

Model Answer

Subject Code: 17539

Important Instructions to examiners:

1) The answers should be examined by keywords and not as word-to-word as given in the model answer scheme.

2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.

3) The language errors such as grammatical, spelling errors should not be given more Importance. (Not applicable for subject English and Communication Skills.)

4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.

5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.

6) In case of some questions credit may be given by judgments on part of examiner of relevant answer based on candidate's understanding.

7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No.	Question & Model Answer	Remar k	Total Mar ks
1. a).	Attempt (any 3)		12
i)	State the use of buffer solution in blood pH measurement		4
Ans:	 Buffer is a substance which by its presence in a solution is capable of counteracting pH changes in the solution as caused by the addition or removal of hydrogen ions. Buffer solutions are characterized by their pH value. Buffer solutions used in blood pH measurement: 0.025 molar potassium dihydrogen phosphate with 0.025 molar disodium hydrogen phosphate and 0.01 molar potassium dihydrogen phosphate. These are used: To create and maintain desired stabilized pH in a solution To standardize the electrode chains for pH measurements. 	4 marks for any relevan t 4 uses	

Model Answer

Subject Code: 17539

Explain the elements of analytical instruments with the help of ii) 4 block diagram. **BD 2** Ans: Chemic mark. Signal Display al transducer conditioner system informat ion source • Chemical information source generates a set of signals containing necessary information explana tion 2 • Transducer converts information from the chemical source to marks electrical quantities • Signal conditioner converts the output of the transducer into an electrical quantity suitable for transmission or display. It modifies or conditions the signals so that the signals will be suitable for further transmission or processing. • Display system provides a visual representation of the measured quantity as a display on a chart or CRT or recorder. Give any 4 applications of liquid chromatography. iii) 4 (any 4, • Biochemical Screening for Genetic Disorders, Ans: 1 mark Analysis of biological fluids, • • Therapeutic Drug Monitoring and Toxicology. each) • R&D in pharmaceutical industries, Vitamins and Related Metabolites. • Steroid Hormones State 4 major gas pollutants along with their typical iv) 4 concentration. Major gas pollutants are carbon monoxide, sulphur oxide, any 4.1 Ans: hydrocarbons, nitrogen oxides, oxidant etc. mark Carbon monoxide: Its average concentration is below 200 each ppm. Hydrocarbon: the various sources of hydrocarbon are

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous)

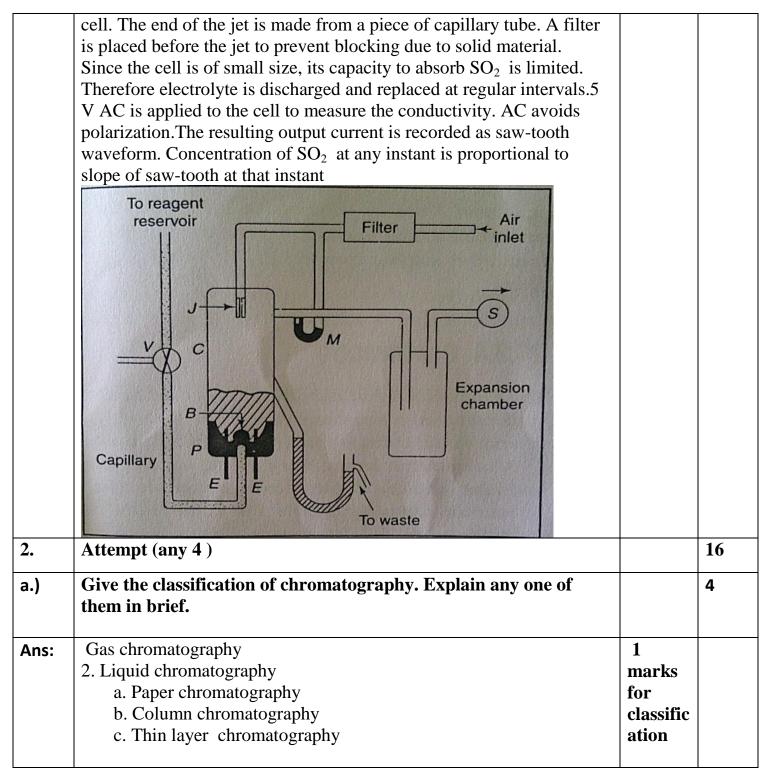
(ISO/IEC - 27001 - 2005 Certified)

