

Subject Code: 17538

Model Answer

Important Instructions to examiners:

1) The answers should be examined by keywords and not as word-to-word as given in the model answer scheme.

2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.

3) The language errors such as grammatical, spelling errors should not be given more Importance. (Not applicable for subject English and Communication Skills.)

4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.

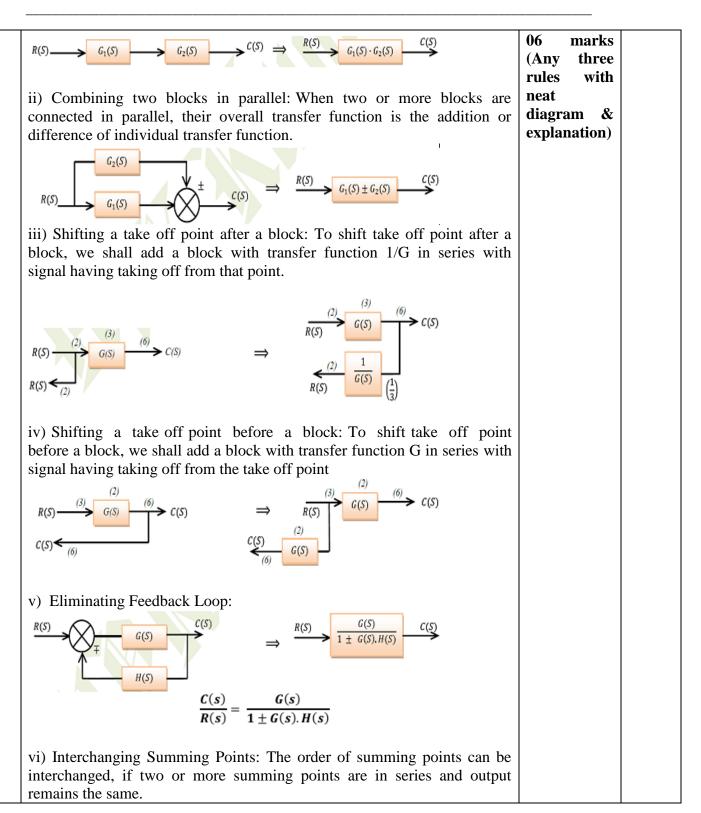
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.

6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.

7) For programming language papers, credit may be given to any other program based on equivalent concept.

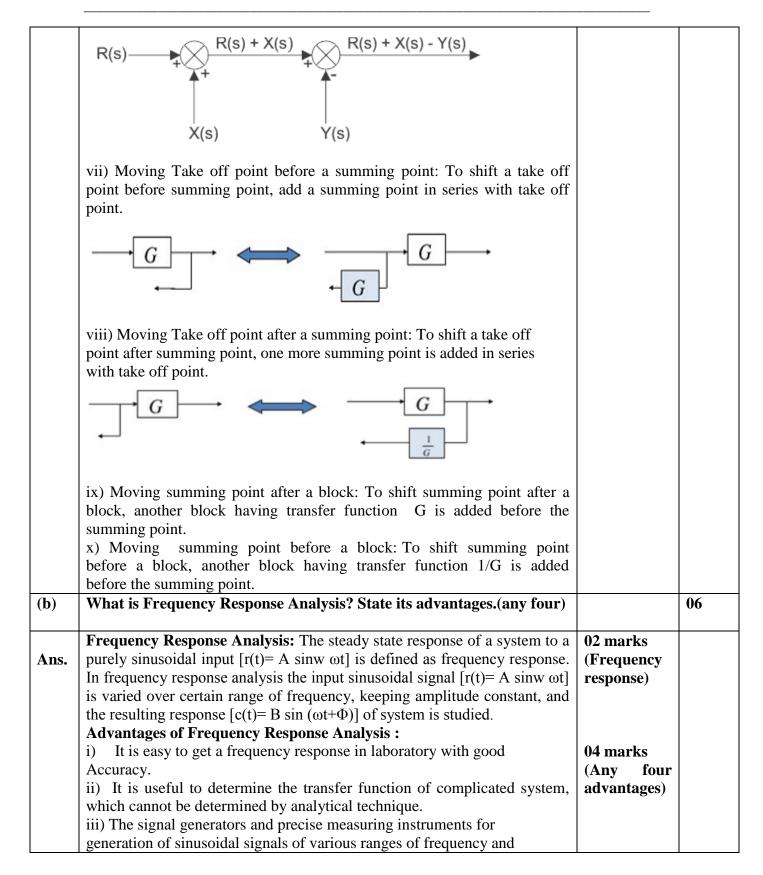
Q. No.	Question & its Answer	Remark	Total Marks
01	Attempt any THREE:		12
(A)			
(a)	Define control system and explain it with the help of suitable example.		04
Ans.	Control system: A control system is a system of devices or set of devices, that manage, commands, directs or regulates the behavior of other device(s) or system(s) to achieve desired results.	01 mark Definition	
	Control system: Any quantity of interest in a machine, mechanism or other equipment is maintained or altered in accordance with a desired manner. Temperature Control System:		
	Steam Set-point (SP) Trocess T(t), f(t) Process Steam Transmitter	1½ marks Diagram	
	Description: This heat exchanger is used to heat the process fluid from some inlet temperature T(i) up to a desired outlet temperature T(t). The energy gained by the process fluid is provided by the latent heat of condensation of the superheated steam. There are number of variables in	1½ marks Explanation	

