

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-15 EXAMINATION Model Answer

Subject code :(17560) Page 1 of 23

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
 - 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
 - 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
 - 7) For programming language papers, credit may be given to any other program based on equivalent concept.

SUMMER-15 EXAMINATION Model Answer

Subject code :(17560) Page 2 of 23

Q No.	Answer	marks	Total marks
1A-a	Thermal insulators: These are substances having low value of thermal	1	4
	conductivities.		
	Use: to minimize the rate of heat flow.	1	
	Example: Asbestos, glass wool, cork	1 mark	
		each for	
		any 2	
1A-b	Fouling factor: When heat transfer equipment is put into service, after	3	4
	sometime, scale, dirt and other solids deposit on both sides of pipe wall,		
	providing two more resistance to heat transfer. The added resistance must be		
	taken into account in calculation of overall heat transfer coefficient. The		
	additional resistance reduces the original value of overall heat transfer		
	coefficient and required amount of heat is no longer transferred by original heat		
	transfer surface. Hence heat transfer equipments are designed by taking into		
	account the deposition of dirt and scale by introducing a resistance known as		
	fouling factor.		
	Effect: It offers additional resistance to heat transfer; reduces the heat transfer	1	
	coefficient.		
1A-c	Radiation: It is the transport of energy through space by electromagnetic	2	4
	waves. It depends upon the electromagnetic waves as a means for transfer of		
	energy from a source to receiver.		
	Stefan- Boltzman law:	2	
	It states that the total energy emitted (emissive power) per unit area per unit		
	time by a black body is proportional to fourth power of its absolute		

SUMMER-15 EXAMINATION Model Answer

Subject code :(17560) Page **3** of **23**

J	C.(17300)		1 age 3 of 23
	temperature.		
	$W_b \alpha T^4$		
	Or $W_b = \sigma T^4$ where σ is Stefan Boltzman constant=5.67*10 ⁻⁸ (W/m ² K ⁴)		
1A-d	1-2 shell and tube heat exchanger:	4	4
	Tube sheet weekded to shell Shell cutiet noorzie Channel cover noorzie Pass partition		
1B-a	Heat loss through a composite wall:		6
	Consider a flat wall constructed of a series of layers of thickness x1, x2, x3 respectively. Let the thermal conductivities of layers be K_1 , K_2 , K_3 . Let $\Delta T1$, $\Delta T2$, $\Delta T3$ be the temperature drop across the layers. Let ΔT be the total temperature drop across the entire wall. $\Delta T = \Delta T1 + \Delta T2 + \Delta T3$ $\Delta T_1 = q_1 * B_1 / K_1 * A \Delta T_2 = q_2 * B_2 / K_2 * A \Delta T_3 = q_3 * B_3 / K_3 * A$ Where A is the area of the wall at right angle to the plane Then $\Delta T = q_1 * B_1 / K_1 * A + q_2 * B_2 / K_2 * A + q_3 * B_3 / K_3 * A$	2	
	In steady state conduction, all the heat passes through the first resistance should pass through second and third. So q_1 = q_2 = q_3 ΔT = $q[B_1/K_1*A + B_2/K_2*A + B_3/K_3*A]$ $= q[R_1+R_2+R_3]$ $OR q= \Delta T/[R_1+R_2+R_3]$	2	

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-15 EXAMINATION Model Answer

Subject code :(17560) Page **4** of **23**

yeer cou	e:(1/300)	r	Page 4 or 23
	But $q = \Delta T/R$		
	Therefore: $R = R_1 + R_2 + R_3$	2	
	In heat flow through a series of layers the over all resistance is equal to the sum		
	of individual resistances.		
1B-b	Forced circulation evaporator:		6
	-s vapour	5	
	steam deflection		
	steam deflection		
	II		
	e emph		
) body		
	and the second second		
	1-2 shell Condensate		
	exchanges.		
	lipios		
	The second secon		
	paring feed		
	Application: used for crystalline products, viscous, salting, scaling and	1 mark	
	corrosive and foaming solutions.	for any 1	
2-a	Thermal conductivity: It is a measure of the ability of the substance to	2	4
	conduct heat. It is the amount of heat passing through a material of a unit		
	thickness with a unit heat flow area in unit time when a unit temperature		
	difference is maintained across the opposite faces of the material.		
	Unit: W/ (m.K)	1	
	Relation between temperature and thermal conductivity:		
L			