WINTER – 14 EXAMINATION

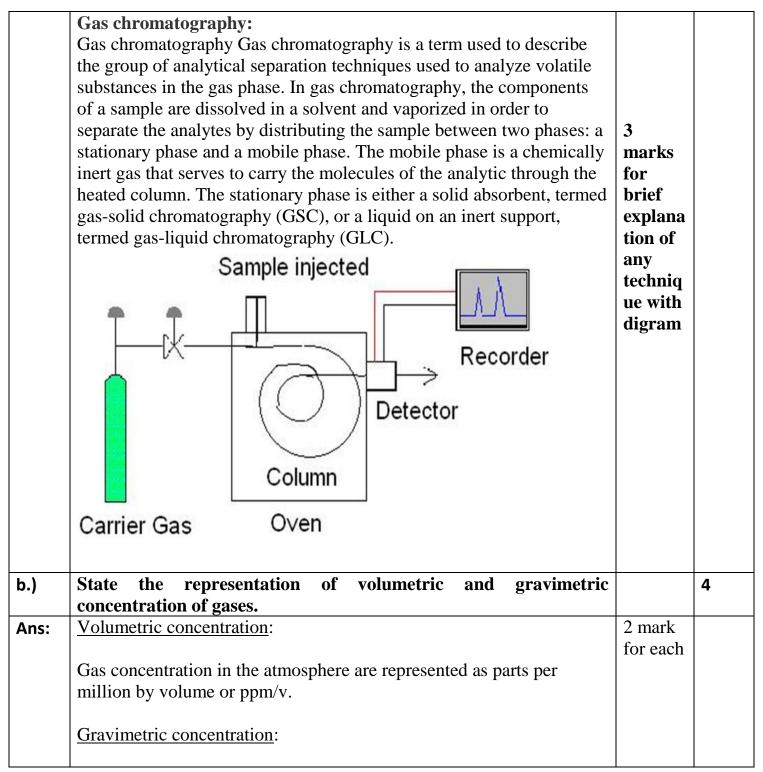
		_	-				-	-	-	1
Μ	ode	A	ns	ŝN	/e	er				

	petroleum-refining process, incomplete combustion and		
	evaporation of fuels. Methane is the major component of		
	total hydrocarbon emission.		
	Oxidants: the major component is ozone, which has		
	damaging effect on plants and animals		
	Sulphur dioxide: Its concentration in urban areas is 0.024		
	ppm.		
	Nitrogen oxides: Its level ranges from 0.5 to 0.12 ppm.		
b)	Attempt any one.		06
	i) What is monochromator? Explain working of prism as		
	monochromator with the help of diagram.		
Ans:	Monochromator is the wavelength selector in spectrophotometer.	Monoc	
	Spectrophotometer is used to measure the amount of light that a	hromat	
	sample absorbs. It isolates monochromatic radiation in a more efficient	or	
	manner with Monochromator. Thus the monochromatic light is	:explan	
	obtained by allowing the light beam to pass through a Monochromator	ation 2	
	which are prism or diffraction grating. Thus the monochromator is the wave length selector.	marks,	
	Parts: light source, prism monochromator, cuvette with sample, photocell detector.		
	The light source is a 6V tungsten lamp which emits radiation in the	workin	
	wavelength region of visible light. Light is made to fall on the prism.	g of	
	The monochromatic light is obtained by allowing the light beam to	prism	
	pass through a prism monochromator. Prism is an optical component	monoch	
	to disperse the light or modify the direction of light.	romato	
	The wavelength selection is done by rotating the prism about a pivot.	r 2	
	The prism has an aluminized rear surface. Due to the prism, shorter	marks,	
	wavelength is dispersed more.		
	Light, after getting dispersed by prism, passes through the sample and		
	then detected by the photocell.		

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

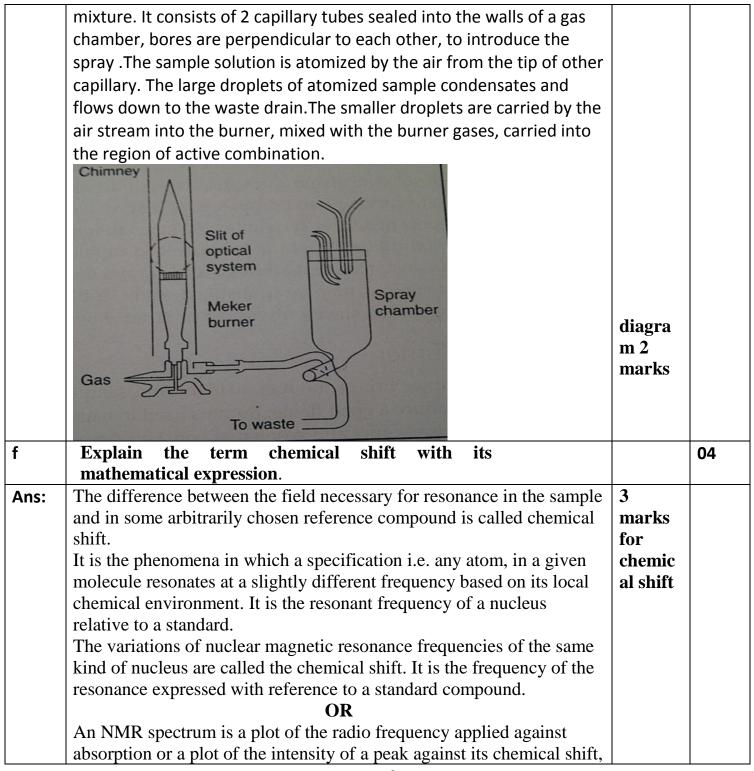

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER – 14 EXAMINATION

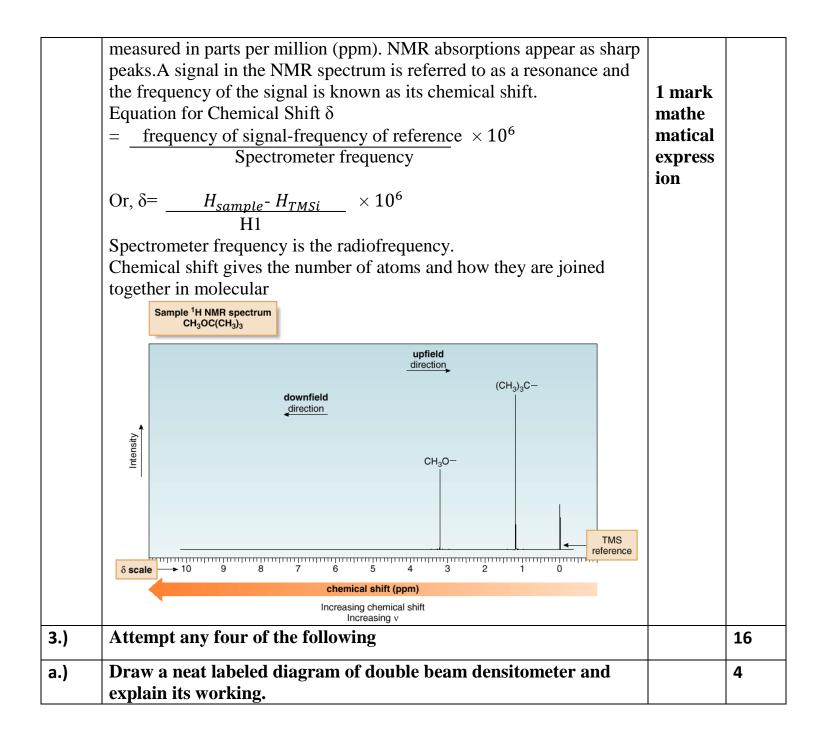

Model Answer

	Prism movement Pivot Prism arm Aluminized surface pLSto pLSto pLSto Photocell Hotocell Aluminized surface pLSto Light source	diagra m 2 marks	
ii)	Describe the conductivity method for measurement of SO₂ in air with a neat labeled diagram.		
Ans:	When air sample containing SO_2 (sulphur dioxide) is passed through a solution consisting of sulphuric acid and hydrogen peroxide, its electrical conductivity changes due to formation of sulphuric acid by oxidation of SO_2 .	Explan ation 3 marks,	
	$H_2O_2+SO_2 \longrightarrow H_2SO_4 \longrightarrow H^+ + (HSO_4)^-$		
	Adv: fast response & high sensitivity Disadv: interference by non-SO ₂ gases which remove or produce ions in the solution affect the performance. Conductivity cell is used for continuous measurement of SO ₂ in the air. It is made of glass, consists of a jet J , and orifice near the jet. It consists of 2 electrodes E , made of stainless steel wire. It is inserted through a cap P . The cap is sealed to the base of the cell. Reagent enters the cell from a central feed tube inserted in the cap. A small glass bead B in the cell acts as a non return valve on the entry of the central feed tube and prevents sulphuric acid diffusing from the	diagra m 3 marks	

