MODEL ANSWER

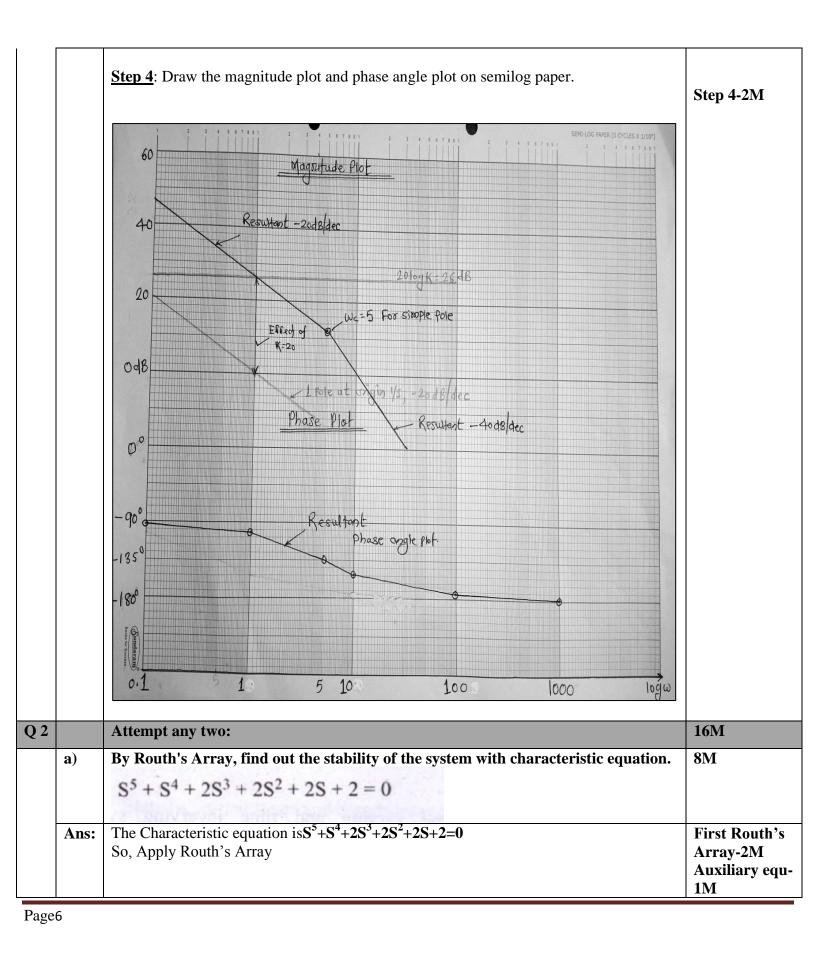
WINTER-17 EXAMINATION

Subject Title: Control System

Important Instructions to examiners:

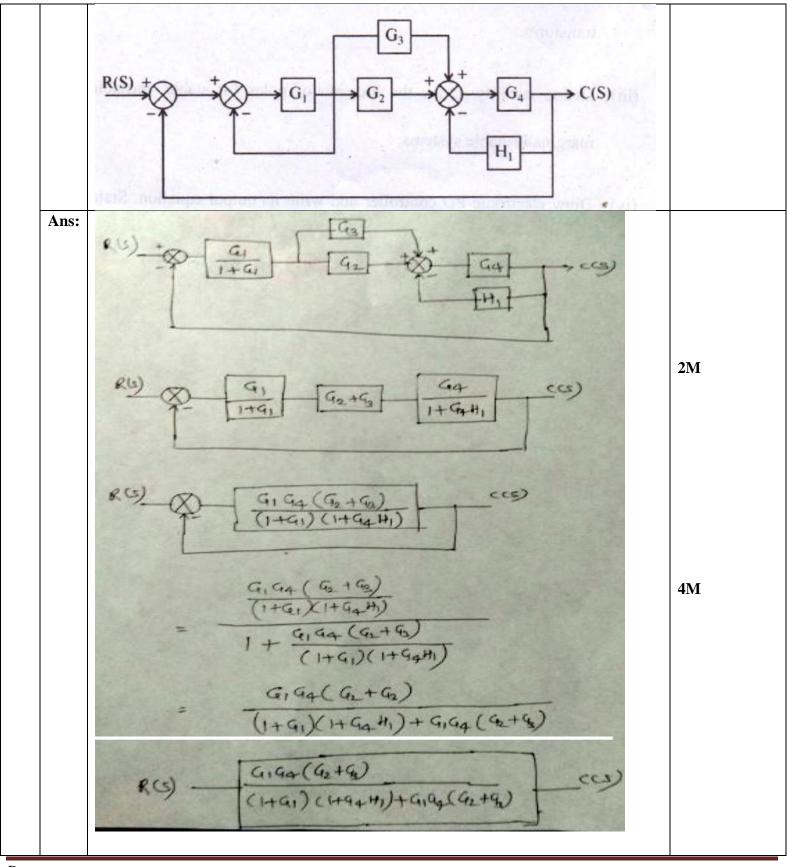
Subject Code: 17538

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.


Q. No.	Sub Q.N.		Answer		Marking Scheme
Q.1		Attempt	t any THREE:		12-Total Marks
	i)	Differen	itiate between time varying and time in	warying system. (3 points)	4M
	Ans:				2M
		S.N.	Time varying System	Time invarying system.	Definition+1M
		1	A linear time variant or varying system is defined as a control system in which parameters of the system are varying with time that means as time passes parameters varies. <u>OR</u> A system is said to be Time variant if its input output characteristics change with time.	A linear time in-variant or varying system is defined as a control system in which parameters of the system does not vary with time. <u>OR</u> A system is said to be Time Invariant if its input output characteristics do not change with time.	each point (Any other relevant point shall be considered)
		2	Y(t)=t X(t) System depends on time <i>t</i> so it is time-variant.	<pre>Y(t)=A X(t) System does not depend explicitly on t so it is time-invariant.</pre>	
		3	Eg: rocket launching system, space shuttle/vehicle	Eg: RC ,RLC networks, different electrical network.	