this process that can change causing the outlet temperature to deviate from		
its desired value. Therefore, action must be taken to correct any deviation		
so as to maintain the outlet process temperature at its desired value T(t). It		
can be achieved by measuring the outlet temperature $T(t)$ & correcting any		
		04
c(t) Allowable tolerance	02 marks	
 i) Transient response: whenever the systems with energy storage are subjected to the inputs or disturbances, often it exhibits the damped oscillations before reaching to final steady output such a response of system is called as transient response. OR The output variations during the time, it takes to achieve its final value is called as Transient response. OR It is defined as that part of the time response which decays to zero after some time as system output reaches to its final value. ii) Steady State Response: It is defined as that part of the time response vanishes from the system output. Transient response corresponds to the system close loop poles and steady 		
state response corresponds to the excitation poles or poles of the input function.		
	so as to maintain the outlet process temperature at its desired value T(t). It can be achieved by measuring the outlet temperature T(t) & correcting any deviation by comparing it to desired (set point) value. The steam valve can be manipulated (by throttling & opening the steam flow) to correct the deviation. The outlet temperature T(t) is measured by a sensor & transmitted by transmitter (TT) to a temperature controller(TC). Temperature controller (TC) compares this measured value with the desired value and depending upon the signal it sends the signal to the final control element (FCE) which manipulates the steam flow by opening or closing the valve. (NOTE: Any relevant example of CS with neat diagram & brief explanation may considered) Define i) Transient Response ii) Steady State Response iii) Steady State Response of the inputs or disturbances, often it exhibits the damped oscillations before reaching to final steady output such a response of system is called as transient response. OR It is defined as that part of the time, it takes to achieve its final value is called as Transient response: It is defined as that part of the time response which decays to zero after some time as system output reaches to its final value. ii) Steady State Response: It is defined as that part of the time response which remains after complete transient response vanishes from the system output.	so as to maintain the outlet process temperature at its desired value T(t). It can be achieved by measuring the outlet temperature T(t) & correcting any deviation by comparing it to desired (set point) value. The steam valve can be manipulated (by throttling & opening the steam flow) to correct the deviation. The outlet temperature T(t) is measured by a sensor & transmitted by transmitter (TT) to a temperature controller(TC). Temperature controller (TC) compares this measured value with the desired value and depending upon the signal it sends the signal to the final control element (FCE) which manipulates the steam flow by opening or closing the valve. (NOTE: Any relevant example of CS with neat diagram & brief explanation may considered) Define i) Transient Response ii) Steady State Response ii) Steady State Response ii) Steady State Response ii) Steady State Response iii) Steady State Response iii) Steady State Response. fransient response: whenever the systems with energy storage are subjected to the inputs or disturbances, often it exhibits the damped oscillations before reaching to final steady output such a response of system is called as transient response. OR The output variations during the time, it takes to achieve its final value is called as Transient response. OR It is defined as that part of the time response which decays to zero after some time as system output reaches to its final value. ii) Steady State Response: It is defined as that part of the time response which remains after complete transient response vanishes from the system output.



Subject Code: 17538

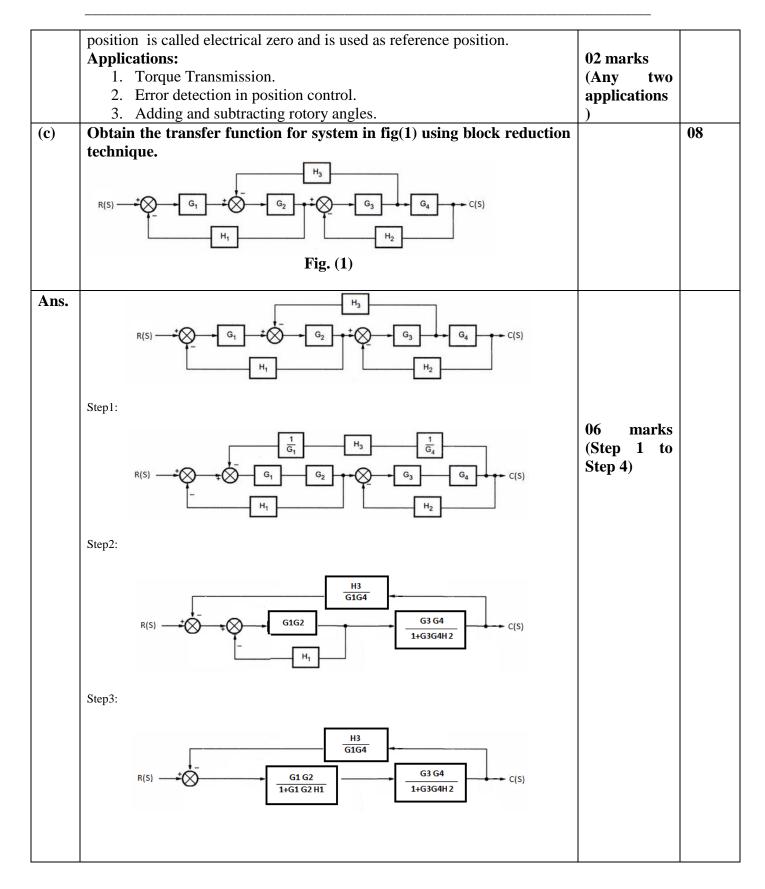
Ans.	Stability:	01 mark	
	A system is said to be a stable if its output remains bounded irrespective of	Definition	
	the changes in parameters or disturbances.		
	OR		
	When a linear time invariant system is excited by a bounded input, the		
	output is also bounded and controllable. In the absence of the input, output		
	must tend to zero irrespective of the initial condition.		
	Importance of stability: The concept of stability in common and		
	engineering sense reflects necessity to keep response of a disturbed system	03 marks	
	within acceptable limits. If deviations describing response of the system	for	
	from a given regime (e.g. state of equilibrium) lie within the prescribed	Importance	
	limits, the system is called stable. Otherwise, the system is called unstable.		
	Disturbances, response, and prescribed limits can be specified in each case		
	in different ways. The stability of a control system is often extremely		
	important and is generally a safety issue in the engineering of a system. An		
	example to illustrate the importance of stability is the control of a nuclear		
	reactor. An instability of this system could result in an unimaginable		
	catastrophe or in case of a robot arm controller that is unstable may cause		
	the robot to move dangerously. Also, systems that are unstable often incur		
	a certain amount of physical damage, which can become costly. The		
	stability of a system relates to its response to inputs or disturbances. A		
	system which remains in a constant state unless affected by an external		
	action and which returns to a constant state when the external action is		
	removed can be considered to be stable.		
(d)	Explain why derivative action cannot be used alone.		04
	The equation for D controller is:	04 marks	
Ans.	$p(t) = K_d \frac{\mathrm{d}\mathbf{e}(t)}{dt}$	for relevant	
		Explanation	
	For a given rate of change of error signal, there is a unique value of the		
	controller output. When the error is zero, the controller output is zero.		
	When the error is constant i.e. rate of change of error is zero, the controller		
	output is zero. When the error is changing, the controller output changes by		
	K_d % for even 1 % per second rate of change of error.		
	When the error is zero or a constant, the derivative controller output is		
	zero. Hence, it is never used alone. Its gain should be small because faster		
	rate of change of error can cause very large sudden change of controller		
	output. This may lead to instability of the system.		
(B)	Attempt any ONE:		06
(a)	Explain any three rules of the block diagram reduction technique.		06
	i) Combining a block in cascade: When two or more blocks are		
Ans.			
Ans.	connected in series, their overall transfer function is the product of individual block transfer function.		



