

Subject Code: 17538

Model Answer

Important Instructions to examiners:

1) The answers should be examined by keywords and not as word-to-word as given in the model answer scheme.

2) The model answer and the answer written by candidate may vary but the examiner may tryto assess the understanding level of the candidate.

3) The language errors such as grammatical, spelling errors should not be given more Importance. (Not applicable for subject English and Communication Skills.)

4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.

5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.

6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding.

7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q .	Question	& its Answer	Remark	Total
No.	-			Marks
1.	Attempt	any three		12
(A)	-	·		
(a)	Define tr	ansfer function. Give three advantages of T.F.		04
Ans.	Transfer	function is the ratio between the Laplace transform of output to		
	that of LT input under the assumption that all initial conditions are zero.			
	Advanta	ges (any 3)		
	1. It	gives mathematical models of all system components		
	2. A	s it uses Laplace transform, it converts time domain equations to		
	simple alg	gebraic equations.		
	3. It	relates output to input		
	4. It	describes input-output behavior of the system.	3 marks	
	5. It	helps in the stability analysis of the system		
	6. It	helps in determining poles, zeros and character equation.		
b)	Define fo	llowing terms wrt time domain response.		04
	i)	Transient response,		
	ii)	steady state response,		
	iii)	steady state error,		
	iv)	time constant		
Ans.	i)	Transient response:		
		Response of the system till it reaches the final steady state. It		
		shows how the system settles down to the final value.		
		OR		

Subject Code: 17538

significance of following terms w.r.to controller ii) Offset is defined as the range of error over which the controller onstant in the On Off controller. It is the range of error e signal moves before the switching action takes place. void frequent chattering or switching of the controller. ermanent residual error in proportional controller which is c; it is due to one to one correspondence existing between out and error. teady state error, it has to be reduced to improve the e controller.	1 mark 1 mark 1 mark 1 mark	04	
significance of following terms w.r.to controller ii) Offset is defined as the range of error over which the controller onstant in the On Off controller. It is the range of error e signal moves before the switching action takes place. void frequent chattering or switching of the controller. ermanent residual error in proportional controller which is e; it is due to one to one correspondence existing between put and error. teady state error, it has to be reduced to improve the e controller.	1 mark 1 mark 1 mark 1 mark 1 mark	04	
significance of following terms w.r.to controller ii) Offset is defined as the range of error over which the controller onstant in the On Off controller. It is the range of error e signal moves before the switching action takes place. void frequent chattering or switching of the controller. ermanent residual error in proportional controller which is c; it is due to one to one correspondence existing between out and error. teady state error it has to be reduced to improve the	1 mark 1 mark 1 mark 1 mark	04	
significance of following terms w.r.to controller ii) Offset is defined as the range of error over which the controller onstant in the On Off controller. It is the range of error e signal moves before the switching action takes place. void frequent chattering or switching of the controller. ermanent residual error in proportional controller which is e; it is due to one to one correspondence existing between	1 mark 1 mark 1 mark	04	
significance of following terms w.r.to controller ii) Offset is defined as the range of error over which the controller onstant in the On Off controller. It is the range of error e signal moves before the switching action takes place. void frequent chattering or switching of the controller.	1 mark 1 mark 1 mark 1 mark	04	
significance of following terms w.r.to controller ii) Offset is defined as the range of error over which the controller onstant in the On Off controller. It is the range of error e signal moves before the switching action takes place. void frequent chattering or switching of the controller.	1 mark 1 mark	04	
significance of following terms w.r.to controller ii) Offset is defined as the range of error over which the controller ponstant in the On Off controller. It is the range of error e signal moves before the switching action takes place. woid frequent chattering or switching of the controller	1 mark 1 mark	04	
significance of following terms w.r.to controller ii) Offset is defined as the range of error over which the controller onstant in the On Off controller. It is the range of error	1 mark	04	
significance of following terms w.r.to controller ii) Offset is defined as the range of error over which the controller		04	
significance of following terms w.r.to controller ii) Offset		04	
significance of following terms w.r.to controller		04	
right half of the S-plane.			
sign changes is equal to the number of the			
ble f sign changes is equal to the number of the			
gn changes, it indicates that			
n the first column of Routh's array.			
befficients of characteristic equation. There should not be			
terms in the first column of the Routh's array must have same sign". It is			
criteria:-	03		
to zero irrespective of the initial condition.			
d controllable. In the absence of the input,	111 a 1 N3		
is excited by a bounded input the output is	01 marks		
able.	01		
re located in the left half of the s-plane system			
State and explain Routh stability criterion.		04	
aken by the system to reach 05.2% of the final value.			
constant:			
fference between the set point and the final steady state	each)		
y state error:	(1mark		
nse of the system after the transients dies out.			
rge of infinity.			
bart of time response that goes to zero as time becomes			
oart orge y sta	of time response that goes to zero as time becomes or infinity. Ite response:	of time response that goes to zero as time becomes or infinity. Ite response:	

