

SUMMER-17 EXAMINATION Model Answer

Subject code: 17560

Page **1** of **27**

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.

2) The model answer and the answer written by candidate may vary but the examiner may try

to assess the understanding level of the candidate.

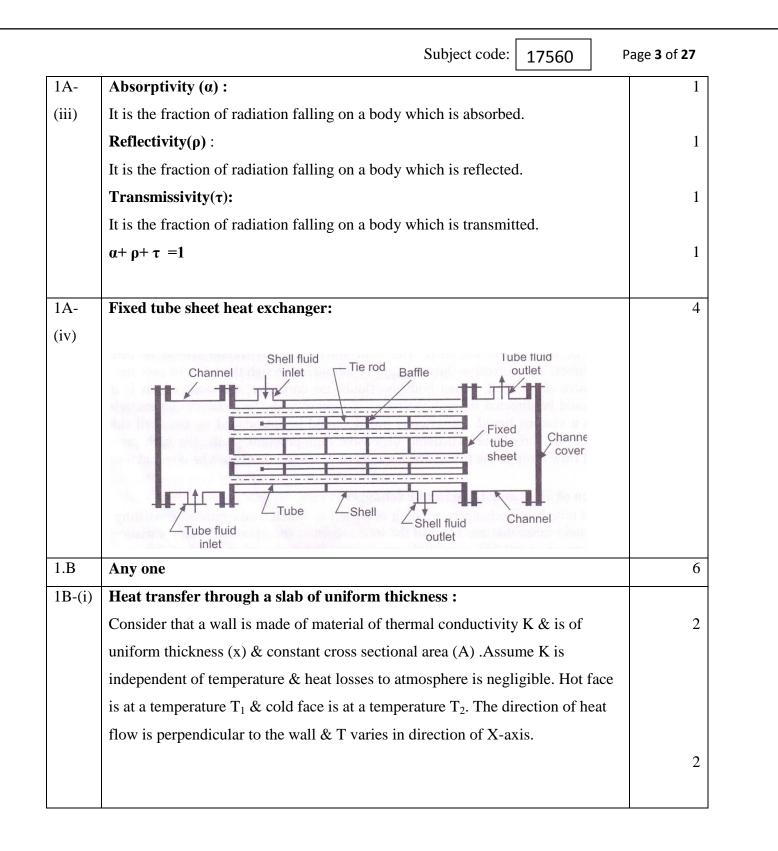
3) The language errors such as grammatical, spelling errors should not be given more

Importance (Not applicable for subject English and Communication Skills.

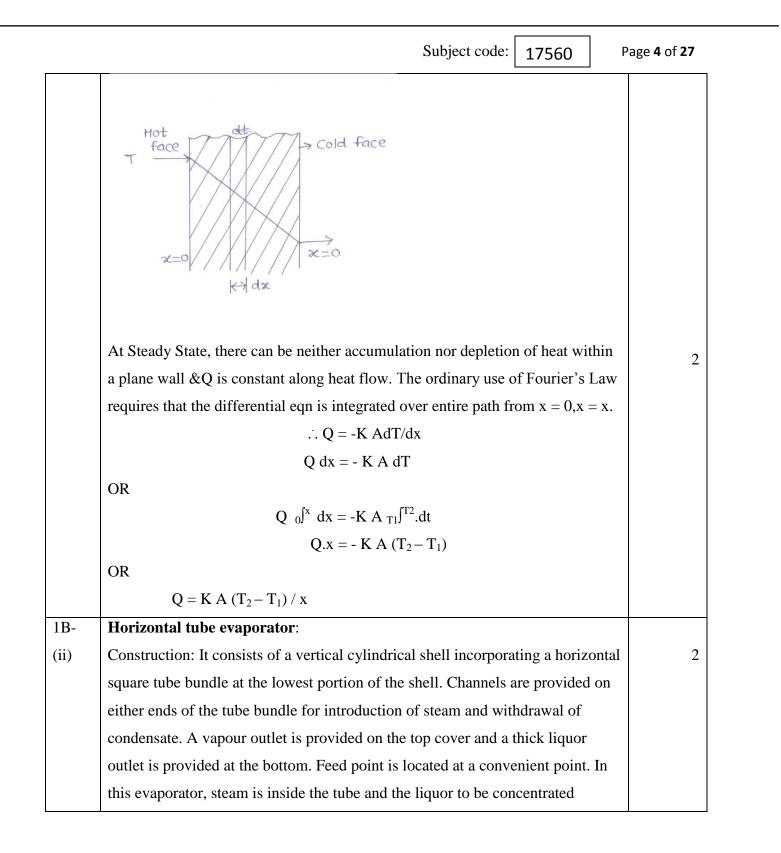
4) While assessing figures, examiner may give credit for principal components indicated in the

figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.

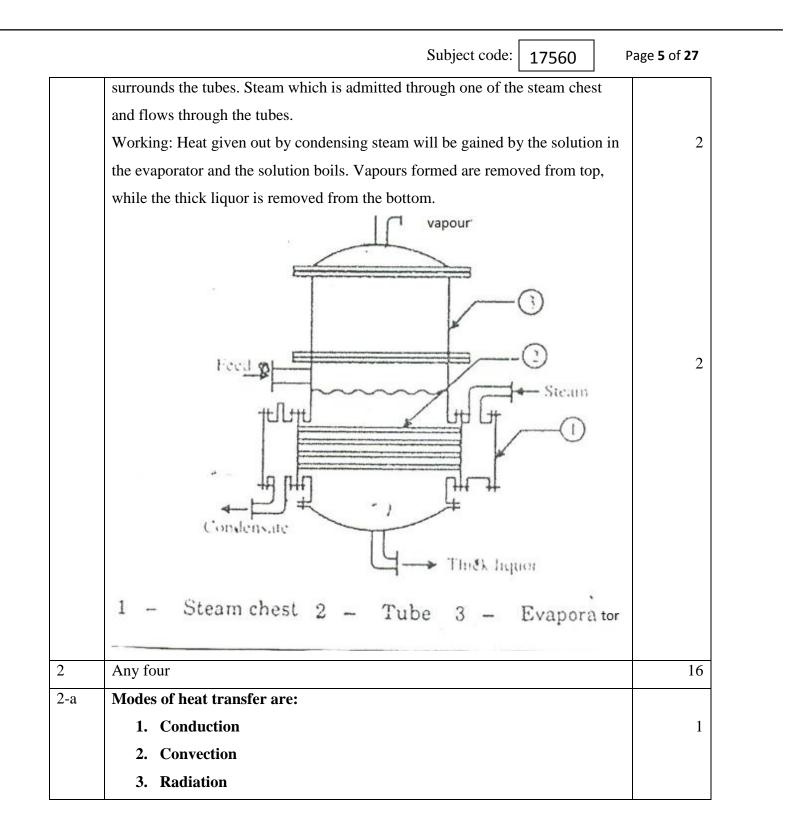
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.