SUMMER-15 EXAMINATION Model Answer

Subject code :(17560) Page **5** of **23**

3			3
	For small temperature ranges, thermal conductivity is taken as constant but for	1	
	large temperature changes, it varies linearly with temperature and is given by		
	$K = a + bT + cT^2 +$ where a,b and c are constants and T is temperature in K		
2-b	Basis: 1 meter length of pipe	1	4
	Inner radius r_1 = 12.5 mm= 0.0125 m		
	Outer radius r_2 = 12.5 mm+10 mm= 0.0225 m		
	$Ti = 273 + 140 = 413 \text{ K}$ $T_2 = 273 + 35 = 308 \text{ K}$	1	
	K=0.04 W/mK		
	$r_{LM} = (r_2 - r_1) / ln(r_2 / r_1) = 0.0225 - 0.125 / ln(0.0225 / 0.0125)$	1	
	= 0.017		
	Heat loss $Q = 2\Pi r_{LM} Lk(T_1-T_2)/(r_2-r_1)$		
	$= 2 \Pi *0.017 *1*0.04(413-308)/(0.0225-0.0125)$	1	
	= 44.84 W		
2-c	Black body: It is the substance which absorbs all the radiation falling on it. For	2	4
	a black body, absorptivity $\alpha = 1$ and transmissivity = reflectivity= 0.		
	Examples: lampblack, cosmic background radiation,	2	
2-d	Application of finned tube heat exchanger: When the heat transfer	2	4
	coefficient of one of the process fluids is very low as compared to the other, the		
	overall heat transfer coefficient becomes approximately equal to the lower		
	coefficient. This reduces the capacity per unit area of the heat transfer surface		
	and thus make it necessary to provide very large heat transfer area. The heat		
	transfer area of a pipe or or tube is increased by attaching metal pieces called		
	fins.		
	Used in: Automobile radiator, air cooled steam condensers for turbine and	1 mark	
	engine works, economiser	each for	

SUMMER-15 EXAMINATION Model Answer

Subject code :(17560) Page **6** of **23**

2-e	Use of baffle:			4
2 0		manafan hu inamaasina tha valaaity and	1 mark	
		ransfer by increasing the velocity and		
	turbulence of the shell side fluid		each	
	2. Structural support for the tubes a	and dampers against vibration.		
	Square pitch	Triangular pitch	1 mark	
	Permits external cleaning of the tubes	Difficult to clean	each for	
	Causes low pressure drop on the shell	Causes more pressure drop	any2	
	side fluid			
	Less no. of tubes can be	Larger no. of tubes can be		
	accommodated than with triangular	accommodated in a given shell		
	pitch	diameter		
	Creates comparatively less	Creates large turbulence in the shell		
	turbulence	side fluid		
	Can be used for dirty fluids also	Used for clean fluid		
3-a	To derive Q=UA ΔT _{lm}	esed for eleun fidia		8
3-a	10 derive Q-UA A1lm			o
	dA = B dx Area = $A = BL$		1	
	$m_h \rightarrow m_h$	T_{he}		
	<i>m</i> _c → 7	r ce		
	T_{Ai}			
	ΔT_i ΔT $T_{he} \perp \Delta T$			
	dT_c			
	Ta			
	<i>L</i>			
	Consider an elementary area dA(=B.dx). The rate of heat transfer across it is		
				<u> </u>

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-15 EXAMINATION Model Answer

et code :(17560)	Page 7 of 2
given by	
dq= U (Th-Tc) B dx(1)	1
Since there are no losses to the surroundings, the heat transfer rate is also equal	
to the rate of change of enthalpy on either side. Therefore,	
dq= -mh Cph dTh(2)	
= mc Cpc dTc(3)	
Now $\Delta T = Th - Tc(4)$	1
On differentiating	
$d(\Delta T) = dTh - dTc(5)$	
substituting for dq, dTh and dTc from equations (1), (2) and (3) into equation	
(5), we obtain	1
$d(\Delta T)/\Delta T = -(1/(mh Cph) + 1/(mc Cpc)) U B dx$	
ΔΤε	
$\int_{\Delta Ti} d(\Delta T) / \Delta T = - (1/(mh Cph) + 1/(mc Cpc)) U B \int_0^L dx$	
$\ln (\Delta \text{Te}/\Delta \text{Ti}) = -(1/(\text{mh Cph}) + 1/(\text{mc Cpc})) \text{ U A}(6)$	1
where $\Delta Te = T_{he}-T_{ce}$	
$\Delta Ti = T_{hi} - T_{ci}$	
Now if q is the total rate of heat transfer in the heat exchanger, then	
$q = m_h C p_h (T_{hi} - T_{he})$ (7)	1
$=$ mc Cpc (T_{ce} - T_{ci})(8)	

direction.