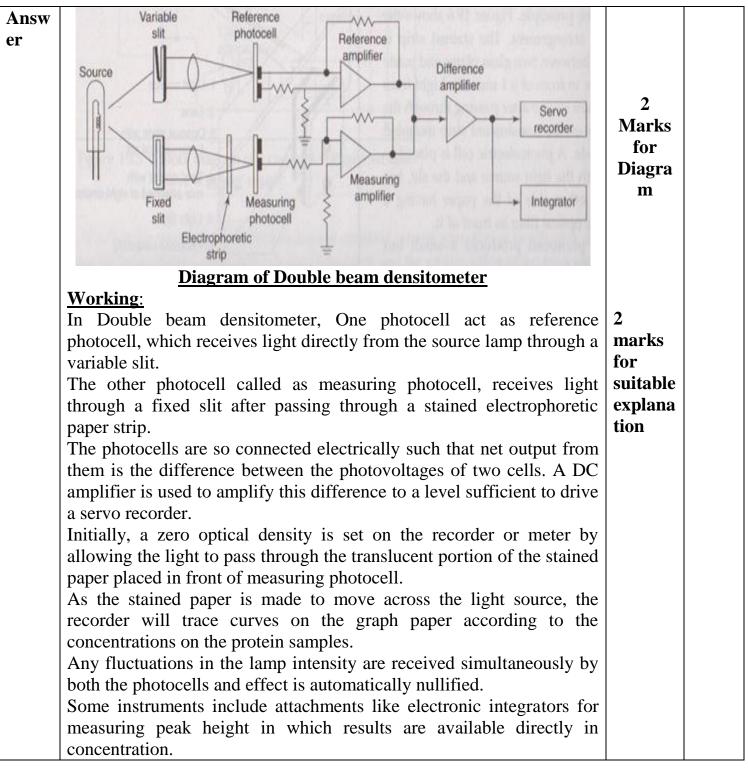
Model Answer


Subject Code: 17539

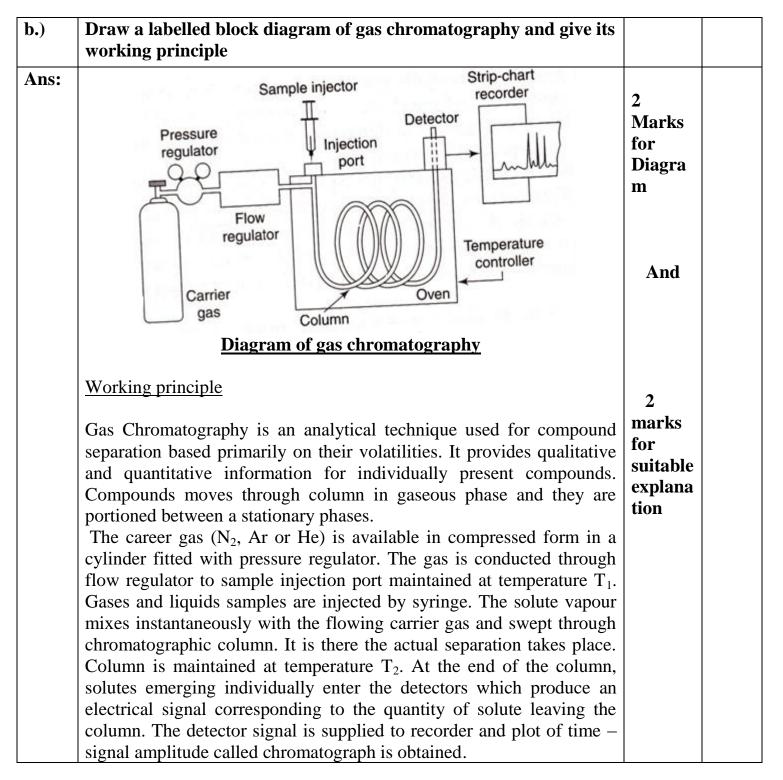
Toxicological data is represented on **Gravimetric** basis as $\mu g/m^3$ where $\mu g/m^3 = ppm \times PM/RT \times 10^3$ P= total atm pressure M= molecular weight of gas R= gas constant T= absolute temperature, K Draw a labeled diagram of Catheter tip electrode for c.) 4 measurement of PO₂ and PCO2 in blood. Gelled 4 marks Ans: electrolyte Silver/silver chloride Diffusion for neat internal reference membrane labeled pH glass digram Semi-solid electrolyte Silver cathode Silver/silver chloride common reference electrode Silicon rubber Catheter seal Lead out wires 1.6 mm What is pH? Explain the principle of pH measurement d.) 2 marks Ans: pH: The pH of a solution is a measure of the molar concentration of for pH hydrogen ions in the solution and as such is a measure of the acidity or basicity of the solution. The letters pH stand for "power of hydrogen" and the numerical value is defined as the negative base 10 logarithm of the molar concentration of hydrogen ions



e) Ans:	 electrode. These two electrodes generate a voltage directly proportional to the pH of the solution. At a pH of 7 (neutral), the electrodes will produce 0 volts between them. At a low pH (acid) a voltage will be developed of one polarity, and at a high pH (alkaline) a voltage will be developed of the opposite polarity. Describe the discharge type atomizer with neat diagram Atomizer is the System which is used to form aerosol(fine spray)of the sample by breaking the mass of liquid into small drops in the flame photometer. It introduces liquid sample into the flame at a stable and reproducible rate. It consists of atomization chamber and sprayer. 	Explan ation 2 marks	4
	The <i>measurement</i> electrode is designed to allow hydrogen ions in the solution to migrate through a selective barrier, producing a measurable potential (voltage) difference proportional to the solution's pH. The circuit will be completed by another electrode called <i>reference</i> electrode. These two electrodes generate a voltage directly.	e of pH measur ement	
	The measurement of the pH of a sample can be done by measuring the cell potential of that sample by <i>measurement</i> electrode in reference to a standard <i>reference</i> electrode.	2 marks for principl	
	Principle of pH measurement		
	A solution with a low pH value is called an "acid," while one with a high pH is called "alkaline." The common pH scale is a logarithmic scale which extends from 0 (strong acid) to 14 (strong alkaline), with 7 in the middle representing pure water (neutral).		
	$pH = -log_{10}[H+]$		
	concentration in a solution. Or, pH is a logarithmic measurement of the number of moles of hydrogen ions (H^+) per liter of solution.		



MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)


(ISO/IEC - 27001 - 2005 Certified)

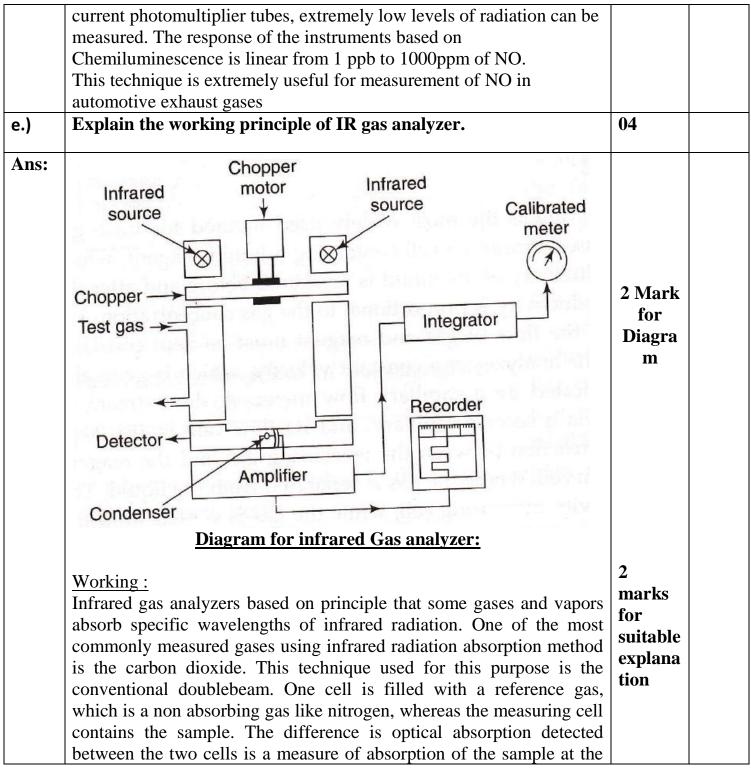
Model Answer

WINTER – 14 EXAMINATION

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

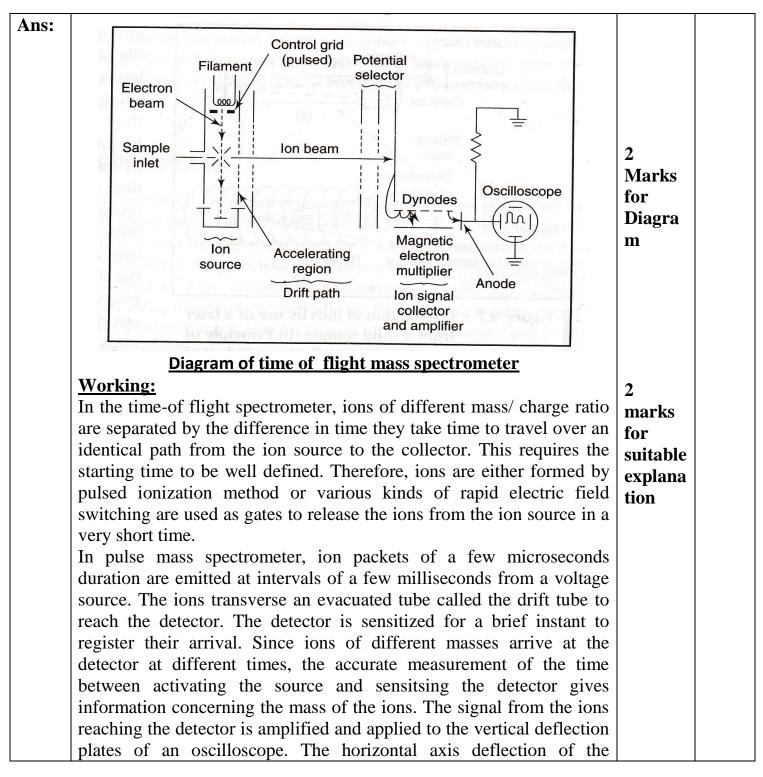

WINTER – 14 EXAMINATION

Subject Code: 17539

Model Answer

c.)	Give any four applications of NMR	04	
Ans:	1) NMR is used in magnetic resonance imaging in medical		
	diagnosis		
	2) By studying peak of nuclear magnetic spectra, chemist can	01	
	determine structure of chemical compound.	mark	
	3) NMR is extremely used for analysis of sample nondestructively.	for	
	4) NMR is used for data acquisition in petroleum industry and	each	
	natural gas exploration and recovery.	applica	
	5) NMR is used in process control and process optimization in oil	tion	
	refineries and petrochemical plant.	(any	
	6) It is a complex system integrating several technologies.	four)	
	(Note: marks can be given for any other relevant applications.)		
d.)	Describe the Chemiluminescence technique used for the	04	
	measurement of nitrogen oxide.		
Ans:	The phenomenon of emission of radiation from chemi- excited species	04	
	is known as Chemiluminescence.	Marks	
	It results due to the formation of new chemical bonds. The species in	for	
	the excited state possess higher energy levels than the ground state and	relevan	
	usually have a very short life.	t	
	Chemiluminescence phenomenon is very useful for measurement of	explana	
	air pollutants, particularly NO and NO_2 . Instruments based on the	tion	
	measurement of chemiluminescent emission, based on the following		
	reaction have been developed:		
	$NO+O_3 \rightarrow NO_2 + O_2$		
	$NO_2 \rightarrow NO_2 + H\vartheta$ ($\lambda \max = 6300 \text{ Å}$)		
	Since NO ₂ reacts only slowly with ozone and the reaction which		
	produces NO_3 is not accompanied by Chemiluminescence, it is		
	necessary to reduce NO_2 to NO before admission into the reactor		
	$NO_2 \rightarrow NO + \frac{1}{2}O^2$		
	Nitric oxide and ozone containing gas steam are mixed in a vessel at a		
	sub atmospheric pressure of about 2 mm of Hg .Light emission is		
	measured with a photomultiplier. With the use of high gain, low dark		

