

Subject code :(17560)

Page **1** of **24**

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.

2) The model answer and the answer written by candidate may vary but the examiner may try

to assess the understanding level of the candidate.

3) The language errors such as grammatical, spelling errors should not be given more

Importance (Not applicable for subject English and Communication Skills.

4) While assessing figures, examiner may give credit for principal components indicated in the

figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.

5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.

6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.

7) For programming language papers, credit may be given to any other program based on equivalent concept.

Subject code :(17560)

Page 2 of 24

Q No.	Answer	marks	Total marks
1 A	Any three		12
1A-a	Modes of heat transfer are:	1	4
	1. Conduction		
	2. Convection		
	3. Radiation		
	1) Conduction : If a temperature gradient exist in a continuous substance,	1	
	heat can flow unaccompanied by any observable motion of mater. Heat		
	flow of this kind is called conduction.		
	2) Convection : When a macroscopic particle of fluid crosses a specific	1	
	surface, it carries with it a definite quantity of enthalpy. Such a flow of		
	enthalpy is called convection.		
	3) Radiation : Radiation is transfer of energy through space by	1	
	electromagnetic waves.		
1A-b	Absorptivity (α):	1	4
	It is defined as the fraction of radiation falling on a body which is getting		
	absorbed.		
	Reflectivity (ρ) :		
	It is defined as the fraction of radiation falling on a body which is getting	1	
	reflected.		
	Transmissivity (τ):		
	It is defined as the fraction of radiation falling on a body which is getting	1	
	transmitted.		
	The relation between the three are :		
	$(\alpha) + (\rho) + (\tau) = 1$		

Page **3** of **24**

WINTER-15 EXAMINATION Model Answer

	Reflected incident	1	
	absorbed		
	transmitted		
1A-c	Types of convection:		4
	1. Natural convection : If the currents are the result of buoyancy forces	1	
	generated by differences in density and the differences in density are in		
	turn caused by temperature gradient the action is called natural		
	convection.		
	Example : heating of water by hot surface	1	
	2. Forced convection : If the currents are set in motion by the action of a	1	
	mechanical device such as a pump or agitator, the flow is called forced		
	convection.		
	Example: heat flow to a fluid pumped through a heated pipe	1	
1A-d	Heat Exchanger: It is an equipment that allows exchange of heat between hot	1	4
	and cold process streams.		
	Heat transfer equipments:		
	1. Cooler: To cool process fluid by means of water or atmospheric air.	1 mark	
	2. Condenser: To condense a vapour or mixture of vapours.	each for	
	3. Chiller: To cool a process fluid to a temperature below that can be	any 3	
	obtained by using water as a cooling media		

ect cod	e :(17560)	Pag∈	e 4 of 24
	4. Heater: Which imparts sensible heat to process fluid.		
	5. Vaporiser: Which vaporizes part of liquid.		
	6. Reboiler: Employed to meet latent heat requirement at the bottom of		
	distillation column.		
	7. Evaporator: To concentrate a solution by evaporating water.		
1.B	Any one		(
1B-a	Heat loss through a composite wall:		
		2	
	Consider a flat wall constructed of a series of layers of thickness x1, x2, x3		
	respectively. Let the thermal conductivities of layers be K_1 , K_2 , K_3 . Let $\Delta T1$,		
	$\Delta T2$, $\Delta T3$ be the temperature drop across the layers. Let ΔT be the total		
	temperature drop across the entire wall.		
	$\Delta T = \Delta T_A + \Delta T_B + \Delta T_C$		
	$\Delta T_{A} = q_{1} * B_{A} / K_{1} * A \Delta T_{B} = q_{2} * B_{B} / K_{2} * A \Delta T_{C} = q_{3} * B_{C} / K_{3} * A$	2	
	Where A is the area of the wall at right angle to the plane		
	Then $\Delta T = q_1 * B_A / K_1 * A + q_2 * B_B / K_2 * A + q_3 * B_C / K_3 * A$		

