

Subject Code:17538

Model Answer

Important Instructions to examiners:

1) The answers should be examined by keywords and not as word-to-word as given in the model answer scheme.

2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.

3) The language errors such as grammatical, spelling errors should not be given more Importance. (Not applicable for subject English and Communication Skills.)

4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.

5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.

6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.

7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No.	Question & its Answer		Remark	Total Marks
01 A)	Attempt any THREE			12
a)	Sketch the diagrams of	the four standard test signals.	04	
Ans.	Test Signal	Graphical representation	01 mark each	
	Unit Step Input	r(t)		
	Unit Ramp Input	r(t) Slope = A		
	Unit Parabolic Input	r(t) Slope = At		
	Unit Impulse	$ \begin{array}{c} r(t) \\ \uparrow \\ \downarrow \\ \downarrow \\ \hline \\ \downarrow \\ \downarrow \\ \downarrow \\ \downarrow \\ \downarrow \\ \downarrow \\ \downarrow$		
b)	Define the following ter	rms related with frequency response:	04	

Subject Code:17538

<u>Model Answer</u>

	Descenant Fragman		
	i) Resonant Frequency		
	ii) Cut-off frequency		
	iii) Gain margin		
	iv) Phase margin		
Ans.	(i) Resonant Frequency: Frequency at which resonant peak	01 mark each	
	takes place in the system response.		
	(ii) Cut off frequency: Frequency at which the magnitude of		
	closed loop response is 3db down from its zero frequency		
	value.		
	(iii) Gain margin: Margin in the gain allowable by which gain		
	can be increased till system reaches on the verge of		
	instability.		
	(iv) Phase Margin : The amount of additional phase lag which		
	can be introduced in the system till system reaches on the		
	verge of instability		
c)	Define stable, unstable, critically stable & conditionally stable	04	
	system		
Ans.	i) Stable system :-	01 mark each	
	If the poles are located on the left half of the s-plane system is said		
	to be stable.		
	OR		
	When the system is excited by a bounded input, the output is also		
	bounded and controllable. In the absence of the input, output must		
	tend to zero irrespective of the initial condition.		
	tend to zero mespective of the mitial condition.		
	ii) Unstable system :-		
	If the poles are located on the right half of the s-plane system is said		
	to be unstable.		
	OR		
	When the system is excited by a bounded input, the output is		
	unbounded.		
	iii) Critical stability: -		
	If the poles (non repeated) are located purely on imaginary axis of s-		
	plane, system is said to be critically stable.		
	iv) Conditional stability:-		
	If the Stability of system depends on condition of parameter of the		
	system, such a system is called conditionally stable system.		
	system, saon a system is cance conditionally stable system.		
d)	Differentiate between P and I control actions (Any four points).	04	
u)	Differentiate between 1 and 1 control actions (Any four points).		
L			

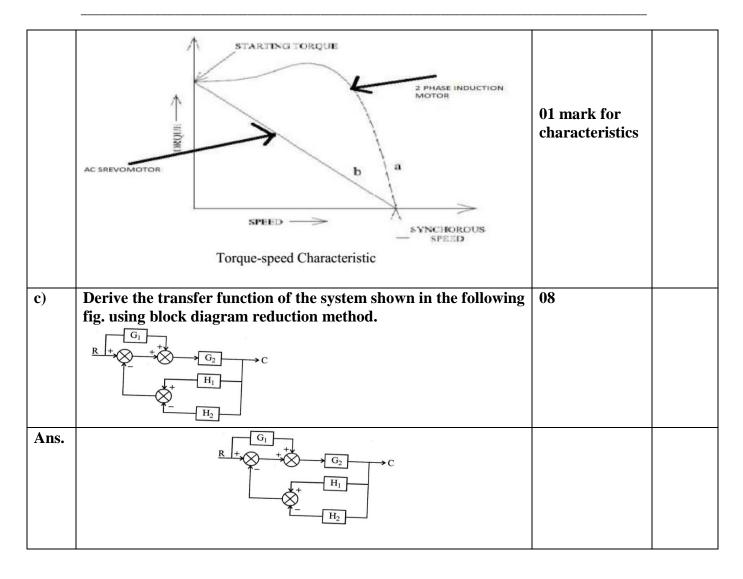
Subject Code:17538

C	Control action	Р	Ι		
E	Equation	Pout=KpEp+P0	$P(t) = K_I \int_0^t e_p dt + P(t)$	0)	
N	lature of output	Controller output is proportional to error	Rate of change of controller output is proportional to error	01 mark each (Any four points)	
N	Jature of response	controller A olf 100%			
)ffeet	of ,	Eliminates offset		
R	Offset Response of Error	Generates offsetRespondstodirection of error	Eliminates offset Responds to size of error		
	peed of action	Moderate	Slow		
At	tempt any ONE				0
Fii		er function of	the given R-C	06	
cir	$\mathbf{r}_{i(t)} \overset{\mathbf{R}}{\underbrace{\bigvee_{i(t)}}_{i(t)}} \mathbf{v}_{i(t)}$	$\frac{1}{1} C \qquad $			
	put equation :			02 marks	
V _{in} La	$a_{n} = R \ i(t) + \int \frac{i(t)}{C}$ applace Transform: $a_{n}(s) = RI(S) + \frac{I(S)}{C}$				
V _{oi}	$utput equation :$ $ut = \int \frac{i(t)}{C} dt$			02 marks	
V _{o1}	splace Transform: $_{ut}(s) = \frac{I(S)}{C}$				