6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.

7) For programming language papers, credit may be given to any other program based on equivalent concept.



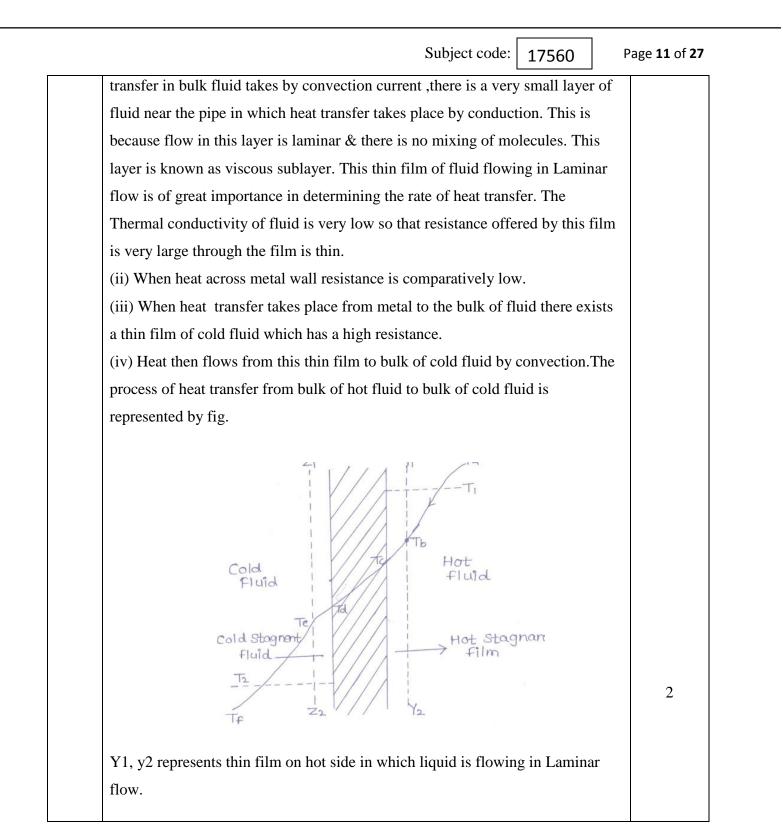
	Subject code: 17560 Pag	ge 2 of 27
Q No.	Answer	marks
1 A	Any three	12
1A-(i)	Fourier's law of conduction:	2
	It states that the rate of heat flow across an isothermal surface is proportional to	
	the temperature gradient at the surface.	
	$\frac{dQ}{dA} = -k\frac{\delta T}{\delta n}$	2
	Q- rate of heat transfer	
	A- Area perpendicular to heat flow	
	k- Thermal conductivity	
	T- Temperature	
1A-	1) Convection : When a macroscopic particle of fluid crosses a specific	1
(ii)	surface, it carries with it a definite quantity of enthalpy. Such a flow of	
	enthalpy is called convection. Since convection is a macroscopic	
	phenomenon, it can occur only when forces act on the particle or stream	
	of fluid and maintain its motion against the force of friction. There are	
	two types of convection- natural and forced. If the currents are the result	
	of buoyancy forces generated by differences in density and the	
	differences in density are in turn caused by temperature gradient the	
	action is called natural convection.	
	Example : heating of water by hot surface	1
	Forced convection : If the currents are set in motion by the action of a	1
	mechanical device such as a pump or agitator, the flow is called forced	
	convection	
	Example: heat flow to a fluid pumped through a heated pipe	1



	Subject code: 17560 P	age 6 of 27
2)	Conduction : If a temperature gradient exist in a continuous substance,	
	heat can flow unaccompanied by any observable motion of mater. Heat	1
	flow of this kind is called conduction. In metallic solids thermal	
	conduction results from the motion of unbound electrons. In most liquid	
	and solids which are poor conductors of electricity, thermal conduction	
	results from the transport of momentum of individual molecules. In	
	gases conduction occurs by the random motion of molecules.	
	Example: Heat flow in the metal wall of tube	
3)	Convection : When a macroscopic particle of fluid crosses a specific	
	surface, it carries with it a definite quantity of enthalpy. Such a flow of	1
	enthalpy is called convection. Since convection is a macroscopic	
	phenomenon, it can occur only when forces act on the particle or stream	
	of fluid and maintain its motion against the force of friction. There are	
	two types of convection- natural and forced. If the currents are the result	
	of buoyancy forces generated by differences in density and the	
	differences in density are in turn caused by temperature gradient the	
	action is called natural convection.	
	Example: heating of water by hot surface	
	Forced convection : If the currents are set in motion by the action of a	
	mechanical device such as a pump or agitator, the flow is called forced	
	convection	
	Example: heat flow to a fluid pumped through a heated pipe	
4)	Radiation: Radiation is transfer of energy through space by	
	electromagnetic waves. If radiation is passing through empty space, it is	1
	not transformed into other forms of energy, nor is it diverted from its	
	path. If matter appears in its path, the radiation will be transmitted,	
	absorbed or reflected. It is only the absorbed energy that appears as heat.	