	and explain its working	
i.)	Draw the schematic diagram of time of flight mass spectrometer	04
4a.)	Attempt any three of the following :	12
	movement is converted into electrical impulses.	
	that side .the diaphragm bends toward the sides of lower, and this	
	sample side of the detection chamber and produces a lower pressure in	
	chamber. This reduces the amount of radiation reaching the gas in the	
	infrared radiation at the same wavelength as gas in the detection	
	When the gas being measured enters the sample cell, it absorbs	
	compartments by a thin, metal diaphragm. Both compartments are charged to the same pressure, with the gas being measured.	
	detection chamber is permanently sealed unit divided into two	
	and both beams enter opposite ends of the detection chamber. The	
	through a reference cell, and the both beam through a reference cell,	
	One beam passes through the sample cell, and the other beam	
	gaseous hydro carbons .	
	components like $CO, CO_2, SO_2, NH_3, H_2O$, Nitric oxide as well as most	
	Infrared analyzers are used for the determination of a large nos of	
	have hetero-atomic molecules.	
	particular wavelength. Since the vibration excitation occurs only if we	


MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER - 14 EXAMINATION

Model Answer

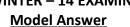
	oscilloscope commences as the ion packet start out. This produces a mass spectrum on the screen of the oscilloscope.		
ii.)	How to convert volumetric concentration of gas to gravimetric concentration of gas.		04
Answ er	Gas concentrations in atmosphere are generally represented as parts per million by volume, i.e ppm / v or simply ppm per hundred million (pphm), i.e parts per billion (ppb). On the other hand, toxicological data is generally represented on a gravimetric basis, e.g micrograms per cubic meter or milligrams per liter. Conversion from volumetric to gravimetric concentration can be obtained by applying gas laws, the general equation from this being: $\mu g/m^3 = ppm x PM / RT x10^3$, Where ; P= Total pressure (atm) M= Molecular weight of gas of interest R= Gas constant = 0.0821 1-atm /(mole) (°K) T=absolute temperature, °K	04 marks for relevan t explain ation	
iii.)	State and explain Beer Lambert's law.	04	
Answ er	Statement:Beer Lambert Law, states the relationship between absorbance (A) and transmittance (T). It states that the concentration of a substance in solution is directly proportional to the 'absorbance', A, of the solution.A, of the solution.Absorbance $A = \varepsilon$ cbWhere,A = absorbance (no unit of measurement) E = molar absorptivity (dm3 mol -1 cm-1)	2 Marks for stateme nt	
	 C = molar concentration (mol dm -3) B = path length (cm). It may be noted that ε is a function of wavelength. So, the Beer Lambert Law is true only for light of a single wavelength or monochromatic light. Absorptivity is a constant, depending upon the radiation and nature of the absorbing material. Absorptivity is also sometimes referred to as specific extinction and absorbance as 'Optical 	And 2 marks	

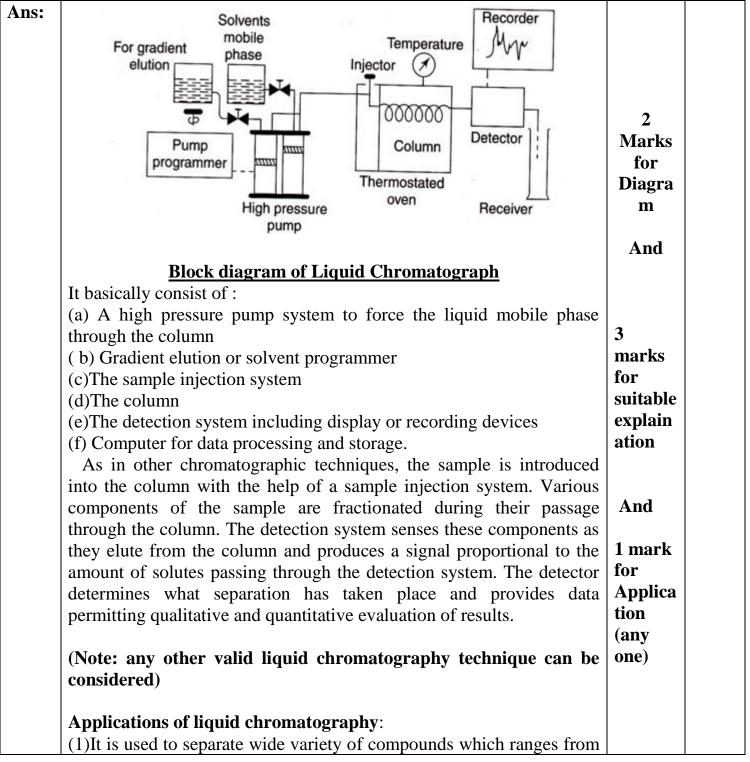
MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

		-000	Certifiet
WINTER	– 14 EX	KAMI	NATION
Mod	el Answ	<u>ver</u>	

	Density'. Absorbance is the property of a sample, whereas absorptivity is the property of substance and is a constant. Mathematically, absorbance is related to percentage transmittance T by the expression: $A = \log_{10}(\frac{I_0}{I}) = \log_{10}(\frac{100}{T}) = \varepsilon \text{ bc}$	for relevan t explana tion	
	The relationship between energy absorption and concentration is of great importance for the purpose of analysis.		
iv.)	Explain the constructional details of glass electrode used for pH measurement with the help of a neat schematic diagram		04
Answ er	Shield Cap Shield internal lead Internal reference electrode Standard solution Diagram of Glass electrode	2 Marks for Diagra m	
	Constructional features: Glass electrode consists of thin walled bulb of PH sensitive glass sealed to a stem of non ph sensitive high resistance glass. The PH response is limited to the area of special glass membrane, thus making response independent of depth of immersion. The membrane has thickness of order of 0.05-0.15mm and bulb is of order of 10mm in diameter. The glass pH electrodes are constructed of special glass to create the	2 marks for relevan t explain ation	