Subject	code :(17560)	
---------	---------------	--

Page 5 of 24

			1
	In steady state conduction, all the heat passes through the first resistance should		
	pass through second and third. So $q_1 = q_2 = q_3$		
	$\Delta T = q[B_{A}/K_{1}*A + B_{B}/K_{2}*A + B_{C}/K_{3}*A]$		
	$= q[R_1 + R_2 + R_3]$		
	$OR q = \Delta T / [R_1 + R_2 + R_3]$		
	But $q = \Delta T/R$		
	Therefore : $R = R_1 + R_2 + R_3$	2	
	In heat flow through a series of layers the overall resistance is equal to the sum		
	of individual resistances.		
1B-b	Short tube evaporator:	2	6
	Feed Vapour Steam in Down take Condensate Condensate Thick liquor		
	Construction: It consists of vertical cylindrical shell incorporating short	2	
	vertical tube bundle with norizontal tube sheet. Vapour inlet is provided at top	2	
	cover while thick liquor discharge is provided at bottom. Downtake is provided		
	at centre of tube bundle for circulating cooler liquid back to the bottom of the		
	tubes. Solution to be evaporated is inside the tubes and steam flows outside the		
	tubes in the steam chest. Baffles are incorporated in steam chest to promote		
	uniform distribution of steam. The condensate is withdrawn at a point near		
	lower tube sheet, while non condensable gas is vented to atmosphere from point		

ect coo	de :(17560)		Page 6 of 24
	near top tube sheet.		
	Working: Thin liquor is introduced to the tube side and steam into steam chest		
	. The liquor covers top of tubes. Heat transfer to boiling liquid inside the tubes		
	take place from condensing steam on outside of tubes. Vapours formed will rise	2	
	through the tubes, come to the liquid surface from which they are disengaged		
	into the vapour space and removed from the vapour outlet. Thick liquor is		
	removed from the bottom of the evaporator.		
2	Any four		16
2-a	Fourier's law of conduction:	2	4
	It states that the rate of heat flow across an isothermal surface is proportional to		
	the temperature gradient at the surface.		
	$\frac{dQ}{dA} = -k\frac{\tilde{0}T}{\tilde{0}n}$		
	Q- rate of heat transfer		
	A- Area perpendicular to heat flow		
	k- Thermal conductivity		
	T- Temperature		
	Thermal conductivity : It is a physical property of substance through which		
	heat flows. It is defined as amount of heat flows per unit time through unit area	2	
	when temperature difference is unity.		
2-b	r1=20 mm = 0.02 m		4
	r2=70 mm = 0.07 m		
	T1-T2 = 570-300 = 270 K	2	
	K= 17.5 W/(mK)		
	Heat transferred Q= $4\Pi k r r r 2(T1-T2)/(r2-r1)$	1	
	$\Box = 4\Pi^{*17.5^{*}0.02^{*}0.07(270)/(0.07-0.02)}$		

	= 1661.69 W	1	
2-c	1-2 shell and tube heat exchanger:	4	4
2-d	Graphite block heat exchanger:	3	4
	Graphite heat exchangers are well suited for handling corrosive fluids.		
	Graphite is inert towards most corrosive fluids and has very high thermal		
	conductivity. Graphite being soft, these exchangers are made in cubic or		
	cylindrical blocks. In cubic exchangers, parallel holes are drilled in a solid cube		
	such that parallel holes of a particular row are at right angles to the holes of the		
	row above & below. Headers bolted to the opposite sides of the vertical faces of		
	the cube provide the flow of process fluid through the block. The headers		
	located on the remaining vertical faces direct the service fluid through the		
	exchanger in a cross flow.		