Model Answer

Subject Code: 17538

2 (a) Ans.	<pre>iv) ' syst resp v) ' of a carr vi) visu vii) resp viii) ix) ' x) con Att A s the The</pre>	plitude are read The absolute st tem can be estim- conse. The design and a system for a s ried out easily. The effect of r nalized and asse The transient conse. It can be exten There is no need It can give me trol system hav empt any TW ystem has <i>G</i> (<i>s</i> range of K for c characteristic <i>G</i> (s)H(s)=0		16 08		
	S(S i.e.	K (S+2)(S+4)(S+4)(S+8) $S^4 + 14S^3 + 56$ e routh's array f	02 marks (Deriving correct characteristi c equation)			
	<u>S</u> ⁴		56	K		
	S ³	14	64	0		
	S ²	51.42	K	0	04 marks (Preparing	
	S1	3291.42-14K 51.42	0	0	Routh's array)	
	<u>5</u> 0	К				
		system to be s same sign i.e. 1		ents in first column of Routh array must have nge.		



Subject Code: 17538

	Hence		
	3291.42-14K	02 marks (
	$\frac{62.5142}{51.42} > 0$ and K > 0	Range with	
	i.e. $3291.42 - 14K > 0$	explanation)	
	1.c. $3291.42-14K > 0$		
	i.e. 14K < 3291.42		
	K < 235.10		
	Hence range is $0 < K < 235.10$		
(b)	Draw and explain synchro as error detector. State its applications.		08
Ans.	Synchro as error detector:		
	Explanation:	03 marks for Diagram	
	Explanation: Synchro transmitter along with synchro control transformer is used as error detector. The control transformer is similar in construction to that of synchro transmitter except that its rotor is cylindrical in shape. Therefore, the flux is uniformly distributed in the air gap. The output of the Synchro transmitter is given to the stator windings of the control transformer as shown. The voltage induced in the stator coils and corresponding currents of the transmitter are given to the control transformer stator coils circulating currents of same phase but different magnitude will flow through both set of stator coils. This establishes an identical flux pattern in the air gap of control transformer. The flux pattern in the air gap of control transformer will have the same orientation as that of transmitter rotor. The voltage induced in the transformer rotor will be proportional to the cosine of angle between the two rotors. The output equation is given by: $e_0(t) = V_r \sin \omega t + \cos \phi$ where Vr sinwt = input voltage to the transmitter rotor and ϕ is the angular difference between both rotors. When $\phi=90$ both rotors are perpendicular to each other and the output voltage is zero This	03 marks for relevant Explanation	