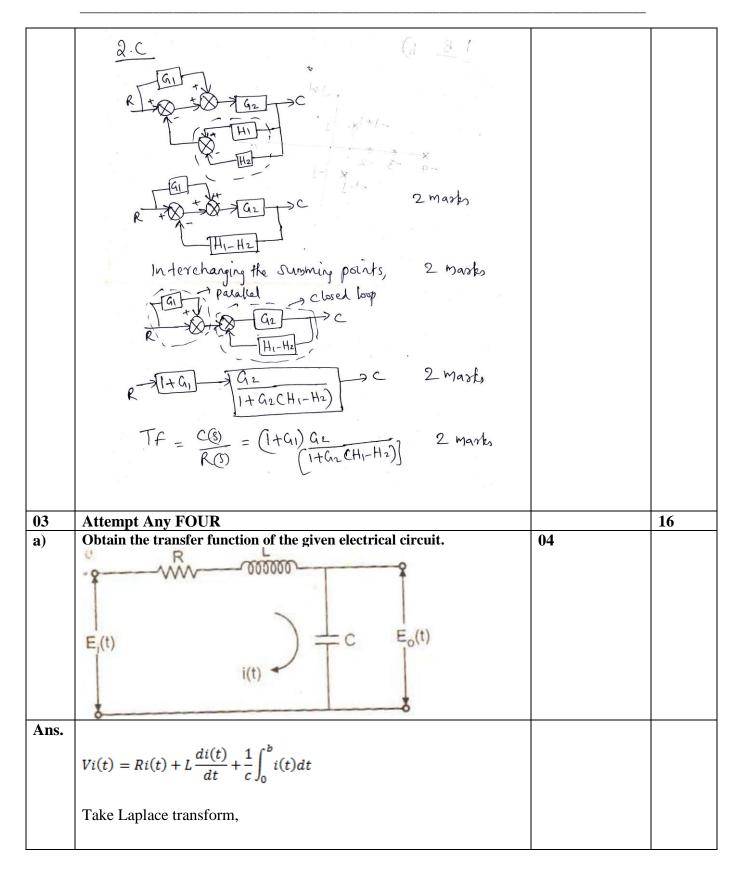
Subject Code:17538

	Transfer function TF= $\frac{V_{out}(s)}{V_{in}(s)} = \frac{\frac{I(S)}{C}}{RI(S) + \frac{I(S)}{C}}$ $TF = \frac{1}{RCS + 1}$	02 marks	
b)	For the given function $F(s)$, find the poles & zeros present and	06	
	mark them on the S-plane :		
	$F(S) = \frac{(S+2)(S+3)}{(S+4)(S+1+j)(S+1-j)}$		
Ans.	Zeros: -2,-3	02 marks	
	Poles:-4, -1+j, -1-j	02 marks	
	1 B B -1+jxji	02 marks for pole-zero plot	
02	$-\frac{x}{-q} -3 -2 \frac{x}{-1-j}$		1(
02 a)	Attempt any TWOThe characteristics equations of two systems are given.	08	16
<i>a)</i>	Construct the Routh's Hurwitz table & comment on the stability	00	
	of the Systems:		
	(i) $S^{3}+4S^{2}+8S+12=0$ (ii) $S^{4}+S^{3}-S-1=0$		
Ans.	(ii) S ⁴ +S ³ -S-1=0 (i)S ³ +4S ² +8S+12=0 S^3 1 8 S ² 4 12 S 5 0 S ⁰ 12 0	04 marks (03 marks for Routh array and 01 mark for conclusion)	
	No sign change in the first column of Routh array, so system is stable.		

Model Answer


	-						
	(ii) S ⁴ +S ³ -S-1=	=0					
	S^4	1	0	-1	1		
	S^3	1	-1	1			
	S^2	1	-1		-		
	S	0	0				
	$\frac{S}{S^0}$	0					
	All element of Routh array sp Form an auxill	ecial case I	I.	Routh criteri	a fails. Consider	04 marks (03 marks for Routh array and 01 mark for conclusion)	
	$A(S)=S^2-$						
	$\frac{dA(S)}{dS} = 2.$	s - 0 = 1	25				
	From auxillary	equation.	Construct again	n Routh arra	ıy,		
	\mathbf{S}^4	1	0	-1]		
	S^3	1	-1				
	S^2	1	-1				
	\mathbf{S}^{I}	2	0				
	\mathbf{S}^{0}	-1					
			I		2		
	From first colu system is unsta		•	U	n change. Hence s-plane.		
b)	with neat diag	gram. characteris	stics of AC ser	rvomotor. I	e stepper motor n what way it is r.	08	
Ans.			•			03 marks for	
	that there is no is made of sof windings as sh	b permanent ft iron stam nown in the	t magnet either pping of variab figure. The st	on rotor or ble reluctanc tator is also	rized by the fact stator. The rotor e and carries no made up of soft ad carries stator	explanation	