	ion selective barrier needed to screen out hydrogen ions from all the other ions floating around in the solution. This glass is chemically doped with lithium ions, which is what makes it react electrochemically to hydrogen ions. Since glass is an insulator, this presents a major problem if it is intended to measure voltage between two electrodes. The circuit path from one electrode contact, through the glass barrier, through the solution, to another electrode and back through the other electrode's contact is therefore one of the extremely high resistance. On the inside of membrane is a system of effectively constant pH .it is composed of a silver silver chloride or calomel electrode dipped In hydrochloric acid.Changes in electrical potential on the outer membrane surface are measured by means of an external reference electrode such as calomel and its associated salt bridge.	
4.b	Attempt any one	06
i.)	Describe the working of thermal conductivity gas analyzer with a	06
	neat schematic diagram.	
Ans:	Heating current indicator Adjust heating current Adjust heating current Adjust heating current Adjust heating current Adjust Adjust heating current Adjust A	


[]			
	Diagram of thermal conductivity gas analyzer		
	Working:		
	In a typical hot-wire cell thermal conductivity analyzer; four		
	platinum filaments are employed as heat sensing elements. They are		
	arranged in a constant current bridge circuit and each of them is placed		
	in a separate cavity in a brass or stainless steel block. The block acts as		
	a heat sink. The material used for construction of filaments must have		
	a high temperature-coefficient of resistance. The materials generally		
	used for the purpose include tungsten, Kovar (alloy of co,Ni and Fe) or	3	
	platinum. Two filaments connected in opposite arms of the	marks	
	Wheatstone bridge act as reference arms, whereas the other two	for	
	filaments are connected in the gas stream, which act as measuring	suitable	
	arms. The use of a four-cell arrangement serves to compensate for	explana	
	temperature and power supply variations. Initially, reference gas is	tion	
	made to flow through all the cells and the bridge is balanced precisely		
	with the help of potentiometer D. When the gas stream passes through		
	the measuring pair of filaments, the wires are cooled and there is a		
	corresponding change in the resistance of the filaments. The higher the		
	thermal conductivity of the gas, the lower would be the resistance of		
	the wire and vice versa. Consequently, the greater the difference in		
	thermal conductivities of the reference and sample gas, the greater		
	would be the unbalance of the Wheatstone bridge.		
	would be the unbalance of the wheatstone bridge.		
	(Note: thermal conductivity analyzer using thermistor can be		
	considered)		
ii.)			06
11.)	With a neat diagram explain liquid chromatography .state its		VU
	application.		



MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 14 EXAMINATION

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER - 14 EXAMINATION

16

04

01

Mark

for

List

Model Answer

Subject Code: 17539

5.

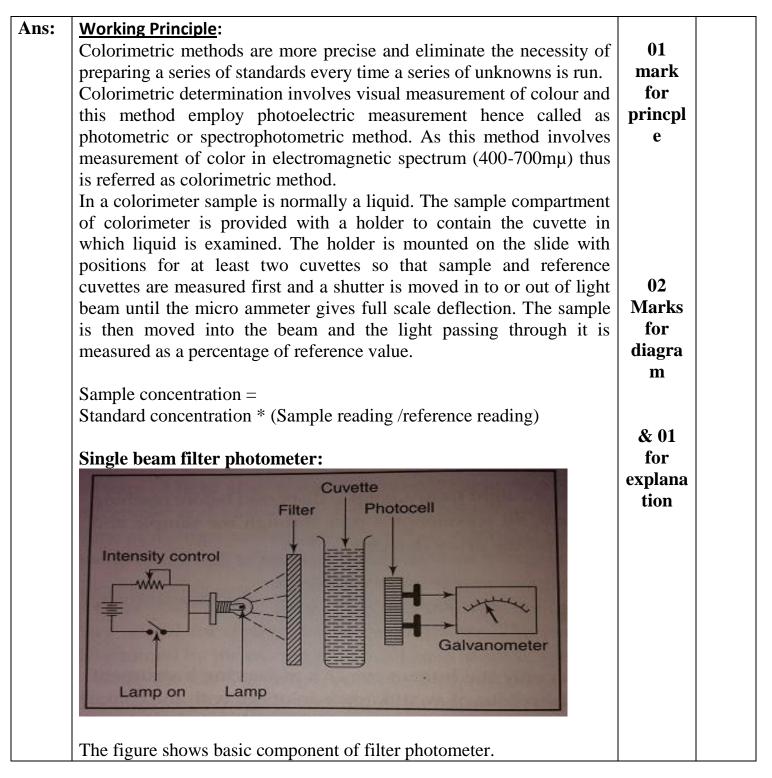
a)

Ans:

small organic to large polymer.
(2)It uses liquid mobile stage to achieve separation.
Attempt any four of the following:
List the basic component of mass spectrometer and explain any
one of them in brief.
The following five units are common to most mass spectrometer
instruments:
1. The inlet sample system.
2. The ion source.
3. The electrostatic accelerating system
4. The detector, amplifier and display system and
5. Auxiliary equipment (pumping system).
1.The inlet sample system :

1.The inlet sample syst

a) Gaseous Sample: The introduction of gases merely involves the	03
transfer of sample from gas bulb into metering volumes. The	mark
arrangement is small glass manifold of known volume attached to a	for
mercury manometer.	explana
The gas sample is introduced into mass spectrometer ion source	tion of
through a leak of some kind.	any
b) Liquid samples: Liquid samples may be introduced by hypodermic	compon
needle and injected through silicon rubber dam or by a break off	ent in
device which consist in touching a micropipette to sintered glass disc	brief
under mercury. The low pressure in the reservoir draws in liquid and	
vaporizes it instantly.	
C) Solid Samples: Solid samples can be vaporized to gaseous ion by	
instantaneous discharge with power up to 100kw by using	
radiofrequency (1 MHz) spark.	