Subject Code: 17538

Subject Code: 17538

	Step4:				
		R(S)			
	Step5:				
		$\frac{C(S)}{R(S)} = \frac{G1G}{(1 + G1G2H1)(1 + G1G2H1)(1 + G1G2H1))(1 + G1G2H1)(1 + G1G2H1)(1 + G1G2H1)(1 + G1G2H1))(1 + G1G2H1)(1 + G1G2H1)(1 + G1G2H1)(1 + G1G2H1))(1 + G1G2H1)(1 + G1G2H1)(1 + G1G2H1)(1 + G1G2H1)(1 + G1G2H1)(1 + G1G2H1))(1 + G1G2H1)(1 + G1G2H1)(1 + G1G2H1))(1 + G1G2H1)(1 + G1G2H1)(1 + G1G2H1)(1 + G1G2H1))(1 + G1G2H1)(1 + G1G2H1)(1 + G1G2H1)(1 + G1G2H1)(1 + G1G2H1)(1 + G1G2H1))(1 + G1G2H1)(1 + G1G2H1))(1 + G1G2H1)(1 + G1G2H1)(1 + G1G2H1))(1 + G1G2H1)(1 + G1G2H1))(1 + G1G2H1)(1 + G1G2H1))(1 + G1G2H1))(1 + G1G2H1)(1 + G1G2H1))(1 + G1G2H1))(1 + G1G2H1))(1 + G1G2H1)(1 + G1G2H1))(1 + G1G2H1))(1 + G1G2H1)(1 + G1G2H1))(1 + $	02 marks (Step 5 and Step 6)		
	Step6:			Step 0)	
		C(S) G1G	2G3G4		
		$\frac{C(S)}{R(S)} = \frac{G1G}{1 + G1G2H1 + G3G4H2 + G$	G1G2G3G4H1H2 + G2G3H3		
3	Attom	pt any FOUR:			16
(a)		are open loop and closed loop c	ontrol system (Four points)		04
Ans.	No.	Open Loop Control System	Close Loop Control System	01 mark	04
	1	It is simple and economical	It is complex and costlier	(Any four	
	2	It is easier to construct, as it	*	points)	
		requires less number of	requires more number of		
		components	components		
	3	It consumes less power	It consumes more power		
	4	It is more stable	It is less stable		
	5	It does not require feedback path element	It requires feedback path element		
	6	It has poor accuracy	It has better accuracy		
	7	It does not give automatic correction for external disturbances	It gives automatic correction for external disturbances		
	8	It is more sensitive to noise	It is less sensitive to noise		
	9	It is dependent on operating condition	It is not dependent on operating conditions		
	10	Its operation is degraded if non linearity is present	Its operation is not independent on conditions		
	11	It has slow response	It has fast response		
	12	It has high bandwidth	It has low bandwidth		
(b)			t of damping on the response of		04
		order system.			
Ans.	Dampi i)	Damping is an influence within	or upon an oscillatory system that ng, restricting or preventing its	01 Mark for definition	
	ii)		sionless measure describing how		

Subject Code: 17538

	iv) The dampin oscillati	ons decay from on in response of 2 ⁿ	asure of describing the bounce to the ne	g how rapidly the xt.		
	No.	Range of ζ	Type of close loop poles	Nature o response	f System Classificatio n	03 Marks for Effects (any three)	
	1	$\zeta = 0$	Purely imaginary	Oscillations with constant amplitude frequency	h Undamped		
	2	0 < ζ < 1	Complex Conjugates with negative real parts	Damped Oscillations	Underdamped		
	3	ζ = 1	Real, Equal and Negative	Critical & Pur exponential	e Critically damped		
	4	1 < ζ < ∞	Real, equal & Negative	Purely exponential slo and sluggish	v Overdamped		
(c)	Deter	mine stabilit	y of a system usin $S^5 + S^4 + 2S^3 +$	$\frac{1}{2S^2 + 3S + 5} = 0$	on.		04
Ans.		equation 2) The rou	Find even & odd co $n S^5 + S^4 + 2.S^3 + 2$ th's array for above	befficient from characteristic constant $2.S^2 + 3.S + 5 = 0$		01 Mark	
		as follow $\overline{S^5}$		2 3		(Routh Array Formation)	
		S^4	1	2 5			
		S^3	0	-2 0	special case I		
		S^2	∞				

Subject Code: 17538

S^1 S^0					
	Il positive number ε in c. Complete the array $\lim_{\varepsilon \to 0} \varepsilon^{3} taking \varepsilon \to 0$				
S ⁵	1	2	3		
S^4	1	2	5	02 Marks (Solving	
S ³	3	-2	0	Special Case)	
S^2	(2 E + 2) / E	5	0		
S^1 ($(-4 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	0			
S^0	5				
To examine sign	change				
2	ε + 2				
$\lim_{\varepsilon \to 0}$	$\varepsilon = 2 + \lim_{\varepsilon \to 0}$	2 / ε = 2	+ ∞ = ∞ (sign i	is positive)	
$\lim_{\varepsilon\to 0} (-\varepsilon)^{-\varepsilon}$	$(4 \ \text{E-4-5} \ \text{E}^2) / 2 \ \text{E} + 2$				
=	0-4-5(0)/2				
=	-4/2				
=	-2				

Model Answer

							r
	Final Rouths Array:	5					
		S^{5} S^{4} S^{3} S^{2} S	1	2	3		
		S ⁴	1	2	5	01 Maarla	
		S	з	-2	0	01 Mark	
		S^2	00	5	0	(Final Ans &	
			-2	0	0	α Conclusion)	
		S ⁰	5			Conclusion)	
	 Conclusion – Rout 1st column of Rou the system to be s column indicates th system unstable. H indicate 2 RHS pole 	th's array sho table. The nu- ne number of lere, 2 sign c es. Therefore s	ould not have umber of sign Poles on RH changes in the system is unst	any sign changes in IS which ma IS t column able.	ange for the 1st akes the n which		
	(Note:- Alternative metho				h		
1	1/Z in the original equation	•					0.4
<u>l)</u> .ns.	Draw and explain potenti	ometer as an	error detecto	or.		02 Marks	04
	e amplifier ea - Ref input θ _r						
	Explanation : DC Motor control systems as shown . This type of an located shaft positions. The terminals of the two potent Output of this differential p This is then is fed to DC At armature current of the DC the shaft connected to the b	rangement al ne output vol iometers. potentiometer mplifier, whic C Motor. The	lows compari tage is taken is =Ks[θr(t) – h is further ar motor, in tur	son of two r across the $\theta L(t)$] nplifying the moves and	emotely variable	02 Marks Explanation	
	the shaft connected to the l output voltage zero. That is accordance with the shaft o	the output (L	.oad) potentio	meter shaft n			