			01 marks for diagram
As show he roto hemselof the leenergy vinding 50 in shase H vill ma Thus, b upply	gn ce is ts of of C n.		
hangir lockw	g the sequence of sup	of rotation could be reversed b ply to the phase, that is, for ant ld be given in the sequence of ACB.	i-
hangir	ag the sequence of sup ise rotation, supply shoul AC servo motor	ply to the phase, that is, for ant	i-
hangir lockw i) Sr.	ag the sequence of sup ise rotation, supply shoul AC servo motor	ply to the phase, that is, for ant ld be given in the sequence of ACB.	i- 03 marks for
hangir lockwi i) Sr. No	g the sequence of sup ise rotation, supply shoul AC servo motor	ply to the phase, that is, for ant ld be given in the sequence of ACB. Normal induction motor	i-
hangir lockwi i) Sr. No 1	AC servo motor Low inertia Linear Torque-speed	ply to the phase, that is, for ant ld be given in the sequence of ACB. Normal induction motor High inertia Nonlinear Torque-speed	i- · 03 marks for any three
hangir lockwi i) Sr. No 1 2	AC servo motor Low inertia Linear Torque-speed characteristic Diameter of rotor is	ply to the phase, that is, for ant ld be given in the sequence of ACB. Normal induction motor High inertia Nonlinear Torque-speed characteristic	i- · 03 marks for any three
hangir lockwi i) Sr. No 1 2 3	AC servo motor Low inertia Linear Torque-speed characteristic Diameter of rotor is small	ply to the phase, that is, for ant ld be given in the sequence of ACB. Normal induction motor High inertia Nonlinear Torque-speed characteristic Diameter of rotor is large	i- · 03 marks for any three
hangir lockwi i) Sr. No 1 2 3 4	AC servo motor Low inertia Linear Torque-speed characteristic Diameter of rotor is small X/R ratio is less Less susceptible to	ply to the phase, that is, for ant Id be given in the sequence of ACB.Normal induction motorHigh inertiaNonlinear Torque-speed characteristicDiameter of rotor is largeX/R ratio is moreSusceptible to low frequency	i- · 03 marks for any three



Subject Code:17538

Subject Code:17538

V _i (s)	$= I(s) [R + SL + \frac{1}{sc}]$		
	$= \frac{1}{[R + SL + \frac{1}{S.C}]} - \dots (1)$ $\frac{1}{c} (i.dt) = (t)dt$	V _i (s) -01 Mark	
	e, Vo (s) = $\frac{1}{s.c}$ I(s) SC.Vo(s)(2)		Vo(S)- 01 Mark
	ituting value of I (s) in equati $\frac{\mathbf{p}(\mathbf{s})}{\mathbf{s}} = \frac{1}{[\mathbf{R} + \mathbf{SL} + \frac{1}{S.C}]}$	01 Mark Calculation	
	$\frac{1}{SC.[R + SL + \frac{1}{S.C}]}$		01 Mark Final Ans
Vi(s)	$\frac{1}{S^2 LC + SRC + 1]}$		
Com	pare stepper motor and DC	servo motor(any four points).	04
•	S4 M-4	DC Commente	
<u>No.</u>	Stepper Motor No control winding	DC Servomotor Control winding is present	01 mark each
2	Number of steps can be precisely controlled	It gives continuous rotation	point (any four
3	It is brushless	It has brushes	points)
4	Due to absence of brushes, no wear and tear and hence maintenance is not required.	Maintenance is required	

Subject Code:17538

· · · · · · · · · · · · · · · · · · ·		1
	5 Load and No load These conditions affect the	
	condition does not affect running current	
	the running current of	
	stepper motor	
	6 Speed (stepping rate) is Speed is controlled by supply	
	governed by frequency of voltage	
	switching	
c)	Derive the unit step response of first order system. Draw its response.	04
Ans.	The T.F. of First order system is ,	
1 1100	$V_0(s) = 1$	
	$\frac{Vo(s)}{Vi(s)} = \frac{1}{1 + sRC}$	
	Vi(s) = 1 + sRC	
	4	01 Mark
	For Unit Step Input $V_i(s) = \frac{1}{s}$	
	S	
	1 A B	
	So, Vo(s) = $\frac{1}{s(1+sRC)} = \frac{A}{s} + \frac{B}{1+sRC}$	
	S(ITSNU) S ITSNU	
	Where $A' = 1 \& B' = -RC$	
	1 RC	
	So, $Vo(s) = \frac{1}{s} - \frac{RC}{1+sRC}$	01 Mark
	s 1+sRC	
	Taking Laplace inverse, we get	
	t	
	$Vo(t) = 1 - e^{-\frac{t}{RC}} = C_{ss} + C_t(t)$	
		01 Mark-
	_ <u>t</u>	
	So, $C_{ss} = 1$ and $C_t(t) = -e^{-\frac{t}{RC}}$	Css, Ct(t)
	The Response is shown in fig.	
	v _o (t)	
		01 Mark for
	A	Response curve
	$A(1 - e^{-t/RC})$	
		· · · ·