ect co	de :(17560)	Page 8	of 24
	Applications of graphite block h.e.		
	i) It is used for very explosive liquid.	1	
	ii) ii) It can be used for Corrosive Fluid.		
2-е	Kirchhoff's Law :		
	Consider that the two bodies are kept into a furnace held at constant		
	temperature of T K. Assume that, of the two bodies one is a black body& the		
	other is a non-black body i.e. the body having 'a' value less than one. Both the		
	bodies will eventually attain the temperature of T K & the bodies neither	2	
	become hotter nor cooler than the furnace. At this condition of thermal		
	equilibrium, each body absorbs and emits thermal radiation at the same rate.		
	The rate of absorption & emission for the black body will be different from that		
	of he non-black body.		
	Let the area of non-black body be A_1 and A_2 respectively. Let 'I' be the rate at		
	which radiation falling on bodies per unit area and E_1 and E_2 be the emissive		
	powers (emissive power is the total quantity of radiant energy emitted by a		
	body per unit area per unit time) of non-black & black body respectively.		
	At thermal equilibrium, absorption and emission rates are equal, thus,		
	$ a_1 A_1 = A_1 E_1$ (1.1)		
	$\therefore a_1 = E_1$ (1.2)		
	And $la_{b} A_{2} = A_{2} E_{b}$ (1.3)		
	$ \mathbf{a}_{\mathbf{b}} = \mathbf{E}_{\mathbf{b}} \qquad \dots \dots$		
	From equation (1.1) and (1.4).we get		
	$\frac{E1}{a1} = \frac{Eb}{ab} \qquad \dots $		
	Where $a_{1,}a_{b}$ = absorptivity of non-black & black bodies respectively.		

bject co	de :(17560)	Pag	ge 9 of 24
	If we introduce a second body (non-black) then for the second non-black		
	body,we have :		
	$A_3 a_2 = E_2 A_3$ (1.6)		
	$\therefore \mathbf{a}_2 = \mathbf{E}_2 \qquad \dots $		
	Where $a_1 = E_2$ are the absorptivity and emissive power of the second non-black	2	
	body.		
	Combining equations (1.2) , (1.4) and (1.7) we get,		
	$\frac{E_1}{a_1} = \frac{E_2}{a_2} = \frac{E_3}{a_3} = E_b \qquad \dots $		
3	Any two		16
3-a	Relationship between overall and individual heat transfer coefficients:		8
	Consider a hot fluid flowing through a circular pipe & a cold fluid flowing on		
	the outside of the pipe.		
	Heat is flowing from the hot fluid to the bulk of cold fluid through a	2	
	Series of resistances.		
	(i) When heat is flowing from bulk of hot fluid to the metal wall, although heat		
	transfer in bulk fluid takes by convection current ,there is a very small layer of		
	fluid near the pipe in which heat transfer takes place by conduction. This is		
	because flow in this layer is laminar & there is no mixing of molecules. This		
	layer is known as viscous sublayer. This thin film of fluid flowing in Laminar		
	flow is of great importance in determining the rate of heat transfer. The		
	Thermal conductivity of fluid is very low so that resistance offered by this film		
	is very large through the film is thin.		
	(ii) When heat across metal wall resistance is comparatively low.		