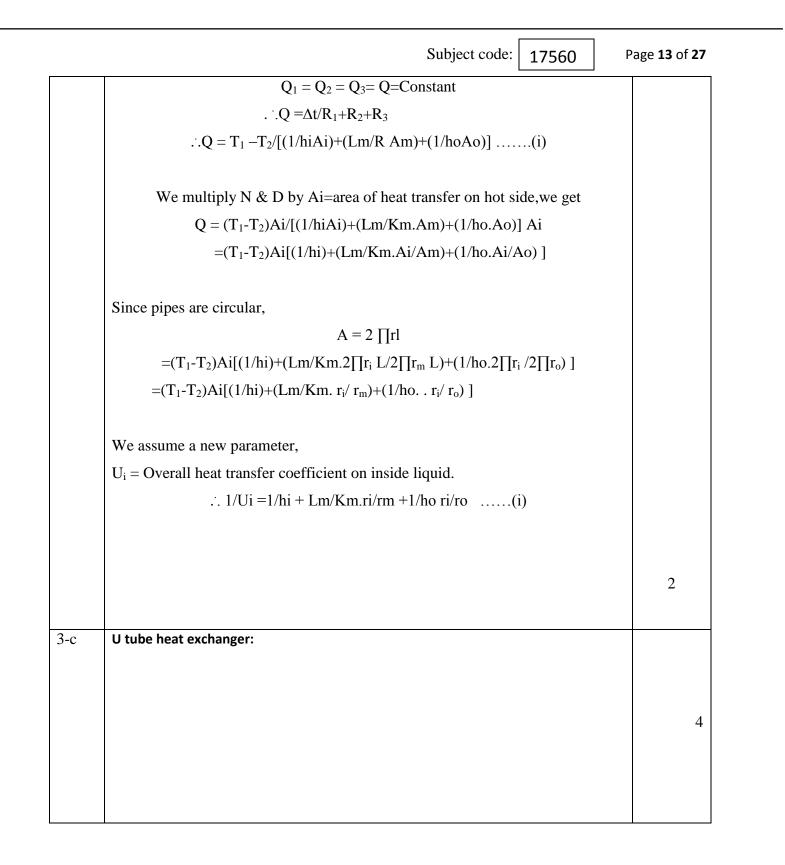
	Subject code: 17560 Pa	ge 7 of 27
	Fused quartz transmits all radiation falling on it, a polished opaque	
	surface will reflect all the radiation and a black surface will absorb most	
	of the radiation receiving.	
	Example: Loss of heat from unlagged pipe.	
2-b	Optimum thickness of insulation:	
	The optimum thickness of an insulation is obtained by purely economic	2
	approach. The greater the thickness, the lower the heat loss & the greater the	
	initial cost of insulation & the greater the annual fixed charges.	
	It is obtained by purely economic approach. Increasing the thickness of an	
	insulation reduces the loss of heat & thus gives saving in operating costs but at	
	the same time cost of insulation will increase with thickness. The optimum	
	thickness of an insulation is the one at which the total annual cost (the sum	
	values of heat lost and annual fixed charges) of the insulation is minimum	
	Total cost	2
	Optimum Thickness Of Insulation	
2-c	Black body: It is the substance which absorbs all the radiation falling on it. For	4
	a black body, absorptivity $\alpha = 1$ and transmissivity = reflectivity= 0.	
	It neither reflects nor transmits but absorbs all the radiation incidents on it. So it	
	is treated as an ideal radiation receiver. It is not necessary that	