Subject Code:17538

d)	State the concept of neutral zone & proportional band.	04
Ans.	Neutral Zone: In virtually any practical implementation of the two – position controller, there is an overlap as e_p increases through zero or decreases through zero, In this span, no change in controller output occurs. Fig shows p versus e_p for ON-OFF Controller. Until an increasing error changes by Δe_p above zero, the controller output will not change state. In decreasing it must fall Δe_p below zero before the controller observes to the OV rating	02 Marks for Neutral Zone
	controller changes to the 0% rating. p (%) $f = 0$	02 Marks for Proportional Band
	Proportional Band significance - The range of error to cover the 0% to 100% controller output is called proportional band. Which specifies the percentage error that result in a 100% change in the controller output.	
e)	Draw the diagram of potentiometer as error detector and describe its working.	04
Ans.		

Subject Code:17538

	e D.C. amplifier e M	02 Marks Diagram	
	Explanation : DC Motor control systems potentiometers can be used as position feedback as shown . This type of arrangement allows comparison of two remotely located shaft positions. The output voltage is taken across the variable terminals of the two potentiometers. Output of this differential potentiometer is $=Ks[\theta r(t) - \theta L(t)]$ This is then is fed to DC Amplifier, which is further amplifying the armature current of the DC Motor. The motor, in turn moves and with it the shaft connected to the load potentiometer in such a way as to make the output voltage zero. That is the output (Load) potentiometer shaft moves in accordance with the shaft of the input(reference) potentiometer.	02 Marks Explanation	
Q4 A)	Attempt Any THREE		12
a)	Draw block diagram of Process Control System& explain each blocks.	04	
	R(t) Amplifier Actuator Process or plant - B(t) Sensor Automatic controller	02 Marks Diagram	
	 Explanation - Process control system consists of process or plant ,sensor, error detector, automatic Controller, actuator or control element. 1) Process or plant- process means some manufacturing sequence. It has one variable or multivariable output. Plant or process is an important element of process control system in which variable of process is to be controlled. 2) Sensor/measuring elements – It is the device that converts the output variable into another suitable variable which can acceptable by 	02 Marks Explanation	

Subject Code:17538

<u>Model Answer</u>

error detector Sensor is present in f/b path of close loop system. 3) Error detector – Error detector is summing point whose output is an error signal i.e. e(t) = r(t) - b(t) to controller for comparison & for the corrective action. Error detector compares between actual signal & reference i/p i.e. set point. 4) Automatic controller- Controller detects the actuating error signal, which is usually at a very low power level, and amplifies it to a sufficiently high level .i.e. means automatic controller comprises an error detector and amplifier. 5) Actuator or control element – Actuator is nothing but pneumatic motor or valve, a hydraulic motor or an electric motor, which produces an input to the plant according to the control signal getting from controller. OR Control element и Process Controller Summing c point Measurement b **Explanation :** The block diagram of process control system consists of the following blocks:-1) Measuring element: It measures or senses the actual value of controlled variable "c" and converts it into proportional feedback variable b. 2) Error detector: It receives two inputs: set point "r" and controlled variable "p". The output of the error detector is given by e= r-b. "e" is applied to the controller. 3) Controller: It generates the correct signal which is then applied to

the final control element. Controller output is denoted by "p".

4) Final control element: It accepts the input from the controller which is then transformed into some proportional action performed by the process. Output of control element is denoted by "u".

5) **Process:** Output of control element is given to the process which changes the process variable. Output of this block is denoted by "u".

Subject Code:17538

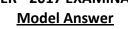
b)	For the given transfer function $T.F. = \frac{S+8}{S(S+4)S^2 + 6S + 25)}$	04
	$T.F. = \frac{1}{S(S+4)S^2 + 6S + 25)}$	
	Find i) Poles, ii)Zeros, iii)Characteristics equation & iv) order of the system	
Ans.	1) Poles: We can get poles from equations in the denominator 1)($s^2 + 6s + 25$) = 0. For the quadratic equation $ax^2+bx+c=0$, the poles are $=\frac{-b\pm\sqrt{b^2-4ac}}{2a}=\frac{-6\pm\sqrt{6^2-4.1.25}}{2.1}=$	01 Mark
	i.e. $-\frac{-6\pm\sqrt{-64}}{2} = \frac{-6\pm8j}{2} = -3\pm4j$ 2) (s + 4) = 0 So, S = -4	
	3) $s = 0$	
	Therefore poles are 0, -4, -3+ 4j & -3-4j	
	2)Zeros: We can get zeros from equation in the numerator	01 Mark
	So for (s+8) equation we can get roots by comparing it with zero.	
	(s+8)=0	
	So zeros i.e. roots of the equation are -8	
	3)Characteristic equation: $s(s+4)(s^2+6s+25) = 0$	01 Mark
	4)Order of the system: It is highest power of 'S' at denominator of closed loop T.F. So in this equation order of system is '4'.	01 Mark
c)	State two advantages and disadvantages of frequency domain analysis (response).	04
Ans.	Advantages : 1)It is easy to get a frequency response in laboratory with good accuracy	01 Mark each (any two advantages)