a code :(17560)	Page 10 of 24
(iii) When heat transfer takes place from metal to the bulk of fluid there exists	
a thin film of cold fluid which has a high resistance.	
(iv) Heat then flows from this thin film to bulk of cold fluid by convection. The	
process of heat transfer from bulk of hot fluid to bulk of cold fluid is	
represented by fig.	
Y1, y2 represents thin film on hot side in which liquid is flowing in Laminar flow. Ta – Tb – Tc is temperature drop from bulk of hot fluid to metal wall on hot side. T1 = is Avarage temperature on hot side	2
$Z_1 Z_2$ represents thin film on cold side in which liquid is flowing in Laminar	
flow.	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Subject code :(17560)	Page 11 of 24
T2 is average temperature on cold side.	
The rate of heat transfer on hot side liquid is given by	
$Q = k_i A_i (Ta - Tc)/x_1 \dots (i)$	
The effective thickness x_1 depends on nature of flow , nature of surface and is	1
generally not known. Therefore an indirect method of calculating heat transfer	
rate is by use of inside heat transfer coefficient represented by hi.	
Rate equation is usually written as	
Q =hi Ai (Ta – Tc)(ii)	
Comparing equation (i) & (ii),	
$hi = k_1/x_1$	
Resistance for heat tranfer is given as	
$\mathbf{R} = \mathbf{x}/\mathbf{k}_{\mathbf{A}} = 1/\mathbf{K}/\mathbf{x}(\mathbf{A}) = 1/\mathbf{h}\mathbf{i}\mathbf{A}\mathbf{i}$	
Resistance offered by film on hot side= 1/hiAo	1
= Resistance of metal wall = $L/KmAm$	
= Resistance of thin film on cold fluid =1/hoAo	
So effectively heat transfer is across this there is $Q1 + Q2 + Q3$ films.	
At Steady State,	
Q1 = Q2 = Q3 = Q=Constant	
$\dots Q = \Delta t/R1 + R2 + R3$	
$Q = T1 - T2/[(1/hiAi) + (Lm/R Am) + (1/hoAo)] \dots(i)$	
	1
We multiply N & D by Ai=area of heat transfer on hot side, we get	
Q = (T1-T2)Ai / [(1/hiAi)+(Lm/Km.Am + (1/ho.Ao)] Ai	

Subject code :(17560)

	=(T1-T2) Ai [(1/hi)+(Lm/Km.Ai/Am)+(1/ho.Ai/Ao)]		
	Since pipes are circular,		
	$A = 2 \pi r l$		
	= (T1-T2)Ai[(1/hi)+(Lm/Km. $2\pi ri L/2\pi rm L$)+(1/ho. $2\pi ri /2\pi ro$)]		
	= (T1-T2)Ai[(1/hi)+(Lm/Km. ri/ rm)+(1/ho ri/ ro)]	1	
	We assume a new parameter,		
	Ui = Overall heat transfer coefficient on inside liquid.		
	1/Ui =1/hi + Lm/Km.ri/rm +1/ho ri/ro(i)		
3-b	Heat load= λ m		8
	=7*286		
	=2002KW		
	=2002000Watt	2	
	The heat balance over the condenser yields		
	Heat removed from vapours = Heat gained by water		
	$Q = m_1 \lambda = m_2 C p_2 \ (t_2 - t_1)$	2	
	$t_2 = 318 \text{ K}$		
	$t_2 = 303 \text{ K}$	2	
	$Cp_2 = 4.187 \text{ KJ/(Kg.K)}$		
	$2002 = m_2 * 4.187 * (318 - 303)$		
	$m_2 = 31.879 \text{ kg/s}$	2	
	Mass flow rate of cooling water = 31.87 kg/s		

Page **12** of **24**

Page 13 of 24

WINTER-15 EXAMINATION <u>Model Answer</u>

Subject code :(17560)

Page 14 of 24

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

ect cod	e :(17560)		I	Page 15 of 24
	K= 0.300 W/mK			
	$r_{m} = (r_{2}-r_{1}) / \ln(r_{2}/r_{1}) = 0.0123$		1	
	Heat loss Q = $[2\pi r_m Lk(T1-T2)] / (r_2-r_1)$			
	= 1205.61 W		1	
4A-c	The heat loss by radiation per unit are	a is given by		4
	e = 0.90		1	
	$\sigma = 5.67 * 10^{-8} \text{ W/(m}^2.\text{K}^4)$			
	$T_1 = 415 \ K$			
	$T_2 = 290 K$			
	$Q_r/A = e^* \sigma^* (T_1^4 - T_2^4)$		1	
	$Q_r / A = 0.90*5.67*10^{-8} [(415)^4 - (200)$	290) ⁴]		
	$Q_r/A = 1152.69 \text{ W/m}^2$		2	
4A-d				4
	Evaporation	Drying	1 mark	
			each	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-15 EXAMINATION <u>Model Answer</u>