iii) LMTD is low

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous)

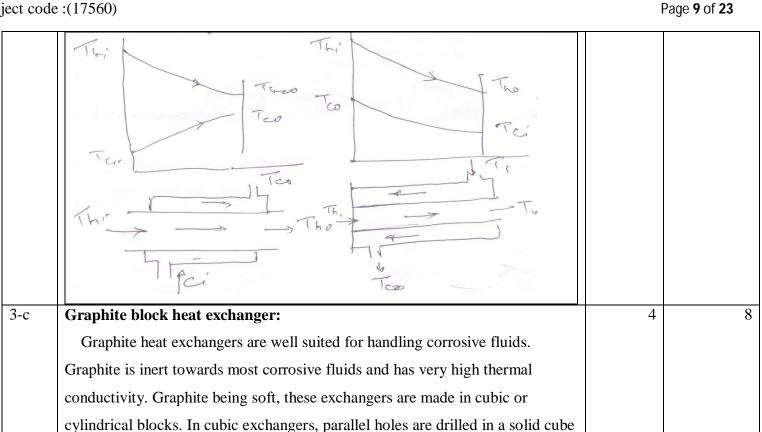
(ISO/IEC - 27001 - 2005 Certified)

SUMMER-15 EXAMINATION Model Answer

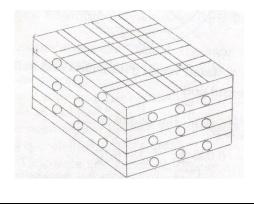
Subject code:(17560) Page **8** of **23** Substituting equations (7) and (8) into equation (6), $\ln (\Delta Te/\Delta Ti) = -1/q[(T_{hi}-T_{he}) + (T_{ce}-T_{ci})]U A$ 1 $q=U A (\Delta Ti - \Delta Te) / ln (\Delta Ti / \Delta Te) -----(9)$ Equation (9) is the performance equation for a parallel-flow heat exchanger. $Q = U A \Delta T lm$ 1 Where $\Delta T lm = (\Delta T i - \Delta T e) / ln (\Delta T i / \Delta T e)$ 3-b Co current and counter current flow: 2 marks Co current flow each for Counter current flow any 4 i) Both hot fluid & cold fluid enter at i) Both hot fluid & cold fluid enter at different ends & come out from same end & come out from other end Different ends. ii) Both fluid flow in the same ii) Both fluid flow in opposite

direction.

iii)) LMTD is more.



(Autonomous)


(ISO/IEC - 27001 - 2005 Certified)

SUMMER-15 EXAMINATION Model Answer

Subject code :(17560) Page **9** of **23**

cylindrical blocks. In cubic exchangers, parallel holes are drilled in a solid cube such that parallel holes of a particular row are at right angles to the holes of the row above & below. Headers bolted to the opposite sides of the vertical faces of the cube provide the flow of process fluid through the block. The headers located on the remaining vertical faces direct the service fluid through the exchanger in a cross flow.

(Autonomous)
(ISO/IEC - 27001 - 2005 Certified)

SUMMER-15 EXAMINATION

Model Answer

Subject code :(17560) Page **10** of **23**

ject coa	e:(17560)		Page 10 of 23
	Advantages of it over Shell & Tube Heat Exchanger :	2	
	i)Rate of Heat transfer is very High.		
	ii) It can be used for handling corrosive liquids		
	Applications of graphite block h.e.		
	i) It is used for very explosive liquid.	2	
	ii) ii) It can be used for Corrosive Fluid.		
4A-a	Optimum thickness of insulation:		4
	The optimum thickness of an insulation is obtained by purely economic	2	
	approach. The greater the thickness, the lower the heat loss & the greater the		
	initial cost of insulation & the greater the annual fixed charges.		
	It is obtained by purely economic approach. Increasing the thickness of an		
	insulation reduces the loss of heat & thus gives saving in operating costs but at		
	the same time cost of insulation will increase with thickness. The optimum		
	thickness of an insulation is the one at which the total annual cost (the sum		
	values of heat lost and annual fixed charges) of the insulation is minimum.		
	Total cost Print Charges	2	
	Optimum Thickness Of Insulation		