Model Answer

(e)	Draw the op-amp based PI Controller. Derive its output equation.		04
Ans.	Braw the op-and ploased if i controller. Derive its output equation: $F_{2} = C$ $F_{3} = C$ $F_{4} $	02 Marks Diagram 02 Marks output Equation	
$\frac{4(A)}{(a)}$			12
(a) Ans.	 Explain proportional controller. Draw its response graph. Proportional controller is a device that produces an output signal 		04
	 The proportional control action is a device that produces an output signal proportional to the deviation. The proportional control action is a multi position type of controller action in which position of the correcting element is directly proportional to the deviation. It is called as P control action. This action responds to the size and sign of deviation. For each value of deviation, there is a specific value of controller output of controller output that correlates with a specific value opening. The proportional band is the range of deviation, in percent scale; that corresponds to the full range of deviations. It is dependent on the gain. 	03 Marks P Controller Explanation	

Subject Code: 17538

	 introduction of the controller on the system increases the gain by amount Kp. Mathematically the controller output Po for proportional controller is expressed as, Po = Kp.ep + Pn Where Kp is proportional constant, Pn is controller output with no error 		
	ep is error expressed as percentage of span • The nature of proportional control action can be shown as below, Controlled output P = M + Ve Controlled output P = M + Ve P = Error = M + Ve E = M	01 Marks for Graph with neat labeling	
(b)	What is gain margin & phase margin? What should be the values of gain margin & phase margin for a good system?		04
Ans.	 Gain Margin c phase margin for a good system? Gain Margin : It refers to the amount of gain, which can be increased or decreased without making the system unstable. It is the gain which can be varied before the system becomes just stable (i.e., after varying the gain up to a certain threshold, the system becomes marginally stable & then further variation of gain leads to unstability) Gain Margin occurs at phase cross over frequency is the frequency at which the phase angle G(s)H(s) -180° Gain margin acts as a safety factor for model uncertainty. Greater will the gain margin greater will be the stability of the system. It is usually expressed in dB. Gain margin should always be chosen as greater than one (GM>1) to ensure stability. 	01Mark (Gain Margin)	
	 Phase margin: It refers to the phase which can be increased or decreased without making the system unstable. It is usually expressed in phase. It is the phase that can be varied before the system becomes just 	01Marks (Phase Margin)	

Subject Code: 17538

	 stable(i.e, after varying the phase up to a certain threshold, the system becomes marginally stable and then further variation of phase leads to unstability). Phase margin occurs at Gain Cross over frequency(Gain cross over frequency is the frequency at which the magnitude of the G(s)H(s) becomes 1) Greater will the phase margin greater will be the stability of the system. 		
(c)	 Stability conditions are given below : For Stable System: Both the margins should be positive. Or phase margin should be greater than the gain margin. For Marginal Stable System: Both the margins should be zero. Or phase margin should be equal to the gain margin. For Unstable System: If any of them is negative. Or phase margin should be less than the gain margin. 	02Marks(Values of GM, PM)	04
	A unity feedback system has $G(s) = \frac{40(s+2)}{s(s+1)(s+4)}$. Determine: (i) Type of system (ii) All static error coefficient		04
Ans.	1) Comparing the equation in standard form: $G(s)H(s) = \frac{K(1+T1s) + (1+T2s)}{S^{j} (1+Ta s)(1+Tb s)} \dots \dots$ Where j is type of system $G(s).H(s) = \frac{10 (s+2)}{s (1+s) (1+0.25 s)} \dots \dots H(s) = 1$ So, This is type - 1 system.	01 Mark (Type of system)	
	2) $K_{p} = \lim_{s \to 0} G(s) \cdot H(s)$ $K_{p} = \lim_{s \to 0} G(s) = \lim_{s \to 0} \frac{10 (s+2)}{s (1+s) (1+0.25 s)} = \infty$	01 Mark each(Kp,Kv,Ka)	

Subject Code: 17538

]	$K_v = \lim_{s \to 0} s. G(s). H(s)$			
]	$K_{v} = \lim_{s \to 0} s. G(s) = \lim_{s \to 0} \frac{10 s (s+2)}{s (1+s) (1+0)}$ $= \frac{20}{1} = 20$ $K_{a} = \lim_{s \to 0} S^{2}.G(s).H(s)$ $= \lim_{s \to 0} \frac{10 s (s+2)}{(1+s) (1+0.25 s)}$			
	$\mathbf{K}_a = \lim_{s \to 0}$	$\int_{0}^{1} 5 \cdot 5 \left(\frac{3}{s} \right)^{-1} = \lim_{s \to 0} \frac{1}{(1+s)(1+0.25s)}$	_ 0		
(d)		re stepper Motor with DC Servo M			04
Ans.	No.	Stepper Motor	DC Servo Motor	01Mark (
	1	Control winding is absent	Control winding is present	Any four points)	
	2	Number of steps can be precisely controlled	It gives continuous rotation		
	3	It is brushless.	It has brushes.		
	4	Due to absence of brushes no wear and tear. Hence no maintenance.	Maintenance is required		
	5	Load and no load condition does not affect the running current of stepper motor	These conditions affect running current		
	6	Speed is governed by frequency of switching	Speed is controlled by supply voltage		
(B)	Attemp	t any ONE:	·		06
(a)	Explain	the characteristics of D.C.servome	otor.		06
Ans.	•]	It has linear characteristics It has low inertia It is light in weight		01 Mark each(Any	
	•]	It has low cost hence economical It is easier to control		six points with brief explanation	
	•]	It has high torque to inertia ratio It has higher operating speed i.e fast r and mechanical time constants It gives high power output.	response due to low electrical)	
(b)	Explain transfo	the different standard input test string.	ignal. Give their laplace		06