Ange	The different standard test inputs are-					
Ans:	a) Step input b) Impulse input c) Ramp input d) Parabolic input					
	Test Signal	Graphical representation	Laplace representation	List of std. i/j 1M,		
	Unit Step Input		$\frac{1}{s}$	Sketches& L.T-3M		
	Unit Ramp Input	r(t) $r(t)r$	$\frac{1}{s^2}$			
	Unit Parabolic Input	n(t) f Slope = At	$\frac{1}{s^3}$			
	Unit Impulse	$ \begin{array}{c} $	1			
iii)	Define stability. Draw the stable systems.	location of poles for stable,	, unstable and marginally	4M		
Ans:	controllable. In the absence initial condition.	e of the input, output must	te output is also bounded and tend to zero irrespective of the the s-plane system is said to be			

Sr. No.	Nature of closed loop poles	loop poles in s-plane	Stability condition	S plane for
1.	Real, negative i.e. in L.H.S. of s-plane	jω	Absolutely stable	stable, unstable &
		$-a_2 - a_1 = 0$		marginally stable-1M each
2.	Complex conjugate with negative real part i.e. in L.H.S. of s-plane	$\begin{array}{c} & & j \omega \\ & & j \omega_1 \\ \hline & & -a_1 \\ & & -a_1 \\ & & & -j \omega_2 \end{array}$	Absolutely stable	
3.	Real, positive i.e. in R.H.S. of s-plane (Any one closed loop pole in right half irrespective of number of poles in left half of <i>s-plane</i>)	+jω +a ₁ σ	Unstable	
4.	Complex conjugate with positive real part i.e. in R.H.S. of s-plane	$j\omega_1 \xrightarrow{j\omega_1} \sigma$ $-j\omega_2 \xrightarrow{-j\omega_2} \sigma$	Unstable	
5.	Non repeated pair on imaginary axis without any pole in R.H.S. of s-plane	jω × jω ₁ 	Marginally or critically stable Marginally or critically stable.	
		or $\downarrow j \omega_2$ $\downarrow j \omega_1$ $\downarrow j \omega_1$ $\downarrow j \omega_1$ $\downarrow j \omega_1$ $\downarrow j \omega_2$ $\downarrow j \omega_1$ $\downarrow j \omega_2$		
		two non repeated pairs on imaginary axis.		
6.	Repeated pair on imaginary axis without any pole in R.H.S. of s-plane	× ^{jω} →σ ×x −jω ₁	Unstable	

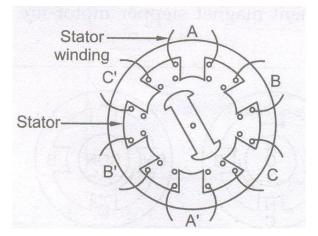

iv)	Draw electronic PD controller and write its output equation. State why derivative	4 M
Ans:	controller is not used alone. Diagram -	2M
	Equation:	
	$V_{Out} = \frac{R_2}{R_1 + R_3} V_e + \left(\frac{R_2}{R_1 + R_3}\right) R_3 C \frac{dV_e}{dt} + V_0$	Output Equation-1M
	Derivative control action responds to the rate at which the error is changing. Derivative action is not used alone because it provides no output when error is constant. $\frac{OR}{P_o} = K_D \frac{dE_p}{dt}$	State-1M
	It shows that the controller output will be zero if i) error Ep is zero ii) if error is constant. Therefore D controller is not used alone.	
B)	Attempt any ONE:	6M
i)	Find the transfer function of the RLC circuit in figure 1.	6M
	$ \begin{array}{c c} R & L \\ \hline 000 & \uparrow \\ V_m(t) & \downarrow \\ \downarrow & i(t) & \downarrow \\ \end{array} $	

Ans:		V: I Vo	Take Lapla i(s) = I(s) [R + 3] Vo(t) = [1] Hence, Vo(s) = Divide equa Vo(s)/Vi(s) = 1 (s)/Vi(s) = (1/3)	$\frac{f(x)}{dt} + \frac{f(x)}{dt} + $)	Input equ- 1.5M Output equ- 1.5M Transfer Function -3M
ii)	Draw Bode j	1	pen loop transf G (S) H (S) =			$6M$ $\underline{NOTE:} The$ $question is$ $G(S)H(S) = \frac{20}{S(1+0.2S)}$
Ans:		U		er function to time co	onstant form:	Step 1-1M
	Given equation	on is already i	n time constant	$\frac{20}{S(1+0.2S)}$		
	 Pole at orig For ω=1, N First order corner freq 	gin (1/S) whic Magnitude in c poles (1+0.2S juency the ma	th has a magnitu lB for (1/S) = -2 S). The corner fr	equency is ωc =1/0.2 lope will be -20 dB/d	f -20dB/decade. 2=5rad/sec. Till the	Step 2-1M
	Step 3: Phase	e angle plot				Step 3-2M
	Frequency ω(rad/sec)	Factor 1 K=20, \\$1=	Factor 2 1/S \$2=	Factor 3 1/(1+0.2S) φ3= -tan ⁻¹ 0.2ω	Φ=Φ1+Φ2+Φ3	
		00	-90 ⁰	-1.14^{0}	-91.14 ⁰	
	0.1			0		
	1	00	-900	-11.31 ⁰	-101.310	
	1 5	$\begin{array}{c} 0^{0} \\ 0^{0} \end{array}$	-90^{0}	-45°	-135°	
	1	00		$ \begin{array}{r} -11.31^{0} \\ -45^{0} \\ \hline -63.43^{0} \\ -87.14^{0} \\ \end{array} $	$ \begin{array}{r} -101.31^{\circ} \\ -135^{\circ} \\ -153.43^{\circ} \\ -177.14^{\circ} \end{array} $	