Model Answer

Subject Code: 17538

Model Answer

$ \begin{array}{c c} S^{3} \\ S^{2} \\ \hline S^{1} \end{array} $	0.1	1			
S^2 S^1				3marks	
S ¹	0.65	К			
	$\frac{0.65 - 0.1K}{0.65}$	0			
S ⁰	К	0			
To sat	isfy the condition for s	tability, K > 0, $\frac{0.65 - 0.1K}{0.65} > 0$			
Or, O	0.65 - 0.1K > 0, 6.5	> K			
There	lore, the range of K to	2 mark			
Them		U < A < 0.5			
	larginal value of K:				
The meleme	arginal value of <i>K</i> wints of third row will be	Il be $K_{mar} = 6.5$ because for thi come zero which indicates marg	s value, all the inal stability.	1 mark	
The fr	requency of sustained	oscillations:			
Find consid	out the roots of the a lering $K = 6.5$),	uxiliary equation at marginal	value of K (by		
		$0.65S^2 + 6.5 = 0$ $S^2 + 10 = 0$			
		$S^2 = -10$			
	$S = \pm j 3.162$				
Comp	aring $\boldsymbol{\omega} = frequency$	$S = \pm j \omega$ of oscillations = 3.162 rad	with I/sec	1 mark	
	ibe working of synch	co as an error detector with dia	igram. State		08

Model Answer

Subject Code: 17538

Model Answer

Subject Code: 17538

	Substituting value of I (s) in equation 1 Vo(s) Cs/Vi(s) = 1/[R + sL + 1/sC] Vo(s)/Vi(s) = 1/[Cs][R + sL + 1/sC]	01 mark	
	$\therefore \frac{Vo(s)}{Vi(s)} = \frac{1}{[s2 LC + sRC + 1]}$	01 mark	
	Define and give significance of standard test input signal and their		04
b)	Laplace representation		
Ans	Definition- Many signals which are the functions of time; can be used as reference input for various control systems. These signals are square, triangular, step,ramp,sawtooth etc. But practically for the purpose of analysis, those signals which are most commonly used as reference inputs are called as standard test signals. Significance- The evaluation of the system can be done on the basis of response given by the system to the standard test input. Once the system	Definitio n-1M Significa nce-1M Laplace	
	behaves satisfactorily to a test input its response to actual input is assumed	01 4 types	
	to be correct.	of standard	
	Laplace representation of the Standard Test signals	test	
	1) Step Input(for magnitude of A) R(s)= A/s	1/2 M each	
	2) Ramp Input(for slope of A) R(s)=A/s ²	Marks may be given if	
	3) Parabolic Input (With slope At) $R(s) = A/s^3$	students write Laplace	
	4) Impulse Input R(s) = 1	for unit step, ramp or	
		paraboli	
c)	Determine stability using Routh criterion for given characteristic equation $S^4+6S^3+26S^2+56s+80=0$	c signal	04
Ans		4M for	
	$ S^4 1 26 80$	correct	
	$ S^3 6 56 0$	table	
	$S^{2} = \frac{6x26 - 56x1}{6} = 16.6 \qquad \frac{6x80 - 0x1}{6} = 80$	and answer. 2M mav	
	$\mathbf{S}^{1} \begin{bmatrix} \frac{16,67x56-80x6}{16.66} = 27.2 \\ 1 \end{bmatrix} = 0$	be given for	