Subject Code: 17538

Test Signal	Graphical Representation	Laplace Transform	 1^{1/2} Mark each (Graphical
Unit Step Input	r(t)	1/S	representati on ½ mark & L.T. 01 mark)
	01	→ t	
Unit Ramp Input	r(t) Slope = A	$1/S^2$	
Unit Parabolic Input	r(t) Slope = A	1 / S ³	
Unit Impulse	$ \begin{array}{c} (1) \\ r(t) \\ \uparrow \\ \downarrow \\ \downarrow \\ \hline \\ \downarrow \\ \hline \\ \downarrow \\ \downarrow \\ \hline \\ \downarrow \\ \downarrow$	1	
Attempt any FOUR			
What is AC servon	otor? Explain its torque s	speed characteristics.	
	is basically a two phase ind n features which makes it so		01 Mark for definition
It is driven by the ar amplifier.	nplified error signal from th	e output of a servo	
Torque-speed char	acteristic of AC servo mot	tor:	
One of the basic req characteristic should	uirements of a servo motor be linear.	is that its torque- speed	
This characteristic d	epends upon the ratio of rea	actance to resistance. If X/H	R

Subject Code: 17538

	ratio is small, the characteristic becomes linear.		
	The rotor of the AC servomotor is built with high resistance, so its X/R ratio is small and the torque- speed characteristic is linear.	02 Marks for	
	The torque- speed characteristic of an AC servo motor is as shown below.	explanation	
	Torque (Nm) $E_{24} > E_{23} > E_{22} > E_{21}$ E_{22} E_{21} 0 Speed (r.p.m.)	01 Mark for graph	
(b) Ans.	What is a composite controller? State their applications.		04
	Composite controllers are those controllers that are obtained by combining continuous mode controllers like proportional, integral and derivative controller in different ways. The applications of various types of composite controllers are :	01 Mark for definition	
	 Proportional-Integral or (PI)controller : This controller eliminates the offset problem of P controller, so it is suitable for systems which have large or frequent load changes. But the systems should have relatively slow changes in load to prevent oscillations. 	01 Mark for each application.	
	 Proportional- Derivative or(PD) controller : This is used for those industrial processes having fast load changes where offset error is tolerable. 		
	3. Three mode controller or Proportional Integral and Derivative(PID) controller:As it has the advantages of P,I and D modes it is suitable for all types		
	of process conditions where precise control is required.		
	(NOTE: Marks can be given for relevant application.)		
	$S^{3}+4S^{2}+S+6=0$, state how many roots are in right half of s- plane.	1	04

Subject Code: 17538

Ans.The Routh's Array is formed as below: $0 \ 2 \ Marks$ s^3 11 s^2 46 s^1 - 0.50 s^0 6Conclusion: As there are 2 sign changes in the Routh's Array, it means there are 2 poles or roots on theright half of s- plane. Hence System is unstable. $02 \ Marks$ (d)A second order system is given by : $(02 \ Marks)$	04
s^3 11Array s^2 46 s^1 - 0.50 s^0 6Conclusion: As there are 2 sign changes in the Routh's Array, it means there are 2 poles or roots on theright half of s- plane. Hence System is unstable.02 Marks(d)A second order system is given by :1	04
s^2 46 s^1 -0.50 s^0 6Conclusion: As there are 2 sign changes in the Routh's Array, it means there are 2 poles or roots on theright half of s- plane. Hence System is unstable.02 Marks(d)A second order system is given by :	04
s ⁰ 6 Conclusion: As there are 2 sign changes in the Routh's Array, it means there are 2 poles or roots on theright half of s- plane. Hence System is unstable. 02 Marks (d) A second order system is given by :	04
Conclusion: As there are 2 sign changes in the Routh's Array, it means there are 2 poles or roots on theright half of s- plane. Hence System is unstable.02 Marks(d)A second order system is given by :	04
there are 2 poles or roots on theright half of s- plane. Hence System is 02 Marks unstable. (d) A second order system is given by :	04
unstable. (d) A second order system is given by :	04
(d) A second order system is given by :	04
C(z) of	
$\frac{C(s)}{R(s)} = \frac{25}{s^2 + 6s + 25}.$	
$\frac{R(3)}{Find its}$	
(i) wn (ii) wd (iii) Rise time (iv) Peak time	
Ans. Comparing the above equation with the standard form below,	
$\frac{C(s)}{R(s)} = \frac{\omega_n^2}{\omega_n^2 + 2\xi\omega_n s + s^2}$ 01 Mark for each calculation	
we have $w_n^2 = 25$,	
i) $w_n = \sqrt{25} = 5 \text{ rad/sec.}$	
$2\xi w_n s = 6$	
$2\xi * 5 = 6$	
ξ* 10=6	
$\xi = 6/10$	
.∴ξ <i>=</i> 0.6	