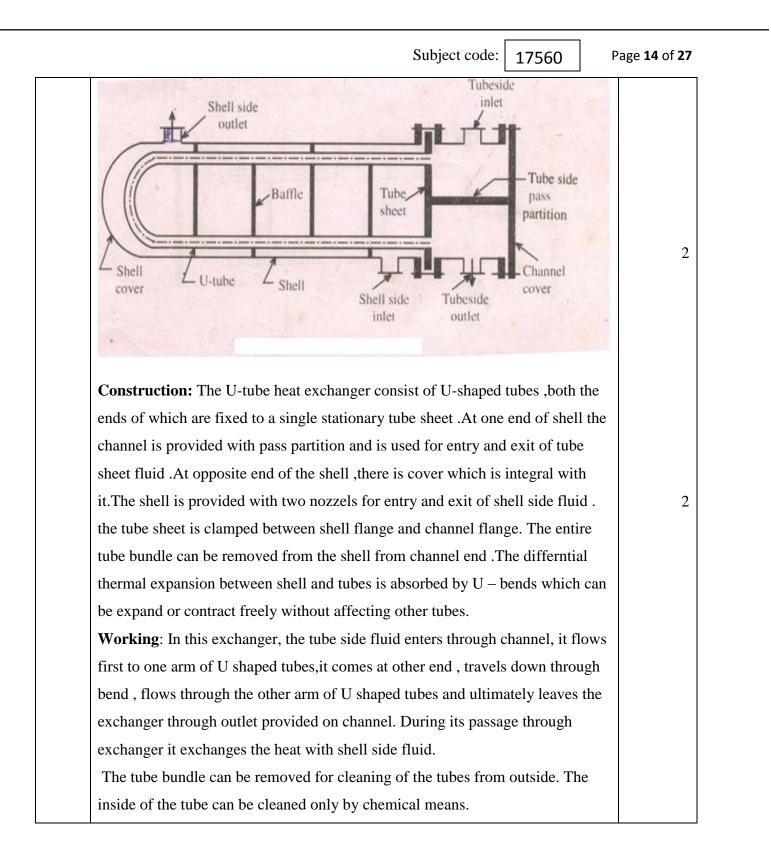
with fairly large central tube, 100 to 300 mm in diameter, jacketed with steam or cooling liquid. The scrapping mechanism-rotating shaft provided with one or more longitudinal scrapping blades is incorporated in the inner pipe to scrape the inside surface. The process fluid (viscous liquid) flows at low velocity through inside pipe and cooling or heating medium flows through the annular space created between two concentric pipes. The rotating scrapper continuously scraps the surface thus preventing localized heating and facilitating rapid heat transfer. Liquid-solid suspensions, viscous aqueous and organic solutions and food products, such as margarine and orange juice concentrates are often heated or cooled in such type of exchanger. It is also widely used in paraffin wax plants.		Subject code: 17560 P	age 8 of 27
 bodies do not exist in nature, some materials approach it. E.g. lamp black is the nearest to a black body. It absorbs 96% of visible light. 2-d Scrapped surface heat exchanger is basically a double pipe heat exchanger with fairly large central tube, 100 to 300 mm in diameter, jacketed with steam or cooling liquid. The scrapping mechanism-rotating shaft provided with one or more longitudinal scrapping blades is incorporated in the inner pipe to scrape the inside surface. The process fluid (viscous liquid) flows at low velocity through inside pipe and cooling or heating medium flows through the annular space created between two concentric pipes. The rotating scrapper continuously scraps the surface thus preventing localized heating and facilitating rapid heat transfer. Liquid-solid suspensions, viscous aqueous and organic solutions and food products, such as margarine and orange juice concentrates are often heated or cooled in such type of exchanger. It is also widely used in paraffin wax plants. 		the surface of the body be black in colour. The black body radiates maximum	
nearest to a black body. It absorbs 96% of visible light. 2 2-d Scrapped surface heat exchanger is basically a double pipe heat exchanger with fairly large central tube, 100 to 300 mm in diameter, jacketed with steam or cooling liquid. The scrapping mechanism-rotating shaft provided with one or more longitudinal scrapping blades is incorporated in the inner pipe to scrape the inside surface. The process fluid (viscous liquid) flows at low velocity through inside pipe and cooling or heating medium flows through the annular space created between two concentric pipes. The rotating scrapper continuously scraps the surface thus preventing localized heating and facilitating rapid heat transfer. Liquid-solid suspensions, viscous aqueous and organic solutions and food products, such as margarine and orange juice concentrates are often heated or cooled in such type of exchanger. It is also widely used in paraffin wax plants. Image: Cooling or cooled in such type of exchanger. It is also widely used in paraffin wax plants. Image: Cooling or cooled in such type of exchanger. It is also widely used in paraffin wax plants. Image: Cooling or cooled in such type of exchanger. It is also widely used in paraffin wax plants.		possible amount of energy at a given temperature and though perfectly black	
2-d Scrapped surface heat exchanger is basically a double pipe heat exchanger with fairly large central tube, 100 to 300 mm in diameter, jacketed with steam or cooling liquid. The scrapping mechanism-rotating shaft provided with one or more longitudinal scrapping blades is incorporated in the inner pipe to scrape the inside surface. The process fluid (viscous liquid) flows at low velocity through inside pipe and cooling or heating medium flows through the annular space created between two concentric pipes. The rotating scrapper continuously scraps the surface thus preventing localized heating and facilitating rapid heat transfer. Liquid-solid suspensions, viscous aqueous and organic solutions and food products, such as margarine and orange juice concentrates are often heated or cooled in such type of exchanger. It is also widely used in paraffin wax plants.		bodies do not exist in nature, some materials approach it. E.g. lamp black is the	
 with fairly large central tube, 100 to 300 mm in diameter, jacketed with steam or cooling liquid. The scrapping mechanism-rotating shaft provided with one or more longitudinal scrapping blades is incorporated in the inner pipe to scrape the inside surface. The process fluid (viscous liquid) flows at low velocity through inside pipe and cooling or heating medium flows through the annular space created between two concentric pipes. The rotating scrapper continuously scraps the surface thus preventing localized heating and facilitating rapid heat transfer. Liquid-solid suspensions, viscous aqueous and organic solutions and food products, such as margarine and orange juice concentrates are often heated or cooled in such type of exchanger. It is also widely used in paraffin wax plants. 		nearest to a black body. It absorbs 96% of visible light.	
or cooling liquid. The scrapping mechanism-rotating shaft provided with one or more longitudinal scrapping blades is incorporated in the inner pipe to scrape the inside surface. The process fluid (viscous liquid) flows at low velocity through inside pipe and cooling or heating medium flows through the annular space created between two concentric pipes. The rotating scrapper continuously scraps the surface thus preventing localized heating and facilitating rapid heat transfer. Liquid-solid suspensions, viscous aqueous and organic solutions and food products, such as margarine and orange juice concentrates are often heated or cooled in such type of exchanger. It is also widely used in paraffin wax plants.	2-d	Scrapped surface heat exchanger is basically a double pipe heat exchanger	2
more longitudinal scrapping blades is incorporated in the inner pipe to scrape the inside surface. The process fluid (viscous liquid) flows at low velocity through inside pipe and cooling or heating medium flows through the annular space created between two concentric pipes. The rotating scrapper continuously scraps the surface thus preventing localized heating and facilitating rapid heat transfer. Liquid-solid suspensions, viscous aqueous and organic solutions and food products, such as margarine and orange juice concentrates are often heated or cooled in such type of exchanger. It is also widely used in paraffin wax plants.		with fairly large central tube, 100 to 300 mm in diameter, jacketed with steam	
 the inside surface. The process fluid (viscous liquid) flows at low velocity through inside pipe and cooling or heating medium flows through the annular space created between two concentric pipes. The rotating scrapper continuously scraps the surface thus preventing localized heating and facilitating rapid heat transfer. Liquid-solid suspensions, viscous aqueous and organic solutions and food products, such as margarine and orange juice concentrates are often heated or cooled in such type of exchanger. It is also widely used in paraffin wax plants. 		or cooling liquid. The scrapping mechanism-rotating shaft provided with one or	
through inside pipe and cooling or heating medium flows through the annular space created between two concentric pipes. The rotating scrapper continuously scraps the surface thus preventing localized heating and facilitating rapid heat transfer. Liquid-solid suspensions, viscous aqueous and organic solutions and food products, such as margarine and orange juice concentrates are often heated or cooled in such type of exchanger. It is also widely used in paraffin wax plants.		more longitudinal scrapping blades is incorporated in the inner pipe to scrape	
 space created between two concentric pipes. The rotating scrapper continuously scraps the surface thus preventing localized heating and facilitating rapid heat transfer. Liquid-solid suspensions, viscous aqueous and organic solutions and food products, such as margarine and orange juice concentrates are often heated or cooled in such type of exchanger. It is also widely used in paraffin wax plants. 		the inside surface. The process fluid (viscous liquid) flows at low velocity	
scraps the surface thus preventing localized heating and facilitating rapid heat transfer. Liquid-solid suspensions, viscous aqueous and organic solutions and food products, such as margarine and orange juice concentrates are often heated or cooled in such type of exchanger. It is also widely used in paraffin wax plants. Layer of insulation Outside pipe Heating or Colling Process Scrapper		through inside pipe and cooling or heating medium flows through the annular	
transfer. Liquid-solid suspensions, viscous aqueous and organic solutions and food products, such as margarine and orange juice concentrates are often heated or cooled in such type of exchanger. It is also widely used in paraffin wax plants.		space created between two concentric pipes. The rotating scrapper continuously	
Liquid-solid suspensions, viscous aqueous and organic solutions and food products, such as margarine and orange juice concentrates are often heated or cooled in such type of exchanger. It is also widely used in paraffin wax plants.		scraps the surface thus preventing localized heating and facilitating rapid heat	
products, such as margarine and orange juice concentrates are often heated or cooled in such type of exchanger. It is also widely used in paraffin wax plants.		transfer.	
cooled in such type of exchanger. It is also widely used in paraffin wax plants.		Liquid-solid suspensions, viscous aqueous and organic solutions and food	
Layer of insulation Outside pipe Inner pipe Heating or Colling medium Process		products, such as margarine and orange juice concentrates are often heated or	
Outside pipe Inner pipe or Colling medium Process		cooled in such type of exchanger. It is also widely used in paraffin wax plants.	
		Outside pipe Inner pipe or Colling	
			2