	1					
	S ⁵	1	2	2		
	S ⁴	1	2	2		
	S ³	0	0	0 special c	ase	
				-		
	\$ ²			Routh 'array	failed	Final Routh's
	S1					array-3M
	S ⁰					
		liary equ	uation: A(S	$= S^4 + 2S^2 + 2 = 0$		
	Takiı	ng deriv	ative, dA(S	$= S^{4}+2S^{2}+2=0$)/dS= 4S^{3}+4S=0		
					cient of derivative of auxiliary equation, t	he
	new	Kouth's	array will b	be:		
	S⁵	1	2	2		
	S⁴	1	2 2 4 2 0	2		
	S ³	4	4	2 0		
	S ²	4 1	2	õ		
	S ¹	-4	0	0		
	S ⁰	2	0	0		
	5	2	v	v		Conclusion
	Cond	lusion-				2M.
				ion changes whic	h indicate that there are two poles on righ	
				n is unstable	in maleute that there are two poles on right	
b)					nt from two phase induction motor.	8M
,					•	
		efine se	ervo system	. Draw its block	diagram and explain each block.	
	(i)					Any 4 releva
Ans:	(1)		1			-
Ans:	(1)	Sr.N	AC serve	o motor	2 phase induction motor	point 1M eac
Ans:	(1)	Sr.N o	AC serve	o motor	-	point 1M eac
Ans:		о 1	Low iner	rtia	High inertia	point 1M eac
Ans:		0	Low iner		-	point 1M eac
Ans:		о 1	Low iner	rtia orque-speed	High inertia	point 1M eac
Ans:		о 1	Low iner Linear T character Less sus	rtia orque-speed ristic ceptible to low	High inertia Nonlinear Torque-speed	point 1M eac
Ans:		0 1 2 3	Low iner Linear T character Less sus frequenc	rtia orque-speed ristic ceptible to low y noise	High inertia Nonlinear Torque-speed characteristic Susceptible to low frequency noise	point 1M eac
Ans:		0 1 2	Low iner Linear T character Less sus frequenc Low pov	rtia orque-speed ristic ceptible to low y noise ver	High inertia Nonlinear Torque-speed characteristic Susceptible to low frequency	point 1M eac
Ans:		0 1 2 3 4	Low iner Linear T character Less sus frequenc Low pov applicati	rtia orque-speed ristic ceptible to low y noise ver ons	High inertia Nonlinear Torque-speed characteristic Susceptible to low frequency noise Low and high power applications	point 1M eac
Ans:		0 1 2 3	Low iner Linear T character Less suse frequenc Low pov applicati Diameter	rtia orque-speed ristic ceptible to low y noise ver	High inertia Nonlinear Torque-speed characteristic Susceptible to low frequency noise	point 1M eac
Ans:		0 1 2 3 4	Low iner Linear T character Less sus frequenc Low pov applicati	rtia orque-speed ristic ceptible to low y noise ver ons r of rotor is	High inertia Nonlinear Torque-speed characteristic Susceptible to low frequency noise Low and high power applications	point 1M each Definiton-1M

	<u>(</u>	<u>OR</u>	
Two Phase Induction	Motor	AC Servomotor	
In these motor the curr	ent flows through rotor	In these motors, signal error is converted in to	
due to principle of indu	ction	angular velocity to correct the error.	
Two phase induction n		A servomotor is a rotary actuator that allows	
motor where power is s		for precise control of angular position.	
means of electromagne			
than a Commutator or s		Semanter and in any listing such as	
These motor are widely	y used in high power	Servomotors are used in applications such as	
industrial drives.		robotics, CNC machinery or automated manufacturing.	
Speed of the induction	motor is controlled by	Servomotors are controlled by	
the number of poles pai			
the supply voltage.	is and the frequency of		
Torque producing capa	city is high	Torque speed characteristic is linear.	
Block diagram:	but is the form of mec	chanical position, velocity or accelerations.	Block
	but is the form of mec	chanical position, velocity or accelerations.	
Block diagram: input			
Block diagram: input	Servo	rvo	
Block diagram: input	Servo	Load	
Block diagram: input	Servo amplifier Se	rvo otor	
Block diagram: input	Servo	rvo otor	
Block diagram: input	Servo amplifier Se	rvo otor	
Block diagram: input Error detector	Servo amplifier feedback	rvo otor	
Block diagram: input Error detector	Servo amplifier feedback	rvo otor	Diagra
Block diagram: input Error detector The components of set 1) Error detector-All f	Servo amplifier feedback rvo systems are: eedback control system	rvo otor Load output	Diagra
Block diagram: input Error detector The components of set 1) Error detector-All figenerated by a compa	Servo amplifier feedback rvo systems are: feedback control syste rison of the reference	two botor bo	Diagra
Block diagram: input Error detector The components of set 1) Error detector-All figenerated by a compa crucial task of compar	Servo amplifier feedback rvo systems are: eedback control syste rison of the reference ing the reference and	two tor Load output tems operate from the error signal which is and the output. Error detectors perform the loutput signals. In a purely electrical system	Diagra
Block diagram: input Error detector The components of set 1) Error detector-All figenerated by a comparent crucial task of comparent where the reference at	Servo amplifier feedback rvo systems are: feedback control syste rison of the reference fing the reference and doutput are voltages	two tor tor tems operate from the error signal which is and the output. Error detectors perform the l output signals. In a purely electrical system s, the error detector is a simple comparator.	Diagra
Block diagram: input Error detector The components of set 1) Error detector-All f generated by a compa crucial task of compar where the reference an 2) Servo amplifier-Th	Servo amplifier feedback rvo systems are: feedback control syste rison of the reference ring the reference and od output are voltages e error signals are am	ems operate from the error signal which is and the output. Error detectors perform the l output signals. In a purely electrical system s, the error detector is a simple comparator. applified to drive the motor.	Diagra
Block diagram: input Error detector The components of set 1) Error detector-All f generated by a compa crucial task of compar where the reference an 2) Servo amplifier-Th	Servo amplifier feedback rvo systems are: feedback control syste rison of the reference ring the reference and nd output are voltages e error signals are am	two tor tor tems operate from the error signal which is and the output. Error detectors perform the l output signals. In a purely electrical system s, the error detector is a simple comparator.	Diagra

