_{Re} = Du\rho/\mu$	1
	D- diameter of pipe	
	u- velocity of flow	
	ρ – density of fluid	1
	μ - viscosity of fluid	
	2. Nusselt Number N_{NU} = hd/k	1
	h – fim heat transfer coefficient	
	d - diameter of pipe	1
	k – thermal conductivity of fluid	
	3. Prandtl Number N_{PR} - $C_p \mu/k$	1
	C _p -specific heat of fluid	
	μ - viscosity of fluid	1
	k – thermal conductivity	
	4. Grashoff Number $N_{GR} = D^3 \rho^2(g\beta) \Delta T / \mu^2$	1
	D- diameter of pipe	
	ρ – density of fluid	
	g- acceleration due to gravity	
	β – coefficient of thermal expansion	1
	ΔT – temperature difference	
	μ - viscosity of fluid	
6-c	Forced circulation evaporator:	

Subject	: Heat T	ransfer Operation	Subject code:	17560	Page 25 of 25	
		pump. Part of the solution leaving separating	g space is w	ithdrawn as	s the	
		concentrated liquor and make up feed is continuo	usly introduce	ed at pump in	nlet.	