Subject Code:17538

	2)It is useful to determine the transfer function of complicated system, which can not be determined by analytical technique.	
	3)The signal generators and precise measuring instruments for generation of sinusoidal signals of various ranges of frequency and amplitude are readily available.	
	4)The absolute stability and relative stability of closed loop control system can be estimated from the knowledge of open loop frequency response.	
	5)The design and parameter adjustment of the open loop transfer function of a system for a specified closed loop performance can be carried out easily.	
	6)The effect of noise disturbance and parameter variations can be easily visualized and assessed.	
	7)The transient response of a system can be obtained from its frequency response.	01 Mark each
	8)It can be extended to certain non-linear systems.	(any two disadvantages)
	9)There is no need to evaluate the roots of the characteristics equation.	
	10)It can give more quickly the design and analysis specification of the control system having multiple loops and poles.	
	Disadvantages :	
	1)It cannot be used for linear systems having large time constant.	
	2)It cannot be used for non-interruptible systems.	
	3)It gives only indirect indication of the nature of the time response of the system which is always the final aim of studying system behavior.	
	4)It can give approximate results only, as it is graphical method.	
	5)With the increased use of digital computers and available software's, it is not used for analysis	
d)	Draw the diagram of synchro as error detector & describe its working	04
Ans.	Diagram of Synchro as error detector	

Model Answer

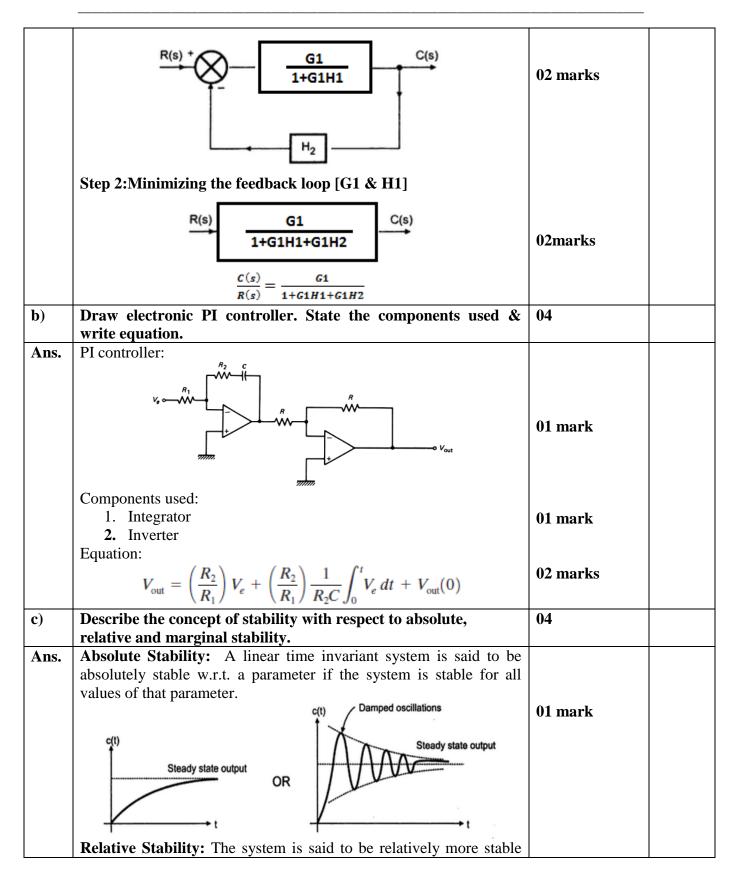
Subject Code:17538


Electrical zero position 02 Marks Diagram Synchro control transformer Electric zero Output position A.C. voltage S3 S S Synchiro transformer Error detector Working: Synchro transmitter along with synchro control transformer is used as error detector. The control transformer is similar in construction to that 02 Marks for of synchro transmitter except that its rotor is cylindrical in shape. relevant Therefore, the flux is uniformly distributed in the air gap. **Explanation** The output of the Synchro transmitter is given to the stator windings of the control transformer as shown. The voltage induced in the stator coils and corresponding currents of the transmitter are given to the control transformer stator coils Circulating currents of same phase but different magnitude will flow through both set of stator coils. This establishes an identical flux pattern in the air gap of control transformer. The flux pattern in the air gap of control transformer will have the same orientation as that of transmitter rotor. The voltage induced in the transformer rotor will be proportional to the cosine of angle between the two rotors. The output equation is given by : $e_0(t) = V_r \sin \omega t + \cos \phi$ where Vr sin wt = input voltage to the transmitter rotor and ϕ is the angular difference between both rotors. When $\phi=90$ both rotors are perpendicular to each other and the output voltage is zero This position is called electrical zero and is used as reference position. **O4** Attempt any ONE 06 B) a) For the given by differential equation 06 $\frac{d^2y}{dt^2} + 2\frac{dy}{dx} + 4y(t) = 4x(t).$