SUMMER-15 EXAMINATION Model Answer

Subject code :(17560) Page **11** of **23**

Ki	irchhoff's Law:		
	Consider that the two bodies are kept into a furnace held at constant		
ter	mperature of T K. Assume that, of the two bodies one is a black body& the	1	
otl	her is a non-black body i.e. the body having 'a' value less than one. Both the		
bo	odies will eventually attain the temperature of T K & the bodies neither		
be	come hotter nor cooler than the furnace. At this condition of thermal		
eq	uilibrium, each body absorbs and emits thermal radiation at the same rate.		
Th	ne rate of absorption & emission for the black body will be different from that		
of	he non-black body.		
I	Let the area of non-black body be A ₁ and A ₂ respectively. Let 'I' be the rate at		
wł	hich radiation falling on bodies per unit area and E ₁ and E ₂ be the emissive		
po	owers (emissive power is the total quantity of radiant energy emitted by a	1	
bo	ody per unit area per unit time)of non-black & black body respectively.		
	At thermal equilibrium, absorption and emission rates are equal, thus,		
	$Ia_1 A_1 = A_1 E_1$ (1.1)		
	∴ $Ia_1 = E_1$ (1.2)		
Ar			
	$Ia_b = E_b$ (1.4)		
Fre	om equation (1.1) and (1.4).we get	1	
	E1 _ Eb (1.5)		
	$\frac{\text{E1}}{a_1} = \frac{\text{Eb}}{\text{ab}} \qquad \dots \dots$		
W	There $a_{1,}a_{b}$ = absorptivity of non-black & black bodies respectively.		
If	we introduce a second body (non-black) then for the second non-black		
bo	ody,we have:		
	$I A_3 a_2 = E_2 A_3$ (1.6)		

SUMMER-15 EXAMINATION Model Answer

Subject code :(17560) Page **12** of **23**

	$\therefore a_2 = E_2$ (1.7)		
	Where $a_1 = E_2$ are the absorptivity and emissive power of the second non-black		
	body.		
	Combining equations (1.2),(1.4) and(1.7) we get,		
		1	
	$\frac{E_1}{a_1} = \frac{E_2}{a_2} = \frac{E_3}{a_3} = E_b$ (1.8)		
	a_1 a_2 a_3		
4A-c	Parts of Shell & Tube heat Exchanger :	1 mark	4
1110	i)Shell – to transfer the hot liquid	each	·
	ii) Tube – to hold the liquid to be heated	cacii	
	iii) Baffles – To increase turbulence on shell side		
	iv) Tube Sheet – to hold the tubes		
11 1		1	4
4A-d	Basis: 10,000 kg/hr of solution.	1	4
	Amount of NaOH in Solution		
	$= 10,000 \times 0.1$		
	= 1000 kg	1	
	\therefore Amount of H ₂ O = 9000 kg		
	Find concentration of solution = 50 %		
	Let 'x' is amount of find solution		
	$\therefore 0.5 = \frac{1000}{x}$		
	X		
	$\therefore X = \frac{1000}{0.5}$		
	0.5		
		1	
	= 2000 kg		
	$\therefore H_2 Oevaporated = 10,000 - 2000$		

SUMMER-15 EXAMINATION Model Answer

Subject code :(17560) Page **13** of **23**

	= 9000-1000			
	= 8000		1	
	∴ Capacityof Evapo	$oration = 8000 \frac{kg}{hr}$		
4B-a	Forward feed	Backward feed	1.5	
	Flow of solution to be concentrated is	Flow of solution to be	marks	
	parallel to steam flow.	concentrated is in	each for	
		opposite direction to	any 4	
		steam flow.		
	Does not need pump for moving the	Need pump for moving		
	solution from effect to effect.	the solution from effect to effect.		
	As all heating of cold feed solution is	Solution is heated in each		
	done in first effect, less vapour is	effect , result in better		
	produced, so lower economy.	economy.		
	The most concentrated liquor is in the	The most concentrated		
	last effect where temperature is lowest	liquor is in the first effect		
	and viscosity is highest, leads to	where temperature is		
	reduction in capacity.	highest and viscosity is		
		lowest, Thus high overall		
		coefficient.		
	Maintenance charges and power cost	Maintenance charges and		
	are low	power cost are more.		
	Most common as it is simple to	Not very common as it		
	operate	need pump.		
	More economical in steam.	At low values of feed		