	Subject code: 17560 P	age 9 of 27
2-е	Graphite block heat exchanger:	
	Graphite heat exchangers are well suited for handling corrosive fluids.	2
	Graphite is inert towards most corrosive fluids and has very high thermal	
	conductivity. Graphite being soft, these exchangers are made in cubic or	
	cylindrical blocks. In cubic exchangers, parallel holes are drilled in a solid cube	
	such that parallel holes of a particular row are at right angles to the holes of the	
	row above & below. Headers bolted to the opposite sides of the vertical faces of	
	the cube provide the flow of process fluid through the block. The headers	
	located on the remaining vertical faces direct the service fluid through the	
	exchanger in a cross flow.	
		2
3	Any two	16
3-a	Inside Diameter = $Di = 26 \text{ mm} = 0.026 \text{ m}$	
	Outside Diameter = $Do = 35 \text{ mm} = 0.035 \text{ m}$	
	Xw = 35 - 26/2 = 4.5 mm = 0.0045 m	1
	$Dw = \log$ mean diameter	
	$= \frac{Do-Di}{ln\left(\frac{Do}{Di}\right)}$	
	$=\frac{0.035-0.026}{\ln(\frac{0.035}{0.026})}$	
		1

	Subject code: 17560	Page 10 of 27
	= 0.0303 m	
	K for steel = 50 w/(m.k)	
	Overall heat transfer coefficient based on the outside area of inner pipe (Uo) is	
	given by :	
	$\frac{1}{U} = \frac{1}{ho} + \frac{1}{hi} \cdot \frac{Do}{Di} + \frac{xw.Do}{k.Dw} + Rdo + Rdi(\frac{Do}{Di})$	1
	Above eqn. is inclusive of dirt factors.	
	$\frac{1}{Uo} = \frac{1}{500} + \frac{0.035}{0.026} \cdot \frac{1}{250} + \frac{0.0045}{50} \cdot \frac{0.035}{0.0303} \cdot + 1.7 \times 10^{-3} + 0.86$	1
	$\times 10^{-3} (\frac{0.035}{0.026})$	1
	Uo (inclusive of dirt factors) = 96.65 w/(m^2 . k)	1
	Uo excluding dirt factors :	
	$\frac{1}{Uo} = \frac{1}{ho} + \frac{1}{hi} \cdot \frac{Do}{Di} + \frac{xw.Do}{k.Dw}$	1
	$\frac{1}{Uo} = \frac{1}{500} + \frac{1}{250} \cdot \frac{0.035}{0.026} + \frac{0.0045}{50} \left(\frac{0.035}{0.0303}\right)$	1
	Uo = 133.56 W/(m^2 . k)	
	Uo (exclusive of dirt factors) = $133.56 \text{ W/}m^2$. k	1
3-b	Consider a hot fluid flowing through a circular pipe & a cold fluid flowing on	2
	the outside of the pipe.	
	Heat is flowing from the bulk of hot fluid to the bulk of cold fluid through a	
	metal wall of pipe.	
	(i) When heat is flowing from bulk of hot fluid to the metal wall, although heat	





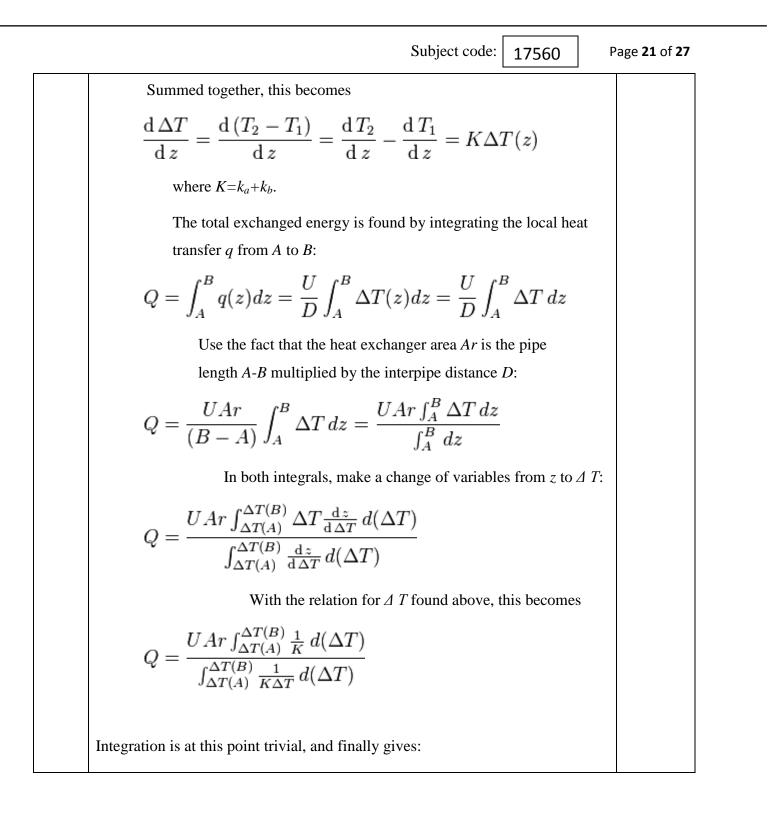
Subject code: 17560	Page 12 of 2
Ta - Tb - Tc is temperature drop from bulk of hot fluid to metal wall on hot	
side.	
T1 = is Avarage temperature on hot side	
Z1 Z2 represents thin film on cold side in which liquid is flowing in Laminar	
flow.	
Td –Te – Tf is temperature drop from metal wall to the bulk of cold fluid.	
T2 is average temperature on cold side.	
The rate of heat tranfer on hot side liquid is given by	
Q = Ki Ai (Ta - Tc)/X1(i)	
The effective thickness x1 depends on nature of flow , nature of surface and is	
generally not known. Therefore an indirect method of calculating heat transfer	
rate is by use of inside heat transfer coefficient represented by hi.	
Rate equation is usually written as	
Q = hi Ai (Ta - Tc)(ii)	
Comparing equation (i) & (ii),	
hi = K1/x1	
	1
Resistance for heat tranfer is given as	
$R = X/K_A = 1/K/x(A) = 1/hiAi$	
Resistance offered by film on hot side= 1/hiAo	
= Resistance of metal wall = L/KmAm	
= Resistance of thin film on cold fluid =1/hoAo	
So effectively heat transfer is across this there is $Q_1 + Q_2 + Q_3$ films.	1
At Steady State,	