Subject Code:17538

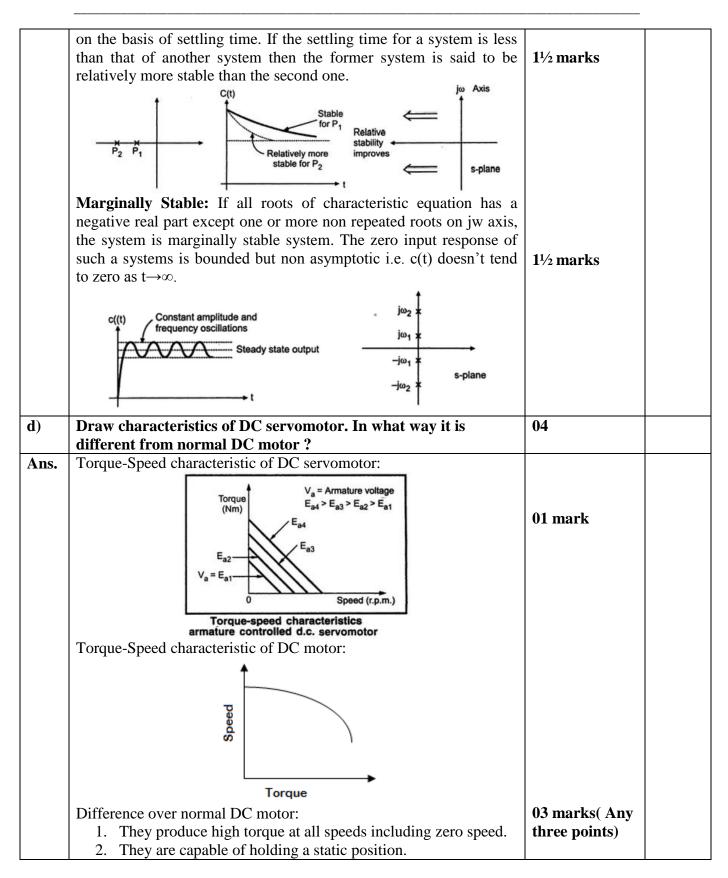
			
	Where y =0/p & x = i/p Find i) Settling Time ii) Rise Time iii) Peak Time iv) Peak		
	overshoot		
Ans.	Taking Laplace transform for zero initial condition, we get,		
	$S^{2} Y(s) + 2S.Y(s) + 4YS = 4.X(s)$ i.e. $(S^{2} + 2S + 4) Y(s) = 4.X(s)$		
	$\frac{Y(s)}{X(s)} = \frac{4}{s^2 + 2s + 4}$ Comparing equation with standard equation, $\frac{C(s)}{R(s)} = \frac{Wn^2}{s^2 + 2.\xi . Wn . s + Wn^2}, \text{ We get,}$		
	$Wn^2 = 4$, So, $Wn = 2$ rad/s		
	2. ξ . $Wn = 2$ So, $\xi = 0.5$	Zeta- 01 Mark	
	$Wd = Wn \sqrt{1-\xi}$		
	$Wd = Wn\sqrt{1-\xi^2}$		
	=2 $\sqrt{0.75}$ = 1.732 rad/sec Ideally the above 4 listed parameters can be given as, i) Rise time is given by tr = $\frac{\pi - \beta}{Wd}$, where $\beta = \frac{\sqrt{1 - \xi^2}}{\xi}$ $\beta = \frac{\sqrt{1 - \xi^2}}{\xi} = \frac{\sqrt{1 - 0.25}}{0.5} = \frac{0.866}{0.5} = 1.732$	Wd -01 Mark	
	$tr = \frac{\pi - \beta}{Wd}$	Tr -01 Mark	
	$=\frac{3.14-1.732}{1.732}=0.8129\ sec$		
	ii) Peak Time is given by $t_p = \frac{\pi}{Wd}$	Tp- 01 Mark	
	$=\frac{3.14}{1.732} = 1.81 \ sec$		

	iii) Max overshoot is given by Mp% = 100 x $e^{-\frac{\pi\xi}{\sqrt{1-\zeta^2}}}$ Mp = 100 x $e^{-\frac{\pi\xi}{\sqrt{1-\xi^2}}}$ = 100 x $e^{-\frac{3.14 \times 0.5}{\sqrt{1-0.25}}}$ = 100 x $e^{-\frac{1.57}{0.866}}$ Mp = 100 x $e^{-1.81}$ = 16.36 %	Mp- 01 Mark
	iv) Settling time is given by ts = $\frac{4}{\zeta . Wn} = \frac{4}{0.5 * 2} = 4$ sec	Ts- 01 Mark
b)	Draw the block diagram of DC and AC servo system & describe its working principle.	06
Ans.	$ \begin{array}{c} + & DC \text{ motor} \\ \hline V_e \text{ amplifier} & V_a \text{ M} \text{ Load} \\ \hline - & & & & & & \\ \hline - & & & & & & \\ \hline & & & & & & \\ \hline & & & &$	01 Mark DC Servo motor diagram
	 Fig- DC Servo system Explanation: The standard block diagram of servo system consists of error detector, amplifier, motor as controller, load whose position is to be changed. Servo systems is to be divided into two type a) DC servo systems b) AC servo system DC servo system consists of potentiometer as a error detector, DC amplifier, DC motor, DC gear system and the DC load whose position is to be changed. 	02 Mark DC Servomotor explanation