Subject code :(17560)

Page **16** of **24**

				The second se	
	1	It is an operation in which a	It is an operation in which the		
		weak solution/liquor is	moisture of a substance is		
		concentrated by vaporising a	removed by thermal means.		
		portion of the solvent			
	2	It is a heat transfer operation.	It is a mass and heat transfer		
			operation.		
	3	Evaporation involves the	Drying involves the removal of		
		removal of water as a vapour	water at a temperature below its		
		at its boiling point.	boiling point.		
	4	In evaporation operation, the	In drying operation, the product		
		product obtained is a liquid.	obtained is a solid.		
4 B	Any or	ie			6
4B-a	F	ourier's law for heat conduction	is		6
	$Q = -kA \frac{dT}{dx}$				
	$Q dx = -kA dT$ $K = k_0 (1 + aT)$ $Q \int dx = -k_0 A \int (1 + aT) dT$			1	
	The lin	nits of integration are		1	
	At, $x = 0$, $T = T_1$ At, $x = x$, $T = T_2$				
	$\int_{0}^{x} dx = -k_0 A \int_{T_0}^{T_2} (1 + aT) dT$		1		
	Q . x = k ₀ A $\int_{T_2}^{T_1} (1 + aT) dT$				
	Integra	ting, we get			

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-15 EXAMINATION **Model Answer**

Page **18** of **24**

	To condenser and		
	Vapour Vapour Vapour vacuum generating system		
	Image: state of the state		
~			10
5	Any two		16
5-a	Basis: 30000kg/h feed to the evaporator.	1	8
	Let mf,m', mv be the mass flow rate of feed, thick liquor and water vapour		
	respectively.		
	Material balance of solid:		
	Solids in the feed= solids in the thick liquor		
	0.10 x 30000=0.05m'	1	
	m' = 6000 kg/h.		
	overall material balance:		
	kg/h feed = kg/h water evaporated + kg/h thick liquor		
	water evaporated = $mv = 30000-6000 = 24000 \text{kg/h}$.	1	
	Feed at 293 k		
	ms =mass flow rate of steam in kg/h		
	mf = 30000 kg/h, mv = 24000 kg/h		
	Cpf = 3.98kj/kg.k		

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Subject code :(17560)		Page 19 of 24	
	Ts= saturation temperature of steam = 393 k		
	T = boiling point of solution $= 323K$		
	Λs = latent heat of condensation of steam at 0.20 MPa		
	= 2202kj/kg		
	Λ = latent of vaporisation of water at 323 K = 2383 kJ/kg		
	Enthalpy balance over evaporator		
	$Q = ms\Lambda s = mf Cpf (T-Tf) + mv \Lambda$	2	
	ms x 2202 = 30000 x 3.98 x (323-293) + 24000x 2383		
	ms = 27599.5 kg/h.	1	
	Steam consumption = 27599.5 kg/h	2	
	Steam economy = 24000/27599.5 = 0.87	\	
5-b	At steady state : Heat gained by cold water = Heat removed from hot water		8
	Q = mc Cpc (t2-t1) = mhCph (T1-T2)	1	
	mc = mass flow rate of cold water = 30 kg/s		
	mh = mass flow rate of hot water = 24 kg/s		
	Cpc = Cph = 4.187 kJ/kg k		
	t2 =313 K, t1=298 k ,T1 = 353 K, T2 =?		
	$Q=30 \text{ x} 4.187 \text{ x} (313-298) = 1884.15 \text{ kJ/s} = 1884.15 \text{ x} 10^3 \text{ J/s} = 1884.15 \text{ x} 10^3$	2	
	w		
	Q= heat gained by cold fluid = Heat lost by hot fluid		
	1884.15 = 24 X 4.187 (353 - T2)	2	
	T2 = 334.2 K		
	Δ T1=353-313 =40K, Δ T2= 334.2-298 = 36.2 k	1	
	Δ Tlm= (40-36.2)/ln(40/36.2) = 38.1 K		
	A= Q/ (U Δ Tlm) = 1884.15 X 10 ³ / (1220 x 38.1) =40.53 m ²	2	
	HEAT TRANSFER AREA REQUIRED = 40.53 m^2		