	Subject code: 17560 P	age 15 of 27
4 A	Any three	12
4A-(i)	Solution:	
	Thermal conductivity = 0.6 W/(m.K)	
	Temperature of inside wall = 289 k	2
	Temperature of outside wall = 279 k	
	L = 0.3 m	
	Area = $7 \times 6 = 42$ m	
	$\mathbf{Q} = \frac{kA\Delta T}{L}$	1
	$=\frac{0.6\times42\times10}{0.3}$	
	0.3	
	= 840 w	1
4A-	The economy of an evaporator is defined as the number of kilogram of water	
(ii)	evaporated per kilogram of stem fed to the evaporator.	1
	Most of the evaporators use low pressure steam for heating purpose .Due to	
	addition of heat of solution in evaporator by condensation of steam, the solution	1
	in the evaporator will boil. If vapours leaving the evaporator are fed to some	1
	form of condenser then heat associated with vapour will be lost and system is	
	said to make poor use of steam. The vapour coming out evaporator can be used	
	as heating media for another evaporator which will be operating at lower	
	pressure than the pressure in the evaporator from which vapours are issuing so	
	as to provide sufficient temperature gradient for heat transfer in that evaporator.	
	When single evaporator is put into service and vapours leaving the evaporator	
	are condensed and discarded the method is known as single effect evaporation	
	Methods of increasing the economy of an evaporator:	1

	Subject code: 17560 Pa	age 16 of 27
	1. Using multiple effect evaporator	
	2. Vapour recompression	
	A. Multiple effect evaporation: In this system, evaporators are arranged	
	in series so that the vapour produced in first effect is fed to the steam	
	chest of second effect as heating medium in which boiling takes place at	
	low pressure and temperature and so on.	
	B. Methods of increasing economy by vapour recompression methods	
	are:	1
	1. Mechanical recompression	
	2. Thermal recompression	
4A-	Solution:	
(iii)	$Q = \frac{\sigma A 1 (T 1^4 - T 2^4)}{\frac{1}{e_1} + \frac{A 1}{A 2} (\frac{1}{e_2} - 1)}$	
	$\sigma = 5.67 \times 10^{-8} \text{ W/}m^2 \cdot k^4$	1
	$e_1 = 0.79$, $e_2 = 0.93$	
	$T_1 = 500 \text{ k}$	
	$T_2 = 300k$	
	$A_1 = \pi \times \frac{70}{1000} \times 3$	1
	= 0.659 m2	
	$A_2 = 4(0.3 \times 3)$	
	= 3.6 m2	
		1

	Subject code: 17560 P	age 17 of 27
	$Q = \frac{5.67 \times 10^{-8} \times 0.659 \times (500^4 - 300^4)}{\frac{1}{0.79} + \frac{0.659}{3.6} (\frac{1}{0.93} - 1)}$	1
	= 1588.5 W	
4A-	Baffles: Baffles are commonly used on shell side to increase rate of heat	4
(iv)	transfer by increasing the turbulence of shell side liquid. They also support the	
	tubes against vibration. The baffles cause the fluid to flow through the shell at	
	right angles to the axis of tube. Clearance between baffles & shell should be	
	minimum to avoid by passing of fluid. Common types of baffles are segmental	
	baffle. Segmental baffle is drilled circular disc of sheet metal with one side cut	
	away when the height of baffle is 75% of inside dia of the shell it is called as	
	25% cut segmental baffle.	
	Shell 000000 0000000 000000 0000000 000000 0000000 000000 0000000 000000 0000000 000000 0000000 000000 0000000 000000 0000000 000000 0000000 000000 0000000 000000 0000000 000000 0000000 000000 0000000 000000	
4 B	Any one	6
4B-(i)	Vapour Recompression:	2
	Thermal energy in the vapour evolved from a boiling solution can be utilised to	
	vaporize more water if at all there is a temperature drop for heat transfer in	
	desired direction.	
	The compressed vapour having higher condensing temperature is then fed to the	
	steam chest of the evaporator from which it came.so economy of evaporator is	
	also increased by recompressing the vapour from evaporator and condensing it	

	Subject code: 17560 P	age 18 of 27
	in the steam chest of the same evaporator.	
	In this method, the vapour from the evaporator are compressed to a saturation	2
	pressure of steam to upgrade the vapours to the condition of original steam to	
	permit their use as heating media. The cost of supplying the required amount of	
	compression usually smaller than the value of latent heat in vapour. By this we	
	can obtain multiple effect economy in single effect.	
	Methods of increasing economy by vapour recompression methods are:	
	1. Mechanical recompression	2
	2. Thermal recompression	
	Vapor-recompression evaporation is the evaporation method by which	
	a <u>blower</u> , <u>compressor</u> or jet ejector is used to <u>compress</u> , and thus, increase	
	the pressure of the vapor produced. Since the pressure increase of the vapor	
	also generates an increase in the <u>condensation</u> temperature, the same vapor	
	can serve as the heating medium for its "mother" liquid or solution being	
	concentrated, from which the vapor was generated to begin with. If no	
	compression was provided, the vapor would be at the same temperature as	
	the boiling liquid/solution, and no heat transfer could take place.	
	If compression is performed by a mechanically driven compressor or blower,	
	this evaporation process is usually referred to as MVR (Mechanical Vapor	
	Recompression). In case of compression performed by high pressure	
	motive steam ejectors, the process is usually	
	called Thermocompression or Steam Compression.	
4B-	Expression for heat flow :	
(ii)	$k=k_0(1+\dot{\alpha}T)$	
	Q = -kAdT/dr	1