Subject Code: 17538

			1
	2721 x 80 - 0 x 16 67 oc	correct	
	$S^{0} = \frac{27.21}{27.21} = 80$	method	
		even if	
		the	
	As there is no sign shange in first column of Douth array, system is stable		
	As there is no sign change in first column of Routh array, system is stable	answer	
		is not	
		correct	
d)	Describe how potentiometer is used as error detector with neat		04
u)	diagram		•
A			
Ans	dc motor		
	e amplifier e (M-)		
	Perf B.		
	••••••••••••••••••••••••••••••••••••••		
	Explanation :		
	DC Motor control systems potentiometers can be used as position feedback		
	as shown. This type of arrangement allows comparison of two remotely		
	located sheft positions. The output voltage is taken across the variable term		
	located shall positions. The output voltage is taken across the variable term		
	of the two potentiometers. Output of this differential potentiometer is =Ks		
	$-\theta L(t)$ This is then is fed to DC Amplifier, which is further amplifying		
	armature current of the DC Motor. The motor, in turn moves and with i		
	shaft connected to the load potentiometer in such a way as to make the o		
	voltage zero. That is the output (Load) potentiometer sheft, moves in accord		
	voltage zero. That is the output (Load) potentionneter shart moves in accord		
	with the shaft of the		
	input(reference) potentiometer.		
e)	What is ON-OFF controller? Explain its one application in detail		04
Ans	On- Off Controller :-	2M for	
	On-Off control is the simplest form of feedback control. An on off	definitio	
	on-on control is the simplest form of feedback control. All oli-on		
	controller simply drives the manipulated variable from fully closed to fully	n.	
	open depending on the position of the controlled variable relative to the	2M for	
	setpoint	applicati	
	It has only two fixed positions such as on (1) and off (0). The output signal	on.	
	P remains either 0% or 100% depending upon whether the error is negative	Δnv	
	r renaities	4 x 11 y	
	or positive.	suitable	
	P = 100% (ON) for positive error	applicati	
	P = 0% (OFF) for negative error.	on may	
		be	
	Application (Flectric Iron as ON-OFF Controller)	evnlaine	
	Application (Electric from as Oly-OFT' Controller)		
		a by the	
	In automatic electric iron, a resistive heating element is used to generate	candidat	

Model Answer

Subject Code: 17538

heat. A thermostat is used as controller to control the temperature. The e. reference input is the desired temperature setting on the thermostat. The controlled output is the actual temperature of the electric iron. When the output temperature is less than the thermostat reference setting, the thermostat is actuated which, in turn, switches on the heating element. As a result, the temperature increases, and when it exceeds the thermostat setting (desired value of temperature) by a small amount, the heating element is turned off. The temperature then starts decreasing. When it falls below the thermostat setting by a small amount, the heating element is once again switched on. The heating cycle is thus repeated. The sole plate of the iron of which the temperature is to be controlled is the Process. The actuator is the heating element and the thermostat acts as the error detector and controller. Disturbance to the system is the heat loss due to radiation. Heat Loss Actual Temperature Temperature setting Control signal Switch and heating Sole plate of Iron Thermostat element Reference input Controlled output Process Controller Actuator Block diagram of Electric Iron as On-Off Controller 0.4 Attempt any THREE 12 A) a) Draw electronic op-amp based PID controller circuit diagram 04 **4M** for P-action Ans the R correct diagram I-action **D**-action State two advantages and two disadvantages of frequency response 04 b) analysis. Ans Advantages: 2M each 1. The absolute and relative stabilities of the closed loop system can for 2

be found out from the open loop frequency response characteristics advantag by using the methods such as Nyquist stability criteria.
2. The transfer function of complicated systems can be found out practically by frequency response test when it is difficult to find tages