2. Ion Source: Following the leak is the ionization chamber which is maintain at low pressure $(10^{-4} \text{ to } 10^{-7} \text{ mmHg})$ and at a temperature of 200 deg Celsius. The electron gun is located perpendicular to the incoming gas stream. Electrons are emitted from filament normally of carbonized tungsten, but for special purposes, tantalum or oxide coated filaments may be used. They are drawn off by a pair of positively

b) State the principle of colorimeter. Explain the working of single beam filter photometer with neat labeled diagram.	04	
pump, diffusion pump, turbomolecular pumps are used.	<u>.</u>	
source and analyzing regions of spectrometer. Generally mechanical		
generally separate mercury or oil diffusion pumps are employed in the		
gas molecules the mass spectrometer requires good vacuum system		
In order to prevent undue scattering by collision of ions with residual		
5. Auxillary equipment system:		
d)Microchannel plate:		
c)Electron multiplier tube:		
b)Channeltron:		
Also following detector and recorders are used		
m/e on an oscillograph or pen and ink strip chart recorder.		
amplified. The amplified ion current is recorded as a function of ratio		
analyzer tube is normally connected in a cylinder (faraday cage) which is connected to the grid of electrometer tube whose output is in turn		
a) Faraday cup: the ion beam passing through the exit slit of the		
4. Ion detectors and recording of mass spectrograph:		
approximately 0.076mm in width.		
finally emerged out of the final accelerating slit which is		
imparted to the ions to produce an almost monoenergetic beam when it		
few thousand electron volts. Such relative high kinetic energy is		
velocities of up to 150000 miles/s and they acquire a kinetic energy of		
voltages of the order of 400-4000V accelerate the ions to their final		
strong electrostatic field between first and second accelerating slits,		
separated from electrons by a weak electric field are accelerated into a		
3.Electrostatic accelerating system: positive ions which are		
magnetic field which is confined to the ionization region.		
kept between 50 and 70V.the electron beam is usually collimated by a		
fragmentation.in order to obtain a mass spectrum, the electric field is		
molecules of the passing gas stream, produced ionization and		
slits accelerates the electrons, which on sub sequent collision with the		
the energy of the electrons. An electric field applied between these		
charged slits, through which they pass into the body of the chamber. The potential presents in the slits controls the electron emission and		

Model Answer

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 14 EXAMINATION

•••		• •		
	Mod	el Ar	nswe	er

Now when the column temperature is kept constant it is difficult to analyze samples having components of a wide boiling range this difficulty can be overcome by using program heating of the column so that its temperature is not kept constant but is subjected to an exactly control temperature rise while separation is in progress Low temperature is beneficially for better separation of low boiling point components and high temperature more rapid elution of high boiling points components thereby shortening the time of analysis and sharpening the resultant chromatographic peaks.

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER – 14 EXAMINATION

Model Answer

Subject	Code:	17539
---------	-------	-------

	Thus the column temperature is a critical factor in gas		
	chromatography.		
d)	Explain the gas chromatography technique for the measurement of Carbon monoxide in air.	04	
Answ er	 1. When an air sample containing CO is passed through a stripper column, the heavy hydrocarbons are retained and CO and methane are passed into chromatographic column and then into a catalytic reducing chamber. 2. The methane would pass through the reducing chamber unaffected while CO is reduced to methane. 3. By using hydrogen flame ionization detector both methane peaks can be detected. 4. The first peak is due to methane while the second peak would correspond to CO. 5. The accuracy is about +-2%.peak heights of CO and CH4 would gives sensitivity of 50 ppb. 	04 Mark for relevan t explana tion	
e)	Explain the principle of electrophoresis. State its application(Any two)	04	
Answ	Electrophoresis:		
er	Electrophoresis is a separation technique that is based on the mobility of ions in an electric field. Positively charged ions migrate towards a negative electrode and negatively charged ions migrate toward a positive electrode. For safety reasons, one electrode is usually at ground and the other is biased positively or negatively. Ions have different migration rates depending upon their total charge, size and shape, and can therefore be separated. The moving boundary method of electrophoresis utilizes the migration of the particles in free solution and observation of various molecular boundaries through sensitive refractometric techniques. With this the value of electrophoresis in obtaining distinct and measurable fractions of variety of substances got well established particular in clinical laboratories.	02 Marks principl e	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Subject Code: 17539