SUMMER-15 EXAMINATION Model Answer

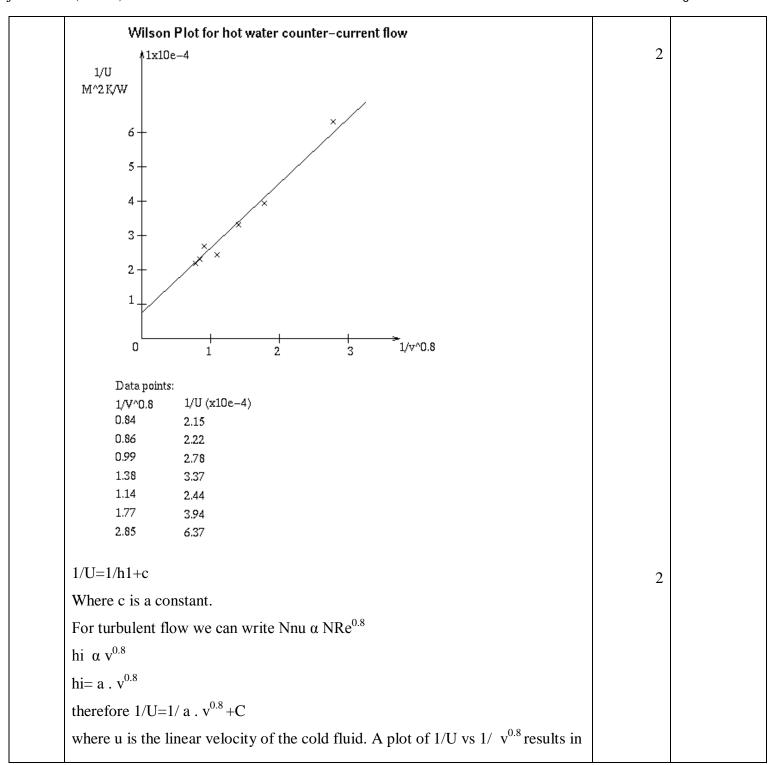
Subject code :(17560) Page **14** of **23**

		temperature	higher		
		economy.			
4B-b					6
	12.0 m			1	
	$Q = \frac{2 \prod L(c)}{\frac{\ln (r2-r1)}{\kappa}}$ $T_1 = 2351^{\circ} c, T_2 = 38^{\circ} c$	$\frac{(T1-T2)}{+\ln(\frac{r3/r2}{K2})}$			
	$r_1 = \frac{120}{2} = 6$	60 mm = 0.06 m			
	$r_2 = 60 + 50$	= 110 mm		1	
	$r_3 = 110 + 3$	0 = 140 mm = 0.140	m		
	$K_1 = 0.062 \text{ w/m.k}$				
	$K_2 = 0.872 \text{ w/m.k}$				

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-15 EXAMINATION Model Answer

Subject code:(17560) Page **15** of **23**


Jeer cou	le .(17300)		rage 15 of 25
	Assume, $L = 1 \text{ m}$	1	
	$Q = \frac{2 \prod_{ln} \frac{(235-38)}{(0.062)}}{\frac{ln}{0.062} + ln(\frac{0.140}{0.072})}$		
		1	
	= 123.162 W/m		
	Let T be the temperature between two layers of Insulation.		
	$\therefore Q = (T_1 - T)/R_1$	1	
	$123.16 = (508-T_0) / 1.56$		
	T = 315.93 K	1	
5-a	Wilson Plot:		8
	The Wilson plot method was developed by Wilson in 1915 to evaluate the convection	2	
	coefficients in shell and tube condensers for the case of a vapour condensing outside		
	by means of a cool liquid flow inside. It is based on the separation of the overall		
	thermal resistance into the inside convective thermal resistance and the remaining		
	thermal resistances participating in the heat transfer process.		