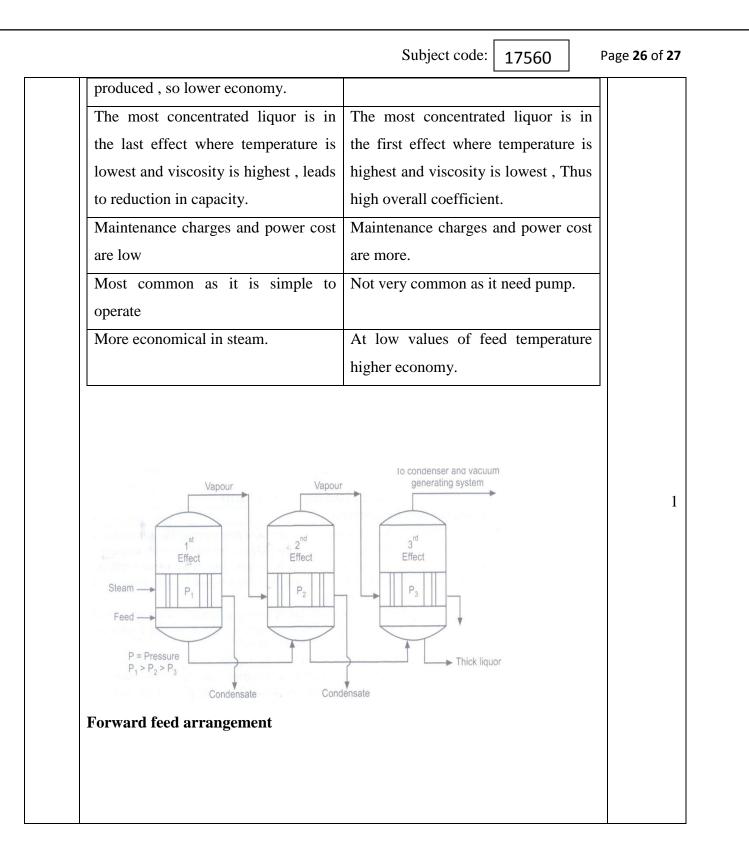


	Subject code: 17560 P	age 19 of 27
	Area =A	
	Putting the values of A and K in Fourier's law we get	
	$Q = -kA\frac{dT}{dx}$	1
	= $-k_0(1+\alpha T) A \frac{dT}{d\alpha}$	
	$Q dx = -A [(k_0 + k_0 \propto T) dT]$	1
	Integrating	
	$Q \propto = -A \left[k_0 T + \frac{k_0}{2} \propto T^2 \right]$	1
	$= -A \left[k_{0} \left(T_{2} - T_{1} \right) + \frac{\alpha k_{0}}{2} \left(T_{2}^{2} - T_{1}^{2} \right) \right]$	
	$\doteq A \left[k_{\sigma} (T_1 - T_2) + \frac{\alpha k_{\sigma}}{2} (T_1 - T_2) (T_1 + T_2) \right]$	1
	= $AK_{0}(T_{1}-T_{2})\left[1+\frac{x}{2}(T_{1}+T_{2})\right]$	1
5	Any two	16
5-a	The logarithmic mean temperature difference (also known as log mean	3
	temperature difference or simply by its <u>initialism</u> LMTD) is used to determine	
	the temperature driving force for <u>heat transfer</u> in flow systems, most notably	
	in <u>heat exchangers</u> . The LMTD is a <u>logarithmic average</u> of the temperature	
	difference between the hot and cold feeds at each end of the double pipe	
	exchanger. The larger the LMTD, the more heat is transferred. The use of the	
	LMTD arises straightforwardly from the analysis of a heat exchanger with	
	constant flow rate and fluid thermal properties.	

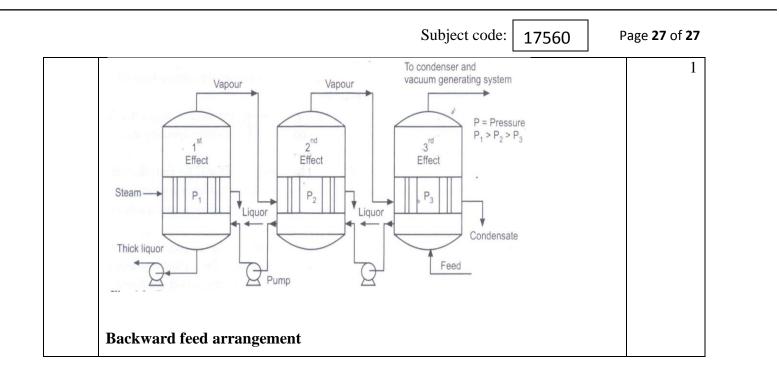
	Subject code:	17560	Page 2	20 of 27
Understanding	the concept of log mean temperature differen	ce or LMT	D is	
very important	for heat exchanger design especially for the	heat exchai	ngers	
with no phase of	hange.			
The LMTD is t	he driven force for the heat exchange between th	ne two fluid	s. As	
the LMTD valu	e increases, the amounts of heat transfer betwee	en the two f	luids	
also increase. T	The LMTD value is used for calculating the heat	duty of the	heat	
exchanger. The	formula is:			
$\mathbf{Q} = \mathbf{U} * \mathbf{A} * \mathbf{L}$	MTD			
Where,				
Q – Heat duty of	of the heat exchanger (in <i>watts</i>)			
U – Heat transf	er co-efficient (in watts/Kelvin/Meter square)			
A – Heat transf	er area (in meter square)			
Assume heat tr	ansfer is occurring in a heat exchanger along an a	axis <i>z</i> , from		5
generic coordin	ate A to B , between two fluids, identified as I and	d 2, whose		
temperatures al	ong z are $T_1(z)$ and $T_2(z)$.			
The local excha	anged heat flux at z is proportional to the temperature	ature differe	ence:	
q(z) =	$= U(T_2(z) - T_1(z))/D = U(\Delta T(z))/$	<i>D</i> ,		
where D is	the distance between the two fluids.			
The heat th	at leaves the fluids causes a temperature gradient	t according		
to Fourier's	law:			
$\frac{\mathrm{d} T_1}{\mathrm{d} z} =$	$= k_a(T_1(z) - T_2(z)) = -k_a \Delta T(z)$			
$\frac{\mathrm{d} T_2}{\mathrm{d} z} =$	$= k_b(T_2(z) - T_1(z)) = k_b \Delta T(z)$			