		$T \cdot F = \frac{G_1G_4(G_2 + G_3)}{(1+G_1)(1+G_4+I_1) + G_1G_4(G_2 + G_2)}$	2M
Q. 3		Attempt any FOUR:	16M
	a)	Draw and explain the construction and working of anyone type of stepper motor.	4M
	Ans:	(Marks may be given to any one type of Stepper motor) <u>Permanent magnet stepper motor:</u> <u>Construction :</u> <u>Diagram :</u>	2M
		Stator winding D2 PH D PH D PH B PH B PH B PH B PH B PH B Stator pole Four phase permanen tmagnet stepper motor	
		Supply $\stackrel{+}{=}$ A_1 B_1 C_1 D_1 A_2 B_2 C_2 D_2 Sw1 Sw2 Sw3 Sw4 Drive circuit	
		 Explanation: The stator of this type of motor has four poles. Around the poles exciting coils are wounded (A, B, C, D) Rotor may be salient or smooth cylindrical type. It is made up of ferrite material and permanently magnetized. 	2M
Page		 Working: When voltage pulses are applied to various phases with the help of driving 	



circuit, the rotor makes 90° revolution called step for each input voltage pulse

- It can be explained as under :
- 1) When switch SW1 is closed exciting the phase A, we have a North pole in phase A due to this excitation. An electromechanical torque is developed and rotor rotates to adjust its magnetic axis with the magnetic axis of the stator.
- 2) Next phase B is excited with switch SW2 after disconnecting phase A. Due to this, rotor further rotates to adjust its magnetic axis with north pole of phase B. Hence it rotates through 90° called step.
- 3) Similarly when phase C and phase D are sequentially excited, the rotor tends to rotate through 90° in clockwise direction, every time when such sequence is repeated.

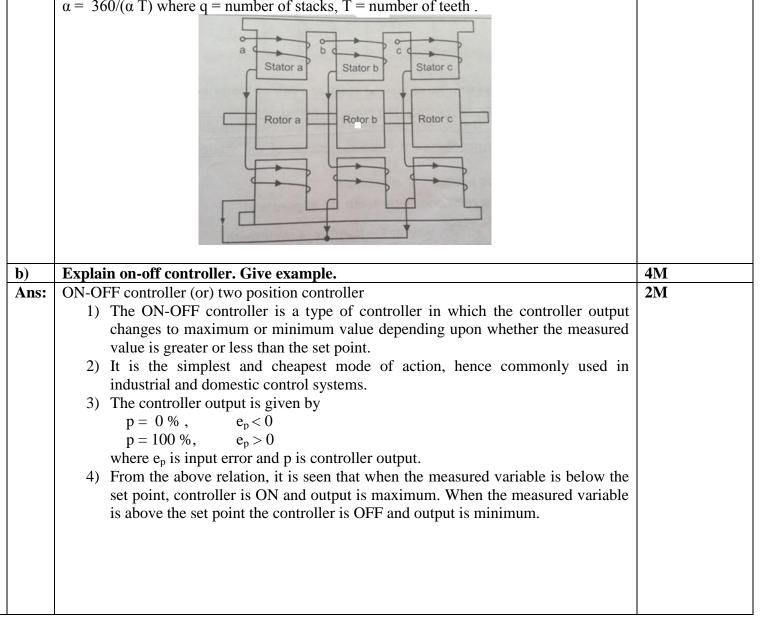
<u>OR</u>

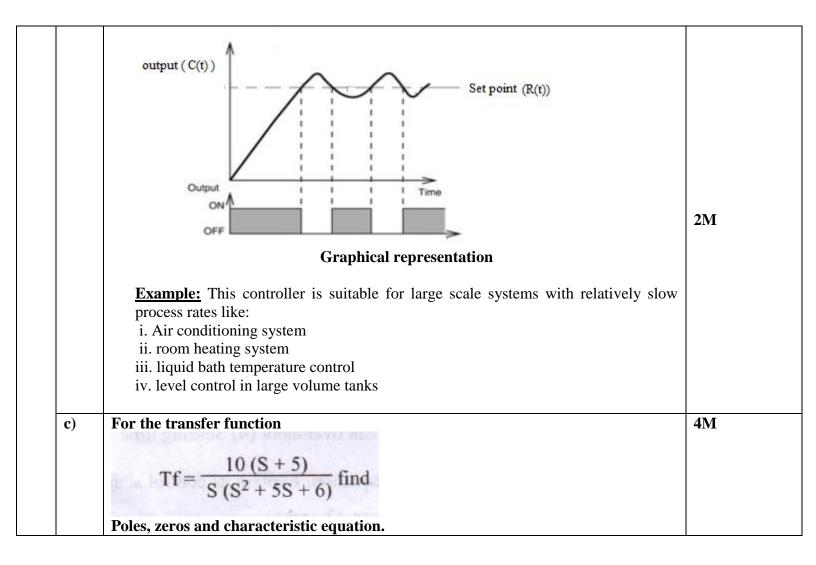
Variable Reluctance Stepper Motor:

Construction :

The figure above represents a variable reluctance stepper motor with single stack whose stator is wound for 3 phases. The stator has six salient poles or teeth with concentrated exciting windings around each one of them. The rotor is made up of slotted steel laminations. It has 2 salient poles without any exciting windings. The coils of the driving circuit are wound around opposite poles such that they are connected in series. The three phases are energized from a DC source with the help of switches.