Subject code :(17560)

Page 20 of 24

5-c	The logarithmic mean temperature difference (also known as log mean	3	8
	temperature difference or simply by its <u>initialism</u> LMTD) is used to determine		
	the temperature driving force for <u>heat transfer</u> in flow systems, most notably		
	in <u>heat exchangers</u> . The LMTD is a <u>logarithmic average</u> of the temperature		
	difference between the hot and cold feeds at each end of the double pipe		
	exchanger. The larger the LMTD, the more heat is transferred. The use of the		
	LMTD arises straightforwardly from the analysis of a heat exchanger with		
	constant flow rate and fluid thermal properties.		
	Understanding the concept of log mean temperature difference or LMTD is		
	very important for heat exchanger design especially for the heat exchangers		
	with no phase change.		
	The LMTD is the driven force for the heat exchange between the two fluids. As		
	the LMTD value increases, the amounts of heat transfer between the two fluids		
	also increase. The LMTD value is used for calculating the <u>heat duty</u> of the heat		
	exchanger. The formula is:		
	$\mathbf{Q} = \mathbf{U} * \mathbf{A} * \mathbf{LMTD}$		
	Where,		
	Q – Heat duty of the heat exchanger (in <i>watts</i>)		
	U – Heat transfer co-efficient (in <i>watts/Kelvin/Meter square</i>)		
	A – Heat transfer area (in meter square)		
	Assume heat transfer is occurring in a heat exchanger along an axis z , from		
	generic coordinate A to B, between two fluids, identified as 1 and 2, whose	5	
	temperatures along z are $T_1(z)$ and $T_2(z)$.		
	The local exchanged heat flux at z is proportional to the temperature difference:		

Subject code :(17560)

Page **21** of **24**

$$q(z) = U(T_2(z) - T_1(z))/D = U(\Delta T(z))/D,$$
where *D* is the distance between the two fluids.
The heat that leaves the fluids causes a temperature gradient according
to Fourier's law:

$$\frac{dT_1}{dz} = k_a(T_1(z) - T_2(z)) = -k_a \Delta T(z)$$

$$\frac{dT_2}{dz} = k_b(T_2(z) - T_1(z)) = k_b \Delta T(z)$$
Summed together, this becomes

$$\frac{d\Delta T}{dz} = \frac{d(T_2 - T_1)}{dz} = \frac{dT_2}{dz} - \frac{dT_1}{dz} = K\Delta T(z)$$
where $K = k_a + k_b$.
The total exchanged energy is found by integrating the local heat
transfer *q* from *A* to *B*:

$$Q = \int_A^B q(z)dz = \frac{U}{D} \int_A^B \Delta T(z)dz = \frac{U}{D} \int_A^B \Delta T dz$$
Use the fact that the heat exchanger area *Ar* is the pipe
length *A*-*B* multiplied by the interpipe distance *D*:

$$Q = \frac{UAr}{(B - A)} \int_A^B \Delta T dz = \frac{UAr \int_A^B \Delta T dz}{\int_A^B dz}$$
In both integrals, make a change of variables from *z* to *A T*:

Subject code :(17560)