Subject Code: 17538

	 3. Frequency response test are simple and can be done practically by the readily available laboratory equipment. 4. Without the knowledge of transfer function, the frequency response for stable open loop system can be obtained experimentally. 5. Due to the close relation between frequency response of a system and its step response, idea about step response can be obtained from the frequency response. 		
	Disadvantages:		
	1. Time consuming		
	2. Out dated methods compared to digital computation, simulation and modeling.		
	3. Methods can be applied mainly to linear systems.		
	4. Not recommended for systems with larger time constants transfer function by writing differential equations.		
c)	For given TF determine i) Poles ii) Zeros iii) Characteristic equation iv) Order of sys. $T(s) = \frac{2(s+1)^2(s+2)(s^2+2s+2)}{s^3(s+4)(s^2+6s+25)}$		04
Ans	i) Poles are $s1=0,s2=0,s3=0,s4=-4$, $s5,s6=, -3\pm 4j$ ii) Zeros are $s=-2, -1, -1, -1\pm j1$ iii) The Characteristic equation is $s^3(s+4)(s^2+6s+25)=0$ i.e $s^6 + 10s^5 + 49s^4 + 100s^3=0$ iv) Order of the system is the highest power of s in the characteristic equation Thus, the order of the system is 6	1 M each for each correct answer	
d)	Define servo system. Explain in brief AC servo system with neat diagram		04
Ans	Servo system is defined as automatic feedback control system working on error signals giving the output as mechanical position, velocity or acceleration AC Servo system	1M for definitio n 2M for the block	

Model Answer

	Synchro Transmitter Control Trans Control Trans Control Trans Control Trans Control Trans Control Trans	AC V_{ref} e AC V_{ref} e_c AC e_c AC e_c AC e_c AC e_c AC e_c AC e_c AC e_c AC B_{y} B_{y} B_{y}	diagram 1M for blick diagram explanati on	
D)	As shown above, synchro transferror detector. Any difference in transformer positions (θ_y) cause error voltage is amplified and a transformer rotor shaft until it is The rotor output of control transf the output of amplifier is fed motor phases are in quadrature. in a direction so as to reduce the follow θ_r until the error voltage	mitter and control transformer pair we in the positions of transmitter (θ_r) and d es error voltage to be generated. This applied to the servo motor which drives aligned with the transmitter shaft. sformer of synchro goes to the amplifit to a 2 phase induction servo motor. So, the servo motor will always try to the error voltage. Therefore, θ_y will a is 0.	orks as control output ves the ier and Servo o rotate always	06
D)	Give three comparison point	ts between stepper motor and DC	servo	06
	system	· · ·		
Ans	Stepper MotorNo control windingNumber of steps can beprecisely controlled.It is brushless.Due to absence of brushes, nowear and tear and hence lessmaintenanceLoad and no load condition does	DC Servomotor Control winding is present. It gives continuous rotation. It has brushes. Maintenance is required These conditions affect the	2 M each for 3 points	
	not affect the running current of stepper motor Speed(stepping rate) is governed by frequency of switching	running current Speed is controlled by supply voltage.		
2)	A second order system is $\frac{C(s)}{R(s)} = \frac{25}{(s^2+6s+25)}$ Find T _r , T _n , γ .Mp, T _s if su	given by		06
Ans	$\frac{C(s)}{R(s)} = \frac{\omega_n^2}{\omega_n^2 + 2\xi\omega_n s + s}$	2	1 M each for correct	