Working:

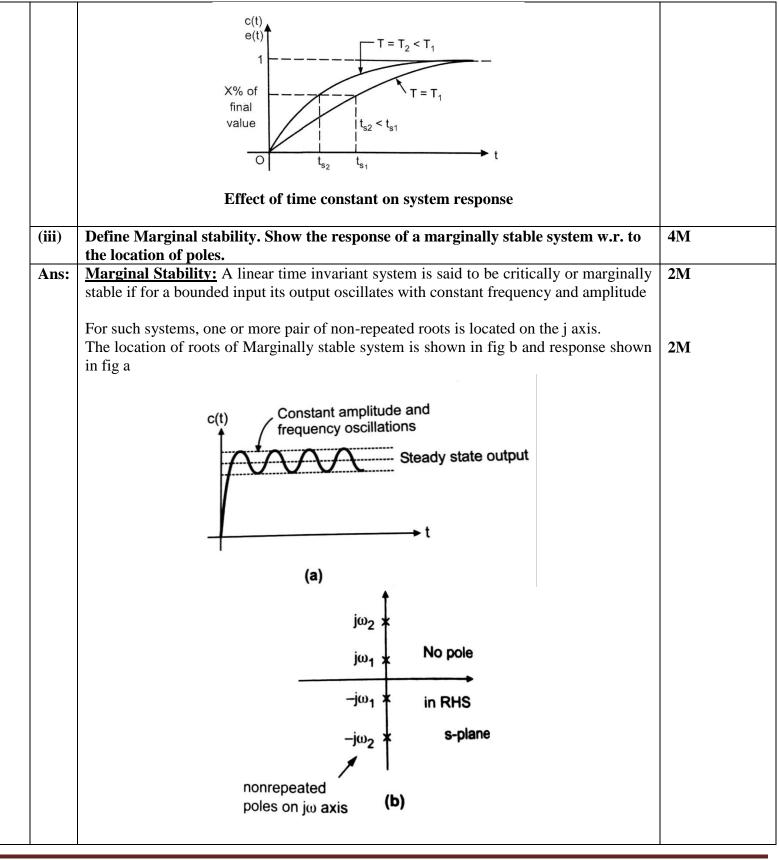

When any one phase is excited by the closing of the switch in series, the corresponding poles act as north and south poles. The rotor between them adjusts itself in minimum reluctance position between stator and rotor. When the next phase is excited by the closing of the second switch keeping the previous phase excited, the magnetic axis of the stator shifts by 30 degrees. So the rotor will also rotate through 30 degree step to attain the new minimum reluctance position. By successively exciting the three phases in specific sequence, the motor is made to complete one revolution.


OR

Multistack variable reluctance stepper motor:

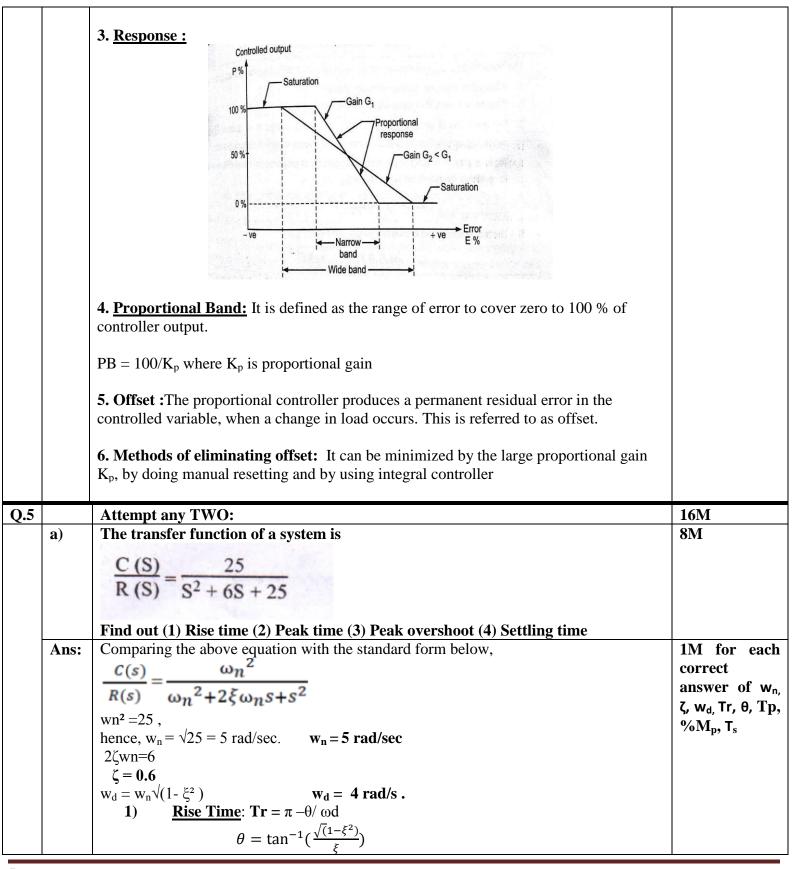
In this type, the windings are arranged in different stacks. The figure represents a three stack stepper motor. The three stacks of the stator have a common frame. The rotors have a common shaft. The stator stacks and rotors have toothed structure with same teeth size. The stators are pulse excited and rotors are unexcited. When the stator is excited, the rotor gets pulled to the nearest minimum reluctance position where the stator and rotor teeth are aligned. The stator teeth of various stacks are arranged to have a progressive angular displacement of :

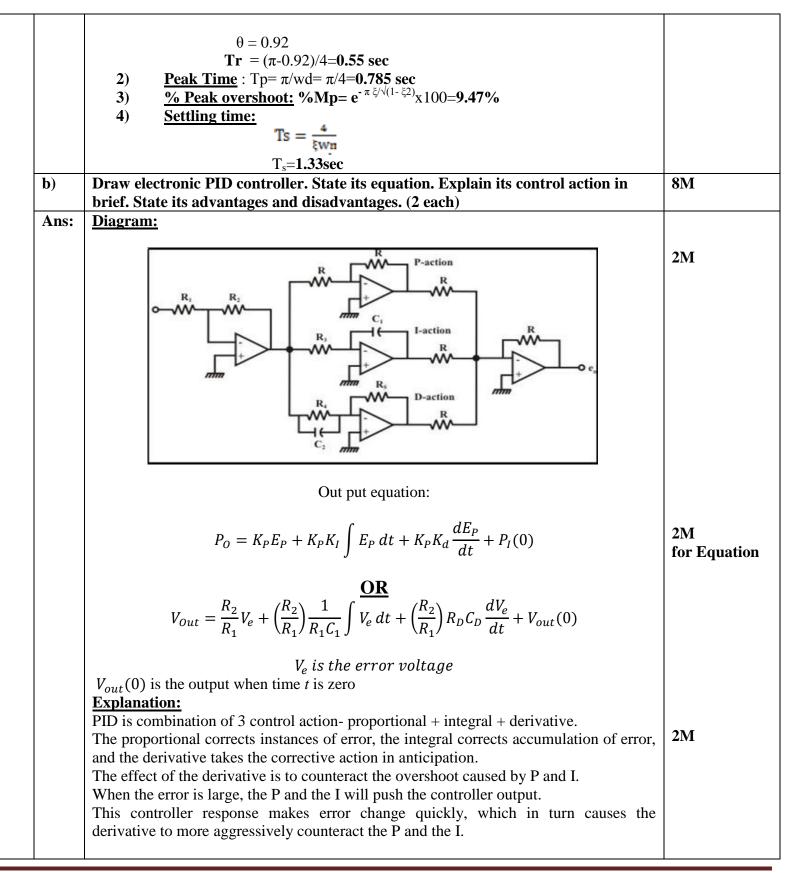
 $\alpha = 360/(\alpha T)$ where q = number of stacks, T = number of teeth.



