

Subject Code: 17538

Model Answer

Important Instructions to examiners:

1) The answers should be examined by keywords and not as word-to-word as given in the model answer scheme.

2) The model answer and the answer written by candidate may vary but the examiner may tryto assess the understanding level of the candidate.

3) The language errors such as grammatical, spelling errors should not be given moreImportance. (Not applicable for subject English and Communication Skills.)

4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.

5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.

6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding.

7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No.	Question & its Ans	wer		Remark	Total Marks
1. A	Attempt any THREE				12
a)	Compare time vari	ant and time invariant s	ystem.		04
Ans.	Time Variant Syste / varying with time i called time variant s Ex: rocket launching Time Invariant Sy changing/varying w changes or not is cal Ex: RC, RLC netwo	2marks 2marks			
b)	Laplace transform.	-	ving test I/P and give their nput iv) Impulse input		04
Ans	Test Signal	Graphical representation	Laplace representation	1mark each for	
	Unit Step Input		1/s	test input	

Subject Code: 17538

	Unit Ramp Input Unit Parabolic Input	r(t) $f(t)$	$\frac{1/s^2}{1/s^3}$		
	Unit Impulse	$r(t)$ $\downarrow \qquad \qquad$	1		
c)	Define stability and	explain different type	s of stability.		04
Ans	 Define stability and explain different types of stability. Stability: If the poles of the system are located on the left half of the s-plane system is said to be stable. OR When the system is excited by a bounded input, the output is also bounded and controllable. In the absence of the input, output must tend to zero irrespective of the initial condition. Types of stability: When the system is excited by a bounded input, the output is unbounded. i) <u>Critical stability:</u> If the poles (non repeated) are located purely on imaginary axis of s-plane, system is said to be critically stable. ii) <u>Conditional stability:</u> If the Stability of system depends on condition of parameter of the system, such a system is called conditionally stable system. iii)<u>Relative Stability</u>: The system is said to be relatively more stable on the basis of settling time. If the settling time for a system is said 				
d)	Why D control ac disadvantages of th		e, Justify& give advantages &		04
Ans	The equation for D c	2 marks			
		troller output will be zet e D controller is not use	ro if i) error E_p is zero ii) if error ed alone.		

Subject Code: 17538

	Advantages: fast and stabilizes system Disadvantages: cannot eliminate offset, cannot be used alone. Note. Any two relevant advantage and disadvantage may consider.	1 mark 1 mark	
B	Attempt any ONE		06
a)	Derive transfer function of the given electrical network Diagram		06
	$V_{i}(t)$ $I = V_{o}(t)$ $Fig. 1$		
Ans	Input equation : $V_i(t) = Ri(t) + \frac{1}{C} \int i(t)dt + L \frac{di(t)}{dt}$	1 mark	
	Output equation: $V_0(t) = L \frac{di(t)}{dt}$	1 mark	
	Taking Laplace of i/p and o/p equations:		
	$V_i(S) = RI(S) + \frac{I(S)}{CS} + LSI(S)$	1 mark	
	$V_O(S) = LSI(S)$	1 mark	
	$TF = \frac{V_0(S)}{V_i(S)} = \frac{LSI(S)}{RI(S) + \frac{I(S)}{CS} + LSI(S)} = \frac{LCS^2}{LCS^2 + RCS + 1}$	2 marks	
b)	For unity feedback system with Transfer Function		06
·	$G(S) = \frac{40(S+5)}{S(S+10)(S+2)}$. Draw the bode plot.		
Ans	Step 1: Convert the given open loop transfer function to time constant form:		
		1 mark	