Subject Code:17538

<u>Model Answer</u>

Ans.	Step 1:Minimizing the internal feedback loop [G1 & H1]		
	diagram: $\xrightarrow{R(s)^{+}} \bigoplus \xrightarrow{+} \bigoplus \xrightarrow{G_{1}} \xrightarrow{C(s)} \xrightarrow{C(s)}$		
05 a)	Attempt any FOURDetermine the overall transfer function of the given block	04	16
	The symbolic representation of an A.C servomotor with control system component is shown in figure - 6. The reference winding of A.C servomotor is excited by a constant voltage source with frequency of 50Hz. The speed of A.C servomotor is controlled by controlling the control voltage. The error output of error detector is fed to PI controller, due to the error, controller take control action (i.e. to give control voltage) to firing circuit. The firing circuit generates the pulse's to rotate the motor at required speed.	02 Marks AC servomotor explanation	
	A.C servomotor : C SINGLE PHASE C SINGLE PHASE AC SUPPLY CIRCUIT DETECTOR SET VALUE PROCESS VALUE FEED BACK C SINGLE PHASE C SINGLE	01 Mark AC Servomotor diagram	
	In DC servo system potentiometer has two input i.e one is reference input and another is actual load position. Potentiometer finds the error between two positions. The errors between two positions is given to DC amplifier which amplify the error. Output of DC amplifier is given to DC motor &finally DC motor change the position of DC load. In this way servo system is used to change the load position with help of motor &error detector.		



Subject Code:17538

	3. They are able to accelerate and de-accelerate quickly.	
	4. They are able to return to a given position time after time	
	without drift.	
	5. It has low inertia hence able to reverse the direction quickly.	<u> </u>
e)	Draw the labeled time response of second order under damped	04
	control system.	<u> </u>
Ans.	Time response of second order under damped control system:	
	Peak overshoot Mp	
	Tolerance band ± 2 %	
	100 %	
	98 %	02 marks for
	50 %	response
	10 %	
	Tall	02 marks for
	• • •	labeling
	1 <u>1</u>	
	• 'p	
	Ts	
	++	
f)	A second order system is given by	04
	$\frac{C(S)}{R(S)} = \frac{25}{S^2 + 6S + 25}$	
	Find, (i) ζ (ii) Wn (iii) tp (iv) ts	
Ans.	Comparing the above equation with the standard form below,	
	$Wn^2 = 25$,	01 mark
	hence, $Wn = \sqrt{25} = 5 \text{ rad/sec.}$	
	2ζwn=6	01 mark
	$\zeta = 0.6$	
	$W_d = W_n \sqrt{(1-\xi^2)} = 4 \text{ rad/s}$.	01 mark
	Peak Time $T_p = \pi/w_d = \pi/4 = 0.785$ sec	
	0.41 $T_{\rm r} = 4$	
	Settling Time Ts = $\frac{4}{\xi wn}$	01 mark
	$Ts = \frac{4}{0.6x5} = 1.25sec$	
	0.040	

Subject Code:17538

	i) $\zeta = 0.6$		
	i) $Wn = 5 \text{ rad/sec}$		
	iii) $T_p=0.785$ sec iv) $T_s = 1.25$ sec		
06	Attempt any FOUR		16
a)	Whether toaster is open loop or closed loop system, justify it	04	10
a)	with the help of control action.	04	
Ans.	Toaster is an open loop system.	01 mark	
	Justification: An open loop system doesn't have the feedback. Its output depends only on present input and not the past output. In toaster quality of toast depends upon the time for which the toast is heated. Depending on the time set by user, bread is heated. User itself has to judge the quality of toast and should decide the time for heating the toast. Hence the system is open loop. The block diagram of toaster is given below.	03 marks for relevant justification	
	Desired Relay or Heating process Actual time Controller Process In toaster actuator is a relay. When user set the time setting the controller will continuously monitoring the timer setting when it reaches to the required time, it will disconnect the supply to heating coils.		
b)	(Note : Diagram of neutral zone is optional) Draw the diagram for stability of the system w.r.t. root location	04	
0)	in S plane.		
Ans.	Stability of the system w.r.t. root location in S plane:	04 marks(Any four points)	