Ans:		
	i) poles are obtained by Equating denominator	
	of the transfer function to zero.	
	$(ie) S(S^2 + 5S + 6) = 0$	
	5=0, 57+59+6=0	
	⇒ 5 ² + 35+25+6=0 (2 Morius)	
	S(S+3)(S+2)=0	2 Marks
	(5+3)(5+2) = 0	
	(, S=-3, S=-2	
	Total 3 poles, They are S=0, S=-3, S=-2	
	11) zero's are obtained by Equating numerator	
	of the T/F to Zero.	
	10(3+5)=0 (1 Mark)	1 Mark
	", There is one zero at S=-5	
	(iii) Characteristic Equation is given by	
		1 Mark
	5/5 + 55 7 6) - (I Mark)	I IVIUI II
	$S(s^{2}+5s+6)=0$ (1 March) $\Rightarrow S^{3}+5S^{2}+6S=0$	
d)		4M
d) Ans:	$\Rightarrow 5^3 + 55^2 + 65 = 0$	4M Each
	 ⇒ 5³ + 55[°] + 65 = 0 Define: (i) Gain Margin (ii) Phase Margin (iii) Band width (iv) Cut off frequency. (i) Gain Margin: The margin in gain allowable by which gain can be increased till 	4M Each
	 ⇒ s³ + 5s² + 6s = 0 Define: (i) Gain Margin (ii) Phase Margin (iii) Band width (iv) Cut off frequency. (i) Gain Margin: The margin in gain allowable by which gain can be increased till system reaches on the verge of instability is called as Gain Margin (ii) Phase Margin: The amount of additional phase lag which can be introduced in the system till the system reaches on the verge of instability is called as Phase Margin. (iii) Bandwidth: It is defined as the range of the frequencies over which the system will respond satisfactorily. It is also defined as range of the frequency over magnitude of 	4M Each
	 ⇒ s³ + 5s² + 6s = 0 Define: (i) Gain Margin (ii) Phase Margin (iii) Band width (iv) Cut off frequency. (i) Gain Margin: The margin in gain allowable by which gain can be increased till system reaches on the verge of instability is called as Gain Margin (ii) Phase Margin: The amount of additional phase lag which can be introduced in the system till the system reaches on the verge of instability is called as Phase Margin. (iii) Bandwidth: It is defined as the range of the frequencies over which the system will 	4M Each
	 ⇒ s³ + 5s² + 6s = 0 Define: (i) Gain Margin (ii) Phase Margin (iii) Band width (iv) Cut off frequency. (i) Gain Margin: The margin in gain allowable by which gain can be increased till system reaches on the verge of instability is called as Gain Margin (ii) Phase Margin: The amount of additional phase lag which can be introduced in the system till the system reaches on the verge of instability is called as Phase Margin. (iii) Bandwidth: It is defined as the range of the frequencies over which the system will respond satisfactorily. It is also defined as range of the frequency over magnitude of 	4M Each
	 ⇒ s³ + 5s³ + 6s = 0 Define: (i) Gain Margin (ii) Phase Margin (iii) Band width (iv) Cut off frequency. (i) Gain Margin: The margin in gain allowable by which gain can be increased till system reaches on the verge of instability is called as Gain Margin (ii) Phase Margin: The amount of additional phase lag which can be introduced in the system till the system reaches on the verge of instability is called as Phase Margin. (iii) Bandwidth: It is defined as the range of the frequencies over which the system will respond satisfactorily. It is also defined as range of the frequency over magnitude of closed loop response does not drop by more than 3db from its zero frequency value. (iv) Cut off frequency: Frequency at which the magnitude of closed loop response in 	4M

 $S_{G}^{(s)} = \frac{K}{S(s+1)(s+2)}$ The char. Equation is 1+G(S) H(S) = 0 1 Mark $\Rightarrow 1 + \frac{\kappa}{S(S+1)(S+2)} = 0$ ⇒ S(S+1) (S+2) +K =0 ⇒ s²+3s²+2s+K=0 is the char. Eqn Now the Routh's averay is $5^3 | 1 | 2$ 2 Marks For stable system all the elements of First column of Routh's averay should be the. (greater than zero) (greater man zece) Hence for 3° clement K70 and too 5' element : 6-K 70 1 Mark : 6-K 70 :, 67K Hence to make system stable ronge of K is ockc6 Q. A) **Attempt any THREE: 12M** 4 Derive the transfer function of closed loop transfer function. (i) 4MTransfer Function is defined as the ratio of Laplace transform of Output to that of 1MAns: Laplace transform of input under the assumption that all initial conditions are zero. **<u>Block diagram:</u>** (for negative feedback system) 1ME(s) R(s) G(s) →C(s) ∓ B(s) H(s)