Subject Code: 17538

r			
	$\theta = \tan -1[\sqrt{(1-\xi^2)}/\xi] = 0.9272$ radians	Ts	
	$\omega d == \omega n \sqrt{(1 - \xi^2)} = 4 \text{ rad/s}$		
	Rise Time. $\mathbf{Tr} = \pi - \theta / \omega d$		
	$= (\pi - 0.9272)/4 = 0.5535$ sec		
	Settling Time , Ts=4 / $\xi \omega n=1.33$ sec (for a tolerance band of + 2%)		
	Peak Time , Tp = $\pi/\omega d = \pi/4 = 0.785$ sec		
	% Peak overshoot,% Mp= e- $\pi \xi/\sqrt{(1-\xi_2)x100=9.48\%}$		
Q.5	Attempt any FOUR		16
a)	Explain DC Servo System with neat diagram		04
Ans	$ \begin{array}{c} + & DC motor \\ \hline V_e & amplifier & V_a & \textcircled{DC} & \fbox{DC} \\ \hline u & & \textcircled{DC} & & \textcircled{DC} & & & & & & & & & & & & & & & & & & &$	02 marks for diagram	
	Fig: DU Servo Motor		
	 The standard block diagram of servo system consists of error detector, amplifier, motor as controller, load whose position is to be changed. Servo systems is to be divided into two type a) DC servo systems b) 	02 marks for explanat on	
	 AC servo system 3) DC servo system consists of potentiometer as a error detector, DC amplifier, DC motor, DC gear system and the DC load whose position is to be changed. 		
	 4) In DC servo system potentiometer has two input i.e one is reference input and another is actual load position. Potentiometer finds the error between two position. The error signal between two position is given to DC amplifier which amplify the error. Output of DC amplifier is given to DC motor & finally Dc motor change the position of DC load. In this way servo system is used to change the load position with help of motor & error detector. 		
	Draw electronic PI Controller. State its advantages, characteristics &		04
b)	write its equation		

Model Answer

Subject Code: 17538

	ii) •	stable. Conditional A linear tin system if th parameters of In this type certain cond parameter of becomes unl	Ily stable syste me invariant s the stability of s of the system. of system for s litions of a part thanged then f bounded.	em: system is called as con system depends on certa ome bounded input output ticular parameter. If the for the same bounded in	ditionally stab in conditions of ut is bounded for conditions of the nput, the outp	le of or ne ut	
d)	Expl	ain effect of d	amping on per	rformance of second or	ler system		04
Ans	 Damping : Damping is an influence within or upon an oscillatory system that has the effect of reducing, restricting or preventing its oscillations. The damping ratio is a dimensionless measure describing how oscillations in a system decay after a disturbance. The damping ratio is generally denoted by zeta (ζ) iv) The damping ratio is a measure of describing how rapidly the oscillations decay from one bounce to the next. 						
	No ·	Range of ζ	Type of close loop poles	Nature of response	System Classificati on		
	1	$\zeta = 0$	Purely imaginary	Oscillations with constant amplitude & frequency	Undamped		
	2	0 < ζ < 1	Complex Conjugates with negative real parts	Damped Oscillations	Underdamp ed		
	3	ζ = 1	Real, Equal and	Critical & Pure exponential	Critically damped		
			Negative				

Subject Code: 17538

	 of the system. It refers to the phase which can be increased or decreased without making the system unstable. It is usually expressed in phase. Stability Conditions of Bode Plots Stability conditions are given below : For Stable System : Both the margins should be positive. Or phase margin should be greater than the gain margin. For Marginal Stable System : Both the margins should be zero. Or phase margin should be equal to the gain margin. For Unstable System : If any of them is negative. Or phase margin should be less than the gain margin. 				
06	Attempt any FOUR		16		
a)	Draw labeled time response of second order under damped control		04		
,	system				
	For time response of 2^{nd} order under damped control system $0 < \varepsilon < 1$	04			
Ans	c(t) ↑ Pack succession	marks			
	M	for			
		labeled			
	Allowable tolerance 1.0 0.5 t_d t_d t_d t_s Time response of 2 nd order under damped control system	diagram			
	Define following terms w.r.to Second order system		04		
b)	i) Settling Time				
	ii) Rise Time				
	iii) Peak Overshoot				
	iv) Delay Time				
Ans	 Rise Time: It is the time required for the response to rise from 10% to 90% of the final value for over damped systems & 0 to 100 % of the final value for under damped systems. It is given by 	01 mark for each definitio on			