WINTER – 14 EXAMINATION Model Answer

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 14 EXAMINATION

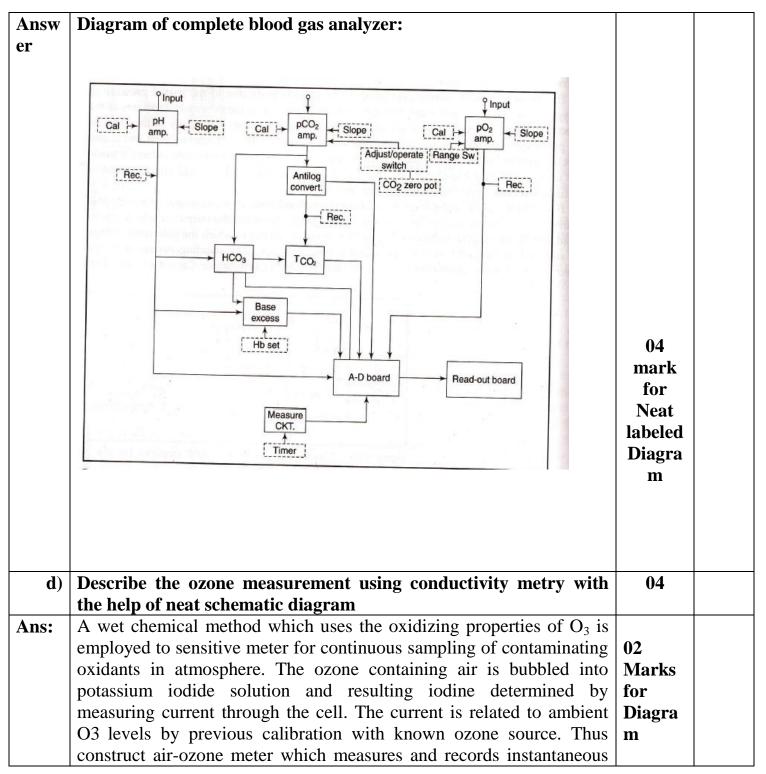
Model Answer

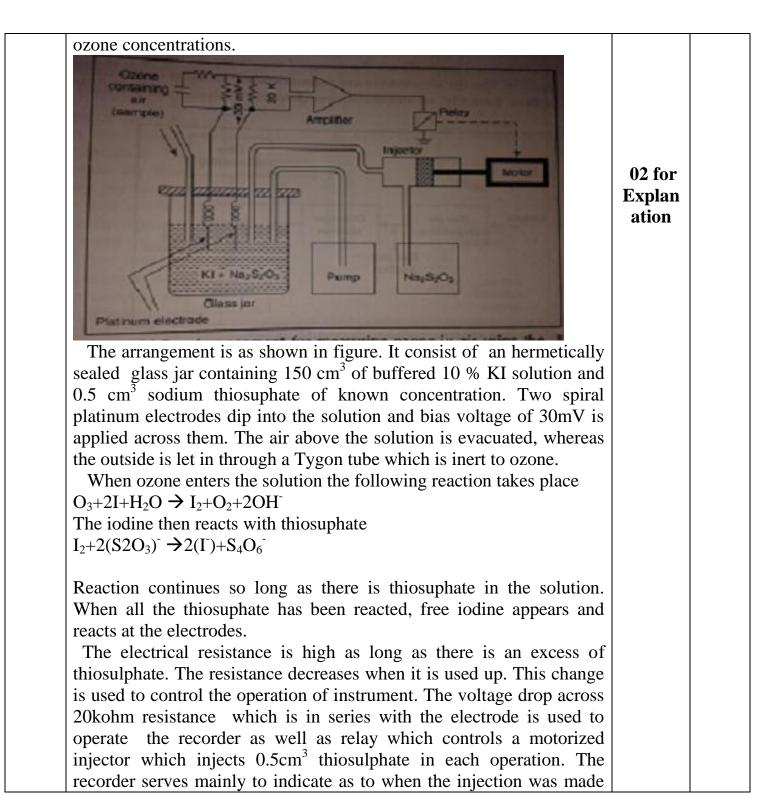
	GLC All gas Emission unit Connaction for meter We		
6.	Attempt any Four of the following :		16
a)	State the applications of flame photometry.(any four)	04	
Answ	Applications of flame photometry:	0.1	
er	 It is used in determination of potassium, sodium, magnesium and calcium in biological fluids like serum, plasma, urine etc, is routinely carried out by flame photometer. Analysis of industrial water, natural water for determining elements responsible for hard water (magnesium, barium, calcium etc.) is standard procedure in many laboratories. Soil samples are routinely analyzed mainly for sodium and potassium and also for calcium and magnesium (after removing other interfering elements) by flame photometer. Some important elements which are commonly determined by this method are aluminum, barium, calcium, chromium, copper, iron, lead, magnesium, potassium, zinc, manganese, and 	01 Marks for each applica tion	

Subject Code: 17539

Model Answer

b)	 strontium. 5. In glass industry, flame photometry is used in determining of sodium, potassium, boron, lithium etc. 6. In cement industry, this method is used in estimation of sodium, potassium, calcium, magnesium, manganese, as well as lithium. 7. Flame photometry is extensively used in estimation of alkalialkaline earth metals as well as other metals present in metallurgical products, catalysts, alloys etc. 8. Flame photometry has also been used in determination of certain metals like lead, manganese, in petroleum products like gasoline, lubricating oils and organic solvents. 9. Analysis of ash by flame photometer is routinely carried out in various industries for estimating alkali and alkaline earth metals as their oxides. 	04	
b)	State the principle of NMR. Explain the resonant condition of NMR.	04	
Answ	Principle of NMR:		
er	Nuclear Spin: Elementary particles such as electrons or a nucleus behaves as if they rotate about an axis possesses the property of spin known as nuclear spin. The angular momentum is associated with the spin of particle would be an integral or half integral multiple of $h/2\pi$ where, h is planck's constant. Nuclear energy level : Since a nucleus possesses a charge, its spin gives rise to a magnetic field that is analogues to the field produced when an electric current is passed through a coil of wire. The resulting magnetic dipole or nuclear magnetic moment μ is oriented along the axis of spin and has a value that is characteristic for each kind of particle. When spinning nucleus is placed in a strong uniform magnetic field (H), the field exerts a torque upon the nuclear magnet. This would make the nucleus to assume a definite orientation with respect to the external field. The torque is a vector with its direction at right angles to the plane of μ and H. This results in a rotation of the nuclear axis around the direction of the external field. This is called processional	02 mark for principl e	


	motion.		
	Resonant Condition: When an alternating RF field, superimposed over the stationary magnetic field, rotates at exactly the frequency of an energy level, the nuclei will be provided enough energy to undergo a transition from lower energy level to a higher energy level. In general Energy difference between states is given by, $\Delta E = \mu \beta . H_o / I$	02 mark for Resona nt Conditi on in brief	
	Where, $H_o = \text{strength of external magnetic field in gauges}$ $B = \text{constant called the nuclear magneton}, 5.049 \times 10^{-24} \text{ ergs}$ $\mu = \text{magnetic moment of the particle expressed in units of nuclear magnetons}$		
	The frequency, v of radiation determine from Planck's equations $\Delta E = hv = \mu \beta H_0/I$		
	The frequency can be varied by applying magnetic field,		
	$v = \mu /h.\beta. H_0/I \qquad \dots h = 6.626 \times 10^{-27} \text{ ergs}$ = $\frac{2.797 \times 5.05 \times 10^{-24} \times 23000}{(6.6256 \times 10^{-27}) (1/2)}$ = 95 × 10 ⁶ Hz = 95 MHz		
	The proton will process 95 million terms per second in a field of 23000 gauss. The frequency 95 MHz lies in the radio frequency range of the electromagnetic spectrum.		
c)	Draw the neat labeled block diagram of complete blood gas analyzer.	04	
	30		


MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 14 EXAMINATION Model Answer

Compare single	beam and dou	ble beam filter photon	neter	04
Single Bea	am Filter	Double Beam	Filter	
Photometer		Photometer		1
1.Reading	error due	1. Error due to lamp	intensity	Marks
fluctuation in la	mp intensity.	is minimized.	-	for
2.Single pl	notocell is	2.Two photocells are a	normally	each
employed.		employed.		Points
3.Light pass th		3. Light is split thro	-	
& test solution of	on single photo		easuring	
cell.		photocell & other dir	ectly on	
4.		reference photo cell.		
Intensity control	uvette Photocell	4.	2° •	