	$\frac{\text{Derivation:}}{G(s) = \frac{C(s)}{E(s)}}$	2M
	$E(s) = \frac{C(s)}{G(s)}$	
	$C(s) = E(s) \times G(s)$	
	$B(s) = C(s) \times H(s)$	
	E(s) = R(s) - B(s) (for negative feedback) [.I.]	
	Substitute for $E(s) \& B(s)$ in [.I.]	
	$\frac{C(s)}{G(s)} = R(s) - C(s) H(s)$	
	$C(s) \{\frac{1}{G(s) + H(s)}\} = R(s)$	
	$C(s) \frac{[1+G(s)H(s)]}{G(s)} = R(s)$	
	Transfer Function:	
	$\frac{C(s)}{R(s)} = \frac{G(s)}{1+G(s)*H(s)}$	
(ii)	Define Time constant. State its significance on system response.	4M
Ans:	Definition: Time Constant of a system is defined as the time required by the system output to reach 63.2% of its final value during the first attempt.	2M
	Significance of time constant: The time constant gives an indication as to how fast a system tends to reach the final value. A large time constant corresponds to slow and sluggish system . A small time constant corresponds to fast response.	2M

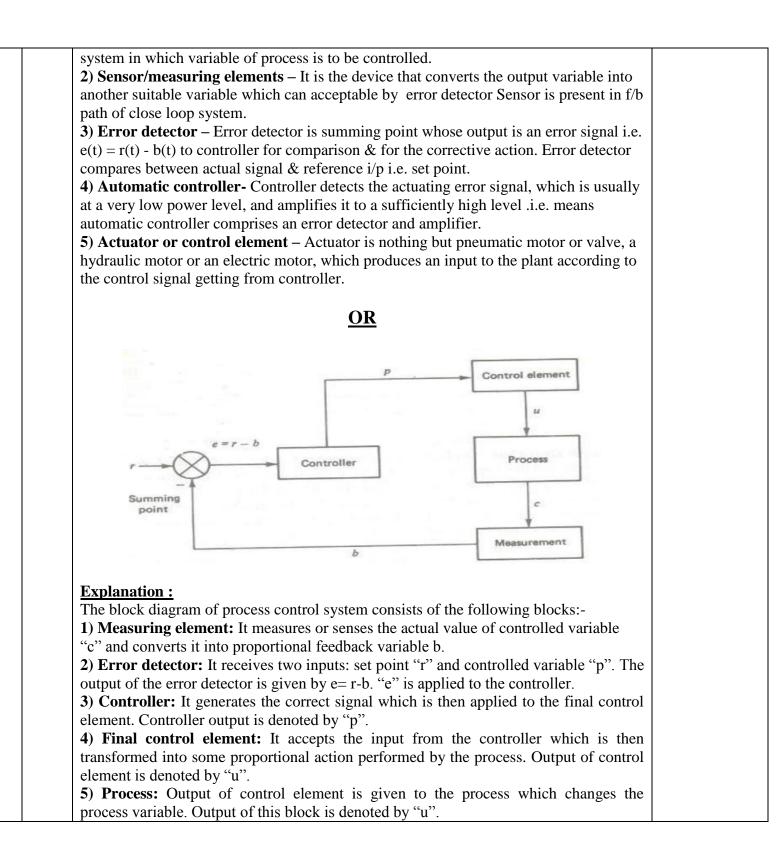


(iv) Ans:	Compare stepper motor and DC servo motor (any 6 points).				
Ans:	Stepper Motor	DC Servo Motor	4M		
	Control winding is absent	Control winding is present	(any other		
	Brushes are absent	Brushes are present	relevant		
	Maintenance is low	Maintenance is high	points)		
	Stepper motor is electromechanical device which activates a train of pulses of step angular or linear moments	Servomotor is a device which gives angular moment			
	Load and no load conditions do not affect the running current of stepper motor.	These conditions affect the running current.			
	Speed (Stepping rate) is governed by frequency of switching	Speed is controlled by supply voltage			
	Number of steps can be precisely controlled	It gives continuous rotation depending upon control voltage.			
B)	Attempt any ONE:		6M		
(i)	A unity feedback system has		6M		
	$G(S) = \frac{10 (S + 1)}{S(S + 2) (S + 10)}$				
	Find (1) Type of the system (2) Error co	efficients $K_{p2}K_{V2}$, K_a and steady state			
	errors	•			

1MAns: 501. For unity feed back system :. H(B) = 1 (1) to determine type of system it is required to bring G(S) H(S) into its time constant form. $G(S) H(S) = \frac{10(S+1)}{S(S+2)(S+10)}$ (note: Marks can be given $= \frac{10(1+5)}{52(1+5+5)10(1+6+15)}$ even if equation is not $= 0.5(1+3) \\ 5(1+0.55)(1+0.15)$ in the time constant form) comparing with standard form the type of system is 1 ii) Error coefficients Kp, Kv, Ka and steady state errors $K_{P} = \lim_{s \neq 0} G(s) H(s)$ $= \lim_{s \to 0} \frac{10(s+1)}{5(s+2)(s+10)} = \infty$ $K_{V} = \lim_{s \neq 0} SG(s) H(s)$ = $\lim_{s \to 0} \frac{s \cdot o(s+1)}{s(s+2)(s+10)} = 1/2 = 0.5$ **3M** K_a = lim s² G(s) H(s) s→0 = $\lim_{s \to 0} \frac{s^2}{s(s+2)} \frac{(s+1)}{(s+2)} = 0$ Therefore e_{ss} for unit step input =0 $2\mathbf{M}$ e_{ss} for unit ramp input =1 e_{ss} for unit parabolic input $=\infty$ (ii) Explain proportional controller action with equation and response. Define **6M** Proportional Band and offset. State the methods to eliminate offset. **1. Proportional Controller action :** 1M each Ans: In this mode the output of controller is proportional to the input error signal. A linear relationship exists between controller output and error. Therefore over some range errors about a set point, each value of error has a unique value of controller output. i.e. one to one correspondence. 2. Equation of P control action : The P control action can be represented as $P = K_p e_p + P_o$ Where K_p=proportional gain P=Controller output $e_p = error signal$ P_0 = controller output without error