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER-15 EXAMINATION Model Answer

Subject code :(17560) Page **16** of **23**

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-15 EXAMINATION Model Answer

Subject code :(17560) Page **17** of **23**

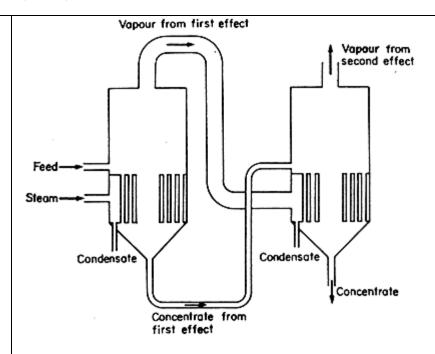
				•
	a straigh	t line with the slope equal to 1/a and intercept equal to Xw/K +1/h0.	2	
	The valu	es of h0 is obtained from the intercept and a represents the value of		
	film coef	fficient hi for a unit velocity of cold fluid.		
5-b	mass flo	w rate= 1kg/s		8
	density o	of water(ρ)=980kg/m ³		
	volumetr	ric flow rate(Q)= $1/980 \text{ m}^3/\text{s} = 1.02 \times 10^{-3} \text{ m}^3/\text{s}$		
	velocity(u)= $Q/A = 1.02 \times 10^{-3} \times 4/3.14(0.025 \times 0.025) = 0.519 \times 4 \text{m/s} = 2.078 \text{m/s}$		1	
	NRe= $Du\rho/\mu$ = 15894.38x4= 63577.52			
	Flow is turbulent. Thus We have to use Dittus Bolter equation.		1	
	Npr= $5.32(Cp \mu/K)$			
	$NNu = 0.023(NRe)^{0.8x}(Npr)^{0.3}$			
	hid/k= 264.32			
	i)	hi=6661.08 w/m ² k	2	
	overall h	eat transfer coefficient(U)=		
	I/U = 1/h0 + 1/hi			
	$=2.167 \times 10^{-4}$			
	ii)	$U = 4612.7 \text{ W/m}^2\text{k}$	2	
	T1(393k	t)→T2(393k)		
	$t2(358k) \leftarrowt1(298k)$			
		$\Delta T1 = T1 - t2 = (393 - 358) = 35K$		
		$\Delta T2 = t1 - T2 = (393 - 298) = 95k$		
		Δ Tlm= (95-35)/ln(95/35)=60 k		
	iii)	Q=UA ΔTlm		

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-15 EXAMINATION Model Answer

Subject code:(17560) Page **18** of **23**

ject coc	16:(1/500)	Page 18 01 23	
	Q=m.cp. ΔT=251220 W		
	251220= 4612.7 x 3.14 x 0.025 xLx 60	2	
	L=11.56m		
5-c			8
J-C	Two methods for increasing the economy of evaporation	2	C
	Use of Multiple effect evaporators	_	
	2) Vapour recompression		
	Multiple effect evaporators:		
	An evaporator is essentially a heat exchanger in which a liquid is boiled to give		
	a vapour, so that it is also, simultaneously, a low pressure steam generator. It	3	
	may be possible to make use of this, to treat an evaporator as a low pressure		
	boiler, and to make use of the steam thus produced for further heating in		
	another following evaporator called another effect.		
	Consider two evaporators connected so that the vapour line from one is		
	connected to the steam chest of the other as shown in Fig , making up a two		
	effect evaporator.		


(Autonomous)

3

(ISO/IEC - 27001 - 2005 Certified)

SUMMER-15 EXAMINATION <u>Model Answer</u>

Subject code :(17560) Page **19** of **23**

Feeding of Multiple Effect Evaporators

In a two effect evaporator, the temperature in the steam chest is higher in the first than in the second effect. In order that the steam provided by the evaporation in the first effect will boil off liquid in the second effect, the boiling temperature in the second effect must be lower and so that effect must be under lower pressure.

Consequently, the pressure in the second effect must be reduced below that in the first. In some cases, the first effect may be at a pressure above atmospheric; or the first effect may be at atmospheric pressure and the second and subsequent effects have therefore to be under increasingly lower pressures. Often many of the later effects are under vacuum. Under these conditions, the liquid feed progress is simplest if it passes from effect one to effect two, to

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-15 EXAMINATION <u>Model Answer</u>