 $Q = \frac{UAr \int_{\Delta T(A)}^{\Delta T(B)} \Delta T \frac{dz}{d \Delta T} d(\Delta T)}{\int_{\Delta T(A)}^{\Delta T(B)} \frac{dz}{d \Delta T} d(\Delta T)}$ With the relation for ΔT found above, this becomes $Q = \frac{UAr \int_{\Delta T(A)}^{\Delta T(B)} \frac{1}{K} d(\Delta T)}{\int_{\Delta T(A)}^{\Delta T(B)} \frac{1}{K\Delta T} d(\Delta T)}$ Integration is at this point trivial, and finally gives: $Q = U \times Ar \times \frac{\Delta T(B) - \Delta T(A)}{\ln[\Delta T(B) / \Delta T(A)]}$ from which the definition of LMTD follows. 6 Any two 16 6-a The Sider – Tate equation is 8 hi Di/k = 0.023 (NRe $^{0.8}$ (Npr) $^{1/3}$ ($\mu/\mu w$) $^{0.14}$ 3 Substituting all the values in the equation we get hi $(0.02)/0.25 = 0.023 \text{ x} (15745)^{0.8} (36)^{1/3} \text{ x} ((550 \text{ x} 10^{-6})/(900 \text{ x} 10^{-6}))^{0.14}$ 2 hi (0.02)/0.25 = 0.023 x 2278.84 x 3.3 x 0.933 hi (0.02)/0.25 = 161.37hi= 2017 3 Inside heat transfer coefficient = 2017 W/m^2 .k 6-b Condensation is the change of the physical state of matter from gas 1 8 phase into liquid phase, and is the reverse of evaporation. **Boiling** is the rapid vaporization of a liquid, which occurs when a liquid is 1

Page 22 of 24

Subject cod	le :(17560)		Page 23 of 24
	heated to its boiling point, the temperature at which the vapour pressure of the		
	liquid is equal to the pressure exerted on the liquid by the surrounding		
	environmental pressure.		
	There are two idealized models of condensation (i.e., filmwise and dropwise). The former occurs on a cooled surface which is easily wetted. The vapor	2	
	condenses in drops which grow by further condensation and coalesce to form a		
	film over the surface, if the surface-fluid combination is wettable; if the surface		
	is non-wetting rivulets of liquid flow away and new drops then begin to form.		
	Difference between filmwise and dropwise condensation		
	Vapour may condense onto a cooled surface in two distinct modes known		
	as filmwise and dropwise. For the same temperature difference between the	1 mark	
	vapour and the surface, dropwise condensation is several more times effective	each for	
	than filmwise. However it involves special surface finishes or treatment in	any 4	
	order to maintain dropwise condensation and for this reason, though desirable,		
	it seldom occurs in real plant operation.		
	The process of dropwise condensation is enhanced by the special water cooled		
	condenser surface finish that prevents wetting of the surface. Condensation then		
	occurs in droplets which grow and fall under gravity. These falling droplets		
	wipe the surface clean ready for more droplets to form. This continuous		
	cleaning puts the water cooled surface in direct contact with the vapour.		
6-c	The capacity of an evaporator is defined as the number of kilogram of water	2	8
	evaporated per hour.	2	

Subject code :(17560)	Page 24 of 24
The economy of an evaporator is defined as the number of kilogram of water	
evaporated per kilogram of stem fed to the evaporator.	2
Methods of increasing economy by vapour recompression methods are:	
1. Mechanical recompression	4
2. Thermal recompression	
Vapor-recompression evaporation is the evaporation method by which	
a blower, compressor or jet ejector is used to compress, and thus, increase	
the pressure of the vapor produced. Since the pressure increase of the vapor	
also generates an increase in the <u>condensation</u> temperature, the same vapor	
can serve as the heating medium for its "mother" liquid or solution being	
concentrated, from which the vapor was generated to begin with. If no	
compression was provided, the vapor would be at the same temperature as	
the boiling liquid/solution, and no heat transfer could take place.	
If compression is performed by a mechanically driven compressor or blower,	
this evaporation process is usually referred to as MVR (Mechanical Vapor	
Recompression). In case of compression performed by high pressure	
motive <u>steam ejectors</u> , the process is usually	
called Thermocompression or Steam Compression.	