	 <u>Advantages:</u> 1.Process independent The best controller where the specifics of the process cannot be modeled 2.Leads to a "reasonable" solution when tuned for most situations. 3.Inexpensive: Most of the modern controllers are PID. 	1M(any relevant point)
	Disadvantages: 1.Not optimal 2.Tuning can be difficult 3.Can be unstable unless tuned properly. 4.Not dependent on the process 5.Hunting(Oscillation about an operating point) 6.Derivative noise amplification	1M(any relevant point)
c)	(i) Draw and explain synchro error detector.(ii) Compare AC servo motor and DC.servo motor. (any 6 points)	8M
Ans:	(i) Diagram-	2M
	A.C. Synchro transformer Fig. 1 synchro error detector	
	Explanation: Synchro transmitter along with synchro control transformer is used as error detector. The control transformer is similar in construction to that of synchro transmitter except that its rotor is cylindrical in shape. Therefore, the flux is uniformly distributed in the air gap. The output of the Synchro transmitter is given to the stator windings of the control transformer as shown. The voltage induced in the stator coils and corresponding currents of the transmitter are given to the control transformer stator coils circulating currents of same phase but different magnitude will flow through both set of stator coils. This establishes an identical flux pattern in the air gap of control transformer. The flux pattern in the air gap of control transformer will have the same orientation as that of transmitter rotor. The voltage induced in the transformer rotor will be proportional to the cosine of angle between the two rotors. The output equation is given by : $p_0(t) = V$ since $t + cos d$	2M
	$e_0(t) = V_r \sin \omega t + \cos \phi$ where Vr sinwt = input voltage to the transmitter rotor and ϕ is the angular difference between both rotors. When ϕ =90 both rotors are perpendicular to each other and the output voltage is zero. This position is called electrical zero and is used as reference	

		positio		ervo motor and D	OC servo mo	tor.	
		Sr. No.		servo motor		DC servomotor	4M (any 6 points)
		1	Low powe	er output		High power o/p	
		2	Maintenance is less			Maintenance is more maintenance	
		3	3 No Brushes / commutators absent			Brushes / problem, commutators present	
		4	Stable and smooth operation			Noisy operation	
		5	Less prob	lem of stability		More problem of stability	
		6	No RF noise because of absence of brushesBrushes produce RF noise.				
		7	Non – line	ear characteristics]	Linear characteristics	
		8	current is	e supply to rotor, supplied inductive agnetic field of st	ely by	Voltage is given through power supply to rotor.	
		9	Applicatio	ons:- low power(co s, recorders etc.)	omputer .	Application: high power (machine tools, robotics)	
Q.6		Attem	16M				
	a)	Draw	4M				
		and o					
	Ans:	<u>Effect</u>					
		No.	Range of ζ	Range of ζ	Nature of	System Classification	1M each
					response		
		1	$\zeta = 0$	Purely imaginary	Oscillations with constant amplitude & frequency	$C_{ss} = 0$ Undamped	
		2	0 < ζ < 1	Complex Conjugates with negative real parts	Damped Oscillations	$S = 0.8$ c_{ss} c_{ss} c_{ss} t Underdamped	



	3	ζ=1	Real, Equal and	Critical &	00			
	5	ς – 1	Negative	Pure	1			
			itegative	exponential				
				exponential	Critically downed			
	4	1 - 8	Real, unequal	Purely	Critically damped			
	4	$1 < \zeta < \infty$	& Negative	exponential	1			
			a negative	slow and				
				sluggish				
				siuggisti	Over damped			
b)	Deriv	e the unit ster	o response of a l ^s	st order system		4M		
Ans:				order system.		4141		
Ans.								
	10($\frac{s}{s} = \frac{1}{1+s}$				1M		
	Vi(s	s) 1+s	RC					
	For U	nit Step Input						
		1						
	Vi(S)	=				1M		
		s						
	So,							
	/	ຸ 1	$\frac{A}{C} = \frac{A}{s} + \frac{B}{1+s}$	3				
	Vo(s							
		e A'' = 1 & B''	=-RC					
	So,							
	Vola	$h = \frac{1}{2} - \frac{1}{2}$	<u></u>					
	V U(s	$F_{s} = \frac{1}{s} - \frac{F}{1+s}$	sRC			1M		
	Takin	g Laplace inve	erse, we get					
			•					
	Vo(t)	$= 1 - e^{-\frac{1}{RC}}$	$= C_{ss} + C_t(t)$			1M		
			t					
	Css=							
c)	State two advantages and disadvantages of frequency response analysis.							
Ans:	Adva	4M Advantages -1						
		M each for 2						
					bop system can be found out from s by using the methods such as	points		
		quist stability			, ,	1		
	2. Th							
	fre							
	3. Fre							
	ava							
					sponse of a system and its step			
		• 1 1		1 1. 1 1	from the frequency response.	i i i i i i i i i i i i i i i i i i i		

	 Disadvantages: 1. Time consuming 2. Out dated methods compared to digital computation , simulation and modeling. 3. Methods can be applied mainly to linear systems. 4. Not recommended for systems with larger time constant transfer function by writing differential equations. 							
d)	Find out the stability of the following system with characteristic equation. $S^4 + 2S^3 + 8S^2 + 4S + 3 = 0$							
Ans:								
	S ⁴ 1 8 3	3M						
	S ³ 2 4							
	S ² 6 3							
	S ¹ 3							
	5° 3	111						
0)	As there is no sign change in 1st column of Routh's array, system is stable.	1M 4M						
e) Ans:	Draw the block diagram of process control system and explain each block. Diagram-	4111						
	$\begin{array}{c} \hline R(t) \\ \hline E(t) \\ \hline B(t) \\ \hline Sensor \\ \hline Automatic controller \\ \hline \end{array}$	2M (any relevan answer)						
	 <u>Explanation -</u> Process control system consists of process or plant, sensor, error detector, automatic Controller, actuator or control element. 1) Process or plant- process means some manufacturing sequence. It has one variable or multivariable output. Plant or process is an important element of process control 	2M (any relevan answer)						