Subject Code: 17538

	ii) iii) iv)	$T_r = \frac{\pi - \theta}{w_d}$ Wd = Wn $\sqrt{1 - \varepsilon^2}$ & $\Theta = \tan^{-1}(\frac{\sqrt{1 - \varepsilon^2}}{\varepsilon})$ Settling time: This is defined as the time required for the response to decrease & stay within specified % of its final value . $T_s = \frac{4}{\zeta w_n}$ Peak Overshoot: It is the largest error between reference input & output during the transient period. It is normalized difference of first peak overshoot to final steady state value. $M_p = e^{\frac{-n\varepsilon}{\sqrt{1 - \varepsilon^2}}}$ Delay time: It is the Time required for the response to reach 50 % of the final value in the first attempt it is given by $T_d = \frac{1 + 0.7\zeta}{w_n}$	(formula is optional)	
c)	A unit i) ii)	y feedback system has $G(s) = \frac{40(S+2)}{S(S+1)(S+4)}$. Determine Type of system		04
Ans	1) 1) 2)	Comparing the equation in standard form: $G(s)H(s) = \frac{K(1+T1s) + (1+T2s)}{s^{j}(1+Ta s)(1+Tb s)} \dots \dots$ Where j is type of system $G(s).H(s) = \frac{10(s+2)}{s(1+s)(1+0.25 s)} \dots \dots H(s) = 1$ So, This is type - 1 system. $K_{p} = \lim_{s \to 0} G(s).H(s)$ $K_{p} = \lim_{s \to 0} G(s) = \lim_{s \to 0} \frac{10(s+2)}{s(1+s)(1+0.25 s)} = \infty$	01 mark for type of system 01 mark for Kp,	
	3)	$K_v = \lim_{s \to 0} s. G(s). H(s)$		

Subject Code: 17538

	$K_v = \lim_{s \to 0} K_s$	$G_{s \to 0} s. G(s) = \lim_{s \to 0} 10(s+2)$	$s \to 0 \frac{10 s}{s (1+s)}$	$\frac{S(S+2)}{(1+0.25S)} = 01$ mar	k for 01 mark for Kv	
	Kplim	$s \rightarrow 0 \overline{(1+s)(1+0.25s)}$	$\frac{1}{5} = \frac{1}{1} = 20$			
	4) $K_a = \lim_{s \to 0} K_a = \lim_{$	$_{S \to 0}S^2. G(s). H(s)$)		01 mark for Ka	
	$K_a = \lim_{s \to a} K_s$	$_{s\to 0} S^2. G(s) = 1$	$\lim_{s \to 0} \frac{10}{(1+s)}$	$\frac{0 S (S+2)}{S (1+0.25 S)} = 0$		
d)	For given ch ^r eo	$q^{n} \cdot S^{4} + 22S^{3} + 10$	$0S^2 + S + K =$	=0. Find K _{max} .		04
Ans	1) Firstly F	Find even & odd	coefficient fr	om characteristics	equation 03	
	2) The rour follows	S ⁴ + th's array for abo	$22S^3 + 10S^2$	+ S + K istics equation is fo	rmed as for rouths array	
	$\overline{S^4}$	1	10	K		
	S^3	22	1	0		
	S^2	9.95	K	0		
	S^1	$\frac{9.95-22K}{9.95}$	0			
	\mathbf{S}^{0}	K				
	 For stab positive Conside 	ility all elements r Row s1	of 1 st colum	n of routh array sho	ould be	
	<u>9.95–22K</u> 9.95	· 0	i.e <i>K</i> < -	9.9 <u>5</u> 22	01 mark	
	i.e. 0 < K	L < 0.45			For Kmax	
	Thus K _m	ax is 0.45 for stab	le system.			
e)	Examine stabili	ty by Routh crit $S^4 + 10S^3 +$	terion for ch $35S^2 + 50S$	$\mathbf{\hat{r}} \mathbf{eq}^{\mathbf{n}} + 24 = 0$		04
Ans	1) Firstly Fi	nd even & odd c c^4	oefficient fro	p^2 + 50S + 24 - 0	quation	
	2) The routh follows	n's array for abov	+ 105 + 555 ve characteris	stics equation is for	med as marks for rouths	
	S ⁴	1	35	24	array	

Subject Code: 17538

	S ³	10	50	0		
	S^2	30	24	0		
	S^1	42	0			
	S^0	24			01 1	
 Conclusion: As in the first column of Routh's array there is NO sign change means all the poles of characteristics equations lie in Left hand of S plane hence system is stable. 				01 mark for conclusio n		