	ii) $w_d = w_n \sqrt{(1-\xi^2)} = 4 \text{ rad/s}$		
	iii) Rise Time $T_r = (\pi - \theta) / w_d = (\pi - 0.9272) / 4 = 0.5535$ sec		
	iv) Peak Time $T_p = \pi/w_d = \pi/4 = 0.785$ sec		
	Ans:		
	i) $w_n = 5 \text{ rad/sec.}$ ii) $w_d = 4 \text{ rad/s}$ iii) $T_r = 0.5535 \text{ sec}$		
	iv) $T_p = 0.785 \text{ sec}$		
(e)	Define (i) peak overshoot (ii) settling time of a second order system		04
	and label it on time domain response.		
Ans.	Peak overshoot M_p Tolerance band $\pm 2\%$ In steady state, output remains within $\pm 2\%$ error band 10% 10% T_q T_r T_s	02 Marks for neat labeled response	
	Peak Overshoot M _p :		
	It is defined as the largest error between reference input and output during the transient period.		
	It can also be defined as the amount by which output overshoots its		

Subject Code: 17538

	reference steady state value during the first overshoot.		
	Settling time T _s :	01 Mark for	
	It is defined as the time required for the response to decrease and stay	each definition	
	within specified percentage of its final value and within tolerance band.		
(f)	Draw bode plot for the system with open loop transfer function:		04
	$G(S)H(S) = \frac{20}{S(1+2S)}$		
Ans.	Put s = jw, thenG(jw)H(jw) = $\frac{20}{jw(1+2jw)}$	01 Mark	
	jw(1+2jw)	Magnitude	
	Magnitude plot:	plot	
	Factors:	calculation	
	1. K=20		
	M =20 log 20 =26.02 dB		
	It is a straight line of magnitude 26 dB parallel to X axis(0 dB slope).		
	2. Pole at origin 1/s :		
	It is a straight line of magnitude +20 dB at origin and a constant slope -20		
	dB/decade cutting X axis at $w=1$		
	3. $1/(1+2s) = 1/(1+2jw)$		
	T=2 Corner frequency $w_{c1} = 1 / T = 0.5 \text{ rad/sec.}$		
	The plot is a straight line of constant slope of -20 dB / dec from corner		
	frequency $w_{c1} = 0.5$ rad/sec.		
	4. Resultant :		
	It is calculated by adding algebrically individual magnitudes at origin.		
	Resultant M at origin = $26+20+0 = 46 \text{ dB}$		
	It is a straight line of slope -20 dB/decupto $w_{c1} = 0.5$ rad/sec.		
	.At $w_{c1} = 0.5$ rad/sec, another line of slope -20 dB/dec is added, so the		
	new slope is $-20 + (-20) = -40 \text{ dB} / \text{dec.}$		

Model Answer

Subject Code: 17538

Phase plot : Resultant $\phi = \phi_1 + \phi_2 + \phi_3$ 01 Mark for $\phi_{1=0}^{o}$ $\phi_2 = -90^{\circ} \qquad \phi_3 = -\tan^{-1} 2w$ Phase plot W ϕ_1 **\$**₂ **\$**3 ø table 0.1 0 90° -11.3° -101.3° _ -135° 0.5 0 -90° -45° -90° 0 -63.43° -153.43° 1 -90° 10 0 -87.13° -177.13° -90° -89.47° 50 0 -179.42° 100 0 -90° -89.71° -179.71° The magnitude and phase plots are as shown below. Bold line indicates the resultant magnitude and phase plot respectively. +60 Mag. Plot tuc Factor () K=260B +20 Resultant --OdB Ider Enclore = - 200 Bl dec -20 Adec -40 Factor 3 1 at wc= 0.5 -60 Phase Plot -90 02 Marks -110 for -130 magnitude -150 plot and phase plot -170 -190 50 100 10 0.5 D.1

Subject Code: 17538

6	Attempt any FOUR:		16
(a)	Define poles and zero. How system stability is affected by location of poles and zeros in s-plane?		04
Ans.	Definition :	01 Mark for	
	Poles : The values of 's' which makes the transfer function infinity after substitution in the denominator of a transfer function are called poles of the transfer function.	each definition	
	Zeros : The values of 's' which makes the transfer function zero after substitution in the numerator of a transfer function are called zeros of the transfer function.		
	System stability is determined from the location of closed loop poles in the s- plane. If the poles are located on the left half of s-plane, then such system is absolutely stable. If the poles are located on the right half of s-plane, then such system is unstable. If one or more pairs of non- repeated roots are located on the jwaxis, then the system is critically stable or marginally stable	02 Marks for relevant explanation	
(b)	Analyze the first order system for an unit step function.		04
Ans.	Consider a simple first order system be excited by a unit step input. The T.F. of first order system is given by, $\frac{Vo(s)}{Vi(s)} = \frac{1}{1+sRC}$	01 Mark for T.F.	
	For unit step input, $v_i(t) = 1$, fort ≥ 0 = 0, for t< 0. The Laplace equivalent is $Vi(s) = \frac{1}{s}$ $\therefore Vo(s) = \frac{1}{s(1+sRC)} = \frac{A^1}{s} + \frac{B^1}{1+sRC}$	02 marks	
	Using Partial fraction method we get: $A^1 = 1 \& B^1 = -RC$		

	Substituting the values of A^1 and B^1 , we get		
	$\therefore Vo(s) = \frac{1}{s} - \frac{RC}{1+sRC}$		
	s 1+sRC		
	Taking Laplace inverse, we get		
	$v_{o}(t) = 1 - e^{-\frac{t}{RC}} \rightarrow C_{ss} + c_{t}(t)$	01 Mark	
	$v_0(r) = 1$ $\rightarrow O_{SS} + O_1(r)$		
	t		
	The steady state response $C_{ss} = 1$ and transient term $c_t(t) = -e^{-RC}$		
	The output waveform is as shown.		
	v _o (t)		
	1		
	- t/RC		
	1-e		
	- t		
)	What is Type O system? Derive the steady state error and error		04
	coefficients for step input.		