	Subject code: 17560	Page 22 of 27
	$Q = U \times Ar \times \frac{\Delta T(B) - \Delta T(A)}{\ln[\Delta T(B) / \Delta T(A)]},$	
	from which the definition of LMTD follows.	
5-b	Basis: 10500 kg/hr feed is fed to the evaporator.	1
	Material balance of solids:	
	Solids in feed= solids in the thick liquor	1
	0.04x10500=0.24 x m'	
	m'=1750kg/h.	1
	overall Material balance:	
	kg/h feed= kg/h water evaporated + kg/h thick liquor	1
	water evaporated= mv=10500-1750=8750kg/h	1
	Capacity of evaporator = 8750 kg/hr	1
	steam fed= 9500 kg/h	
	steam economy= kg/h water evaporated/kg/h steam consumed	1
	= 8750/9500= 0.921	1
5-c	$N_{Re} = Du\rho/\mu$	1
	D =16 mm = 0.016 m, u =3m/s	
	$\mu = 485 \times 10^{-6} \text{ Pa.s}$	
	$\rho = 984.1 \text{kg/m}^3$	
	$N_{Re} = 0.016 x 3 x 984.1/485 x 10^{-6} = 97395$	1
	$N_{Pr} = Cp \ \mu/k = 4187 \ x485x \ 10^{-6}/0.657 = 3.09$	1
	The equation to find out heat transfer coefficient for turbulent flow(Dittus-	
	Bolter equation)	

		Subj	ect code:	17560	Page 23 of 2 7
	hD/k = 0.023[(D)	$Dup/\mu)^{0.8}(Cp \mu/k)^{a}$			1
	where $a = 0.3$ fo	where $a = 0.3$ for cooling.			
	$h=0.023 (N_{Re})^{0.8}$	h=0.023 $(N_{Re})^{0.8} x (N_{Pr})^{0.3} x k/D$			
	h=0.023(97395)	$h=0.023(97395)^{0.8}(3.09)^{0.3}x(0.657/0.016) = 12972.6 W/m^2.k$			1
	The Sider-Tate e	The Sider-Tate eqn for turbulent flow is			
	NNu = hD/k = 0.	$023(Du\rho/\mu)^{0.8}(Cp\ \mu/k)^{1/3}(\mu/\mu_w)^{0.14}$			1
	h=0.023 (97395)	$^{0.8}$ (3.09) $^{1/3}$ (485x10 ⁻⁶ /920x10 ⁻⁶) $^{0.14}$ x	(0.657/0.0)16)	1
	h=12267.7 W/m	² .k			1
6	Any two				16
6-a	Dropwise and filmwise condensation:				1.5 mark
	Points	Dropwise condensation	Filmwis	e	each
			condens	ation	
	mechanism	In case of drop-wise condensation	In case of	of film-wise	
		the condensate (condensed liquid)	condens	ation the	
		does not wet the surface and	condense	ed liquid wet	S
		collects to grow for a while and	the surfa	ce and forms	sa
		then fall from the surface, leaving	continuc	ous film of	
		bare metal surface for further	condens	ate through	
		condensation.	which he	eat transfer	
			takes pla	ice. This	
			condens	ate flows dov	vn
			condense		
				ction of gravi	
	Heat transfer	Heat transfer coefficient are very		ction of gravi	
	Heat transfer coefficient	Heat transfer coefficient are very high in case of drop-wise	due to ac	ction of gravi	



		Subj	ect code: 17560	Page 24 of 27	
		not have to flow through film by	case of film-wise		
		conduction	condensation since the		
			heat does have to flow		
			through film by		
			conduction		
	Surface type	Oily or greasy surfaces seem to	Smooth, clean surfaces		
		tend towards drop-wise	seem to tend towards		
		condensation	film-wise condensation		
	Stability	Drop-wise condensation is very	Film-wise		
		difficult to achieve and unstable	condensation is easily		
			obtainable and stable		
	equations	If the students write equations for	If the students write		
		film coefficients on vertical and	equations for film		
		horizontal surfaces marks should	coefficients on vertical		
		be given	and horizontal surfaces		
			marks should be given		
6-b	Laminar flow:	The equation to find out heat transfer	coefficient for laminar		
	flow(Sider-Tate	flow(Sider-Tate equation)			
	$N_{Nu} = 1.86[(N_{Re})(N_{Pr})(D/L)]^{1/3}[\mu/\mu_w]^{0.14}$			2	
	Or,				
	$hD/k = 1.86[(Du\rho/\mu)(Cp \mu/k)(D/L)]^{1/3} (\mu/\mu_w)^{0.14}$				
	where h= film heat transfer coefficient			2	
	D= diameter of pipe line				
	μ = viscosity of t	μ = viscosity of the liquid			
	μ w= viscosity of	μ w= viscosity of the liquid at the wall surface temp			
	Cp= specific hea	Cp= specific heat of the liquid			



		Subject code:	17560	Рад	e 25 of 27
	L= length of pipe.				
	k= thermal conductivity				
	u= velocity of flow				
	Turbulent flow:				
	The equation to find out heat transfer coefficient for turbulent flow (Dittus-				2
	Bolter equation)				
	$hD/k = 0.023[(Du\rho/\mu)^{0.8}(Cp \mu/k)^{a}$				
	where $a = 0.4$ for heating				
	a=0.3 for cooling.				
	where $h = film$ heat transfer coefficient				2
	D= diameter of pipe line μ= viscosity of the liquid				
	μ w= viscosity of the liquid at the wall su	urface temp			
	Cp= specific heat of the liquid				
	L= length of pipe.				
	k= thermal conductivity u= velocity of flow				
6-c	Forward feed and backward feed arrangements:				1 mark
	Forward feed	Backward fee	d		each for
	Flow of solution to be concentrated is	Flow of solution to be	concentrate	ed is	any six
	parallel to steam flow.	in opposite direction to	steam flow	v.	points
	Does not need pump for moving the	Need pump for movin	ng the solut	tion	
	solution from effect to effect.	from effect to effect.			
	As all heating of cold feed solution is	Solution is heated in	each effe	ct,	
				11	