Subject Code:17538

	-						
		Sr. No.	Nature of closed loop poles	Locations of closed loop poles in s-plane	Step response	Stability condition	
		1.	Real, negative i.e. in L.H.S. of s-plane	$\begin{array}{c c} & & & & & \\ \hline & & & & \\ \hline & & & & \\ -a_2 & -a_1 & 0 & \sigma \end{array}$	c(t) Pure exponential	Absolutely stable	
		2.	Complex conjugate with negative real part i.e. in L.H.S. of s-plane	→ jω yω1 → σ → σ → σ → σ	C(I) Damped oscillations	Absolutely stable	
		3.	Real, positive i.e. in R.H.S. of s-plane (Any one closed loop pole in right half irrespective of number of poles in left half of s-plane)	+jω +a ₁ σ	c(t) Exponential but t increasing towards ∞	Unstable	
		4.	Complex conjugate with positive real part i.e. in R.H.S. of s-plane	$j\omega_1 \xrightarrow{j\omega_1} \sigma$	C(t) Oscillations with increasing amplitude	Unstable	
		5.	Non repeated pair on imaginary axis without any pole in R.H.S. of s-plane	γ ^{jω} × jω ₁ × -jω ₂ σ	c(t)	Marginally or critically stable	
				or $\downarrow j\omega$ $\downarrow i\omega_2$ $\downarrow j\omega_1$ $\Rightarrow -j\omega_1$ $\Rightarrow -j\omega_2$	$ \begin{array}{c} c(t) \\ \hline \end{array} \\ \hline $ \\ \hline $ \\ \hline \end{array} \\ \hline \\ \\ \hline \end{array} \\ \hline $ $ \\ \hline \end{array} \\ \hline \\ \\ \hline \end{array} \\ \\ \hline \end{array} \\ \hline $ \\ \hline \\ \\ \hline \end{array} \\ \\ \\ \hline \end{array} \\ \\ \hline \end{array} \\ \\ \\ \hline \end{array} \\ \\ \hline \end{array} \\ \\ \\ \hline \end{array} \\ \\ \hline \end{array} \\ \\ \\ \\	Marginally or critically stable.	
				two non repeated pairs on imaginary axis.	Sustained oscillations with two frequency components ω_1 and ω_2		
		6.	Repeated pair on imaginary axis without any pole in R.H.S. of s-plane	$\xrightarrow{\substack{\mathbf{a} \ j \omega \\ \mathbf{x} \mathbf{x} \ j \omega_1}} \sigma$	C(t) Oscillations of increasing amplitude	Unstable	
c)	Co	nsi	der 4 th order sy	stem with char	racteristic equa	tion given b	y 04
			$2s^3+8s^2+4s$	+3 = 0. Dete	rmine the st	ability using	g
Ans.	Ko	uth	's criterion.				
A115,	S ⁴	1	8	3			
	<i>S</i> ³	2	4				03 marks
	S ²	6	3				
	S1	3					
	<u>5</u> 0	3					
			ere is no sign cl 1 is stable.	hange in 1 st col	umn of Routh'	s array, henc	e 01 mark

Subject Code:17538

l)	Explain ON-OFF controller. Give Example.	04
Ans.	ON-OFF controller is a two position discontinuous controlling	
	mode. The mathematical equation of ON-OFF controller is given	
	below.	
	Output Equation:	
	$P = 0 \%, e_p < 0$ 100 % $e_p > 0$	
	$100\% e_p > 0$	
	Where, P is the controller output and epis the error signal.	
	OR	03 marks for
	ON-OFF controller – it is simplest and cheapest type of discontinuous	ON-OFF
	type of controller. In this controller when measured value is less than	controller brief
	SP 100% controller output results. When it is more than SP controller	explanation
	output is zero.	
	Explanation:	
	In automatic electric iron, a resistive heating element is used to	
	generate heat. A thermostat is used as controller to control the	
	temperature. The reference input is the desired temperature setting on	
	the thermostat. The controlled output is the actual temperature of the	
	electric iron. When the output temperature is less than the thermostat	
	reference setting, the thermostat is actuated which, in turn, switches on the besting element. As a result, the temperature increases, and when it	
	the heating element. As a result, the temperature increases, and when it exceeds the thermostat setting (desired value of temperature) by a small	01 mark
	amount, the heating element is turned off. The temperature then starts	For example
	decreasing. When it falls below the thermostat setting by a small	
	amount, the heating element is once again switched on. The heating	
	cycle is thus repeated.	
	The sole plate of the iron of which the temperature is to be controlled is	
	the Process. The actuator is the heating element and the thermostat acts	
	as the error detector and controller. Disturbance to the system is the	
	heat loss due to radiation.	
	Diagram of Electric Iron as On-Off Controller:	
	United	
	Temperature setting Control signal Switch and heating Control signal Switch and heating Control signal Switch and heating Control signal Cont	
	Thermostat	
	Reference input Controller Process Controlled output	
	Actuator	
	Block diagram of Electric Iron as On-Off Controller	
)	A unity feedback system has	04
1	40(s+2)	
	$G(s) = \frac{40(s+2)}{s(s+1)(s+2)}$	
	Determine : (i) The type of system	
	(ii) All error coefficients	

Subject Code:17538

Ans.	As there is only one root at origin, system is a type one system.	01 mark	
	Error Coefficients: $Kp = \lim_{s \to 0} G(s)H(s) = \lim_{s \to 0} \frac{40(s+2)}{s(s+1)(s+2)} = \infty$	01 mark	
	$Kv = \lim_{s \to 0} s \ G(s)H(s) = \lim_{s \to 0} s \frac{40 \ (s+2)}{s(s+1)(s+2)} = \lim_{s \to 0} \frac{40 \ (s+2)}{(s+1)(s+2)} = 40$	01 mark	
	$Ka = \lim_{s \to 0} s^2 G(s)H(s) = \lim_{s \to 0} s^2 \frac{40(s+2)}{s(s+1)(s+2)} = \lim_{s \to 0} s \frac{40(s+2)}{(s+1)(s+2)} = 0$	01 mark	