Subject Code: 17538

Ans.	Type of a system means the number of poles present at the origin of open loop transfer function G(s)H(s) of the system.Hence a type 0 system is a system which does not have any pole at the origin of its open loop transfer function.	01 Mark for definition
	Derivation of steady state error and error coefficients for step input for a type 0 system:	
	Consider a step input of magnitude A applied to the system. $r(t) = A$ $R(s) = \frac{1}{s}$	03 Marks for Derivation
	The steady state error is given by	
	$e_{ss} = \lim_{s \to 0} \frac{sR(s)}{1 + G(s)H(s)} = \lim_{s \to 0} \frac{s\frac{A}{s}}{1 + G(s)H(s)}$	
	$=\lim_{s\to 0}\frac{A}{1+G(s)H(s)}$	
	$e_{ss} = \frac{A}{1 + \lim_{s \to 0} G(s)H(s)} = \frac{A}{1 + Kp} \text{where}$	
	$Kp = \lim_{s \to 0} G(s)H(s)$ is called positional error coefficient. Steady state error $e_{ss} = \frac{A}{1+Kp}$	
	The open loop transfer function G(s)H(s) of a type 0 is given by : $G(s)H(s) = \frac{K(1+T1s)(1+T2s)}{(1+Tas)(1+Tbs)}$	
	For step input, $Kp = \lim_{s \to 0} G(s)H(s) = K$	

Subject Code: 17538

Model Answer

Steady state error
$$e_{ss} = \frac{A}{1+Kp} = \frac{A}{1+K}$$

$$\therefore K_p = K$$
 Steady state error $e_{ss} = \frac{A}{1+K}$

Similarly

$$Kv = \lim_{s \to 0} sG(s)H(s) = \lim_{s \to 0} \frac{sK(1+T1s)(1+T2s)\dots}{(1+Tas)(1+Tbs)\dots} = 0$$

$$e_{ss} = A/K_v = A/0 = \infty$$

$$Ka = \lim_{s \to 0} s2G(s)H(s) = \lim_{s \to 0} \frac{s2K(1+T1s)(1+T2s)\dots}{(1+Tas)(1+Tbs)\dots} = 0$$

$$e_{ss} = A/K_a = A/0 = \infty$$

		Critically stable	Unstable system	02 Marks	
]	1.Definition	For a bounded input,it produces an output which oscillates with constant frequency and amplitude.	For a bounded input, it produces an unbounded output. In the absence of input the	each (Any two)	
0	2.Nature of closed loop poles	Will have one or morenon repeated pair of poles on the jw axis with no pole in the R.H.S. of s-plane.	 output may not return to zero. 1.The roots are real and positive, located in R.H.S of s- plane. 2. complex conjugate roots with positive real part. 3. It can also have repeated pair of poles on the jw axis with 		

Subject Code: 17538

		no pole in the R.H.S.	
		of s-plane.	
3.Location of closed loop poles in s plane	$ \begin{array}{c} $	1.Real and positive 2 complex conjugate roots with positive real part	
		3. Repeated pair on jw axis.	
		$\xrightarrow{j\omega}_{j\omega_{1}} \sigma$ $\xrightarrow{\times}_{j\omega_{1}} \sigma$	
4. Step response	C(t) = t $C(t) = t$ $C(t) = t$	c(t) Exponential but t increasing towards = t c(t) Oscillations with increasing amplitude	

Subject Code: 17538

(e)	For a un	ity feedback system G(s)	$= \frac{K}{S(1+0.4S)(1+0.25S)}$. Find	04	4
	marginal	value of K.			
Ans.	$G(s) = \frac{1}{s(s)}$ $\frac{1 + \frac{1}{s(s)}}{s(1 + \frac{1}{s(1 + s)})}$	stic equation = 1+G(s)H(s) = $\frac{K}{(1+0.4s)(1+0.25s)}$, H(s) = 1 $\frac{K}{(1+0.4s)(1+0.25s)} = 0$ $\frac{0.4s(1+0.25s)}{(1+0.25s+K)} = 0$ $\frac{0.4s(1+0.25s+K)}{(1+0.25s)} = 0$	0	02 Marks	
	Routh's A	rray :			
	s ³	0.1	1		
	s ²	0.65	K		
	s ¹	$\frac{0.65 - 0.1K}{0.65}$	0		
	s ⁰	K			
	From From		0	02 Marks	
	$\therefore 6.5 > K$			Routh's	
	The value zero is call	array & marginal			
	Hence ma zeros.	rginal value of K is a value	which makes row of s ¹ as row of	value of K	
	0.65- 0.1 H	$X_{mar} = 0$			
	$\therefore \mathbf{K}_{mar} = 0$	6.5			

Subject Code: 17538