Subject Code: 17538

G(S)H	$H(S) = \frac{1}{20}$	$\frac{40 \times 5(5)}{S(\frac{S}{10} + 5)}$	$\frac{\frac{S}{5}+1}{1)(\frac{S}{2}+1)} = \frac{1}{S}$	$\frac{10(0.2S+1)}{(0.1S+1)(0.5)}$	$\frac{1}{S+1}$		2 mark
Step 2:	: Identify t	he fact	ors;				
1.	Open loop	p gain 1	K=10, M in dl	B= 20 log K=	= 20 log 10=2	OdB	
2.	Pole at or	igin (1	/S) which has	a magnitude	plot with slop	pe of	
-20dB/	decade. Fo	or w=1	, M in dB for	$(1/S) = -20 \log 10^{-1}$	og 1=0 dB		
	them are the magnin 0 dB/deca -20dB /de First orde the corner	$w_{c1} = 1/2$ itude pl ade and ecade. er zero (r freque	(0.1S+1) and $(0.1=10, w_{c2} =$ lot's slope will from the corr (0.2S+1). The encies the mag	1/0.5=2. Til l be ner frequencie corner freque gnitude plot's	I the corner f es it changes ency isw _c =1/0 slope will be	requencies to 0.2=5. Till e	1
	20dB /ded Step 3: Pl						1 mark
Freq	Step 3: Pl	hase an Fact	gle ϕ : Factor 3,	Factor 4,	Factor 4,	Total	1 тагк
Freq =ω	Step 3: Pl Facto r1	hase an Fact or	gle ϕ : Factor 3, 1/(0.1S+1)	-	Factor 4, (0.2S+1)	Total Phase angle	1 mark
-	Step 3: Pl	hase an Fact	gle ϕ : Factor 3, 1/(0.1S+1) $\phi_3 =$ $-\tan^{-1}$	Factor 4, 1/(0.5S+1) \$\phi_4=\$	Factor 4,	Total Phase angle $\phi = \phi_1 + \phi_2 + \phi_3 + \phi_3$	1 mark
-	Step 3: Pl Facto r1 K=10	hase an Fact or 2, 1/S	gle ϕ : Factor 3, 1/(0.1S+1) $\phi_3 =$	Factor 4, 1/(0.5S+1)	Factor 4, (0.2S+1) $\phi_{5}=$ tan ⁻¹	Total Phase angle $\phi = \phi_1 + \phi_1$	1 mark 2marks
-	Step 3: Pl Facto r1 K=10	hase an Fact or 2, 1/S	gle ϕ : Factor 3, 1/(0.1S+1) $\phi_3 =$ $-\tan^{-1}$	Factor 4, 1/(0.5S+1) $\phi_{4} =$ -tan ⁻¹	Factor 4, (0.2S+1) $\phi_{5}=$ tan ⁻¹	Total Phase angle $\phi = \phi_1 + \phi_2 + \phi_3 + \phi_3$	
=ω	Step 3: Pl Facto r1 K=10 $\phi_1=$	hase an Fact or 2, 1/S $\phi_2 =$	gle ϕ : Factor 3, 1/(0.1S+1) $\phi_3 =$ $-\tan^{-1}(0.1\omega)$	Factor 4, 1/(0.5S+1) $\phi_{4} =$ -tan ⁻¹ (0.5 ω)	Factor 4, (0.2S+1) $\phi_{5} = \tan^{-1}(0.2\omega)$	Total Phase angle $\phi = \phi_1 + \phi_2 + \phi_3 + \phi_4 + \phi_5$	
=ω ⁻ 1	Step 3: Pl Facto r1 K=10 ϕ_1 =	hase an Fact or 2, 1/S $\phi_2 =$ -90^0	gle ϕ : Factor 3, 1/(0.1S+1) $\phi_3 =$ -tan ⁻¹ (0.1 ω) -5.7 ⁰	Factor 4, 1/(0.5S+1) $\phi_{4} =$ -tan ⁻¹ (0.5 ω) -26.56 ⁰	Factor 4, (0.2S+1) $\phi_{5}=$ tan ⁻¹ (0.2 ω) 11.3 ⁰	Total Phase angle $\phi = \phi_1 + \phi_2 + \phi_3 + \phi_4 + \phi_5$ -122.26 ⁰	

Subject Code: 17538

Subject Code: 17538

							3marks	
Ν	New Routh	's array:					Jillar KS	
5	S^{6} 1		3	-16	-48			
·	S ⁵ 4		0	-64	0			
5	S ⁴ 3		0	-48	0			
2	S^3 12	2	0	0	0			
	S ² [8	e] 0	-48	0	0			
5	S	576	0	0	0			
		Е						
5	S ⁰	48						
	·		li	$m \frac{576}{2} = +3$	Ø	-		
S	Since there	is one sig		$\rightarrow 0 \mathbf{\mathcal{E}}$	mn of PA so	ystem is unstable.	1 mark	
		_	-		eat diagram			08
					tor.(any 4 pc			Vð
A w ar m N T	vindings k nd displac naterial. T No external The stator	motor is nown as ced by 9 he rotor h l voltage i reference	reference a 00 ⁰ .Rotor nas winding s applied to winding is ng is excit	nd control w and stator a s in it which rotor. s excited by	indings unifo are made of n makes shor	sists of 2 stator ormly distributed electromagnetic t-circuited paths. AC supply. The coltage which is	4 marks	

Subject Code: 17538

Co				
	r.N AC servo motor	Normal induction motor		
	0			
1	Low inertia	High inertia	4 marks	
2	Linear Torque-speed	Nonlinear Torque-speed		
	characteristic	characteristic		
3	Diameter of rotor is small	Diameter of rotor is large		
4		X/R ratio is more		
5	I I I I I I I I I I I I I I I I I I I	Susceptible to low frequency		
	frequency noise	noise		
6	1 11	Low and high power applications		
7	Can be used where noise	Cannot be used in such		
'	1. 1 . 11	1		
Ob		application. e following system by using block		08
Ob				08

Subject Code: 17538

	Where, G (s) is the transfer function of forward path		
	H (s) is the transfer function of feedback path		
	C (s) is the Controlled output		
	R (s) is the reference input		
	B (s) is the feedback signal		
	E (s) is the Error signal		
	Derivation:		
	E(s) = C(s)/G(s)	Derivati on	
	$C(s) = E(s) \times G(s)$	3Marks	
	$B(s) = C(s) \times H(s)$		
	E(s) = R(s) - B(s) (for negative feedback) [.I.]		
	Substitute for E(s) & B(s) in [.I.]		
	$\frac{C(s)}{G(s)} = R(s) - C(s) H(s)$		
	$C(s) \{\frac{1}{G(s) + H(s)}\} = R(s)$		
	$C(s) \frac{[1+G(s)H(s)]}{G(s)} = R(s)$		
	Transfer Function:		
	$\frac{C(s)}{R(s)} = \frac{G(s)}{1+G(s)*H(s)}$		
b)	Draw labeled time response of 2 nd order control system & define i)Delay time ii) Rise time iii)Setting time iv) Peak overshoot		04

Subject Code: 17538