Subject code :(17560) Page **20** of **23** effect three, and so on, as in these circumstances the feed will flow without pumping. This is called forward feed. It means that the most concentrated liquids will occur in the last effect. Alternatively, feed may pass in the reverse direction, starting in the last effect and proceeding to the first, but in this case the liquid has to be pumped from one effect to the next against the pressure drops. This is called **backward feed** and because the concentrated viscous liquids can be handled at the highest temperatures in the first effects it usually offers larger evaporation capacity than forward feed systems, but it may be disadvantageous from the viewpoint of product quality. Description of vapour recompression should also carry same mark distribution. 6-a Drop wise and film wise condensation 4 **Drop-wise condensation** Film-wise condensation 1. In of drop-wise 1. In case of film-wise case condensation the condensate condensation the condensed (condensed liquid) does not liquid wets the surface and wet the surface and collects to forms a continuous film of grow for a while and then fall condensate through which from the surface, leaving bare heat transfer takes place. This condensate flows down due to metal surface for further condensation. action of gravity 2. Heat transfer coefficient are 2. Heat transfer coefficients are very high in case of droprelatively very low in case of wise condensation since the film-wise condensation since

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-15 EXAMINATION Model Answer

Subject code:(17560) Page 21 of 23

ject code :(1'	7360)		Page 21 of 23
	heat does not have to flow	the heat does have to flow	
	through film by conduction	through film by conduction	
	3. Oily or greasy surfaces seem	3. Smooth, clean surfaces seem	
	to tend towards drop-wise	to tend towards film-wise	
	condensation	condensation	
	4. Drop-wise condensation is	4. Film-wise condensation is	
	very difficult to achieve	easily obtainable	
Те	emperature- length curve for a condens	ser	
	Tube side flu (Coolant) O Length ass flow rate of hot water =25kg/s.	did T_{c_2} $\Delta \dot{T}_1 = T_h - T_{c_1}$ $\Delta T_2 = T_h - T_{c_2}$	4
	ass flow rate of not water =25kg/s. =4.187 kJ/kg.k		8
	•		
	e rate of heat given = m. Cp.(T1-T2)= 25x4.187x(328-298)=31	40.2k1/c=3140.2v10 ³ W/	1
	- III. 6p.(11-12)= 20x4.10/x(320-298)=31	40.2NJ/3=3140.2X10 VV	1

SUMMER-15 EXAMINATION Model Answer

Subject code :(17560) Page **22** of **23**

Heat is g	iven by hot water available at 90°C (363k)	
Rate of h	eat loss by hot water	
Q2= m.C	p.(t2-t1)=30x4.187x(363-t1)	
As per er	nergy balance	
Q1=Q2		
30x4.187	/x(363-t2)= 3140.2	
(363-t2)=	= 20	2
t2=363-2	20=338k	
i)	For counter current flow	
	(298k)T1→T2(328k)	
	(338k) t2 ←t1 (363k)	
	ΔT1= t2-T1=(343-298)=40K	
	$\Delta T2=t1-T2=(363-328)=35k$	
	ΔTIm= (40-35)/In(40/35) = 37.44k	1
ii)	For Co current flow	
	ΔT1= t1-T1=(363-298)=65K	
	$\Delta T2=t2-T2=(338-328)=10k$	
Δ	aTim= (65-10)/in(65/10)= 29.38K	
	Thus counter current is suitable arrangement as in this case the $\Delta T Im$ is	1
	larger.	
The rate	of heat transfer is given by	
		2

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-15 EXAMINATION Model Answer

Subject code :(17560) Page **23** of **23**

	Q= U A ΔTIm		
	$3140.2x10^3 = 1500xAx 37.44$	1	
	A= 55.91m ²		
6-c	Basis: 30000 kg/hr feed is fed to the evaporator.		8
	Material balance of solids:		
	Solids in feed= solids in the thick liquor		
	0.10x30000=0.05xm'		
	m'=6000kg/h.	1	
	overall Material balance:		
	kg/h feed= kg/h water evaporated + kg/h thick liquor		
	water evaporated= mv=30000-6000=24000kg/h	1	
	enthalpy balance over evapoprator(assuming no heat loss)		
	Q=ms λ s= mf.Cpf.(T-Tf)+ mv λ		
	msx2202=30000x4x(323-293)+24000x2383	2	
	ms=27599kg/h.		
	steam consumption= 27599kg/h		
	steam economy= kg/h water evaporated/kg/h steam consumed		
	= 24000/27599.5 = 0.87	2	
	Heat load= Q= ms λs= 27599.5x2202=16881694 w	1	
	$\Delta T = Ts - T = 393 - 323 = 70K$		
	$A = Q/U \Delta T = 16881694/3000x70 = 83.16 m^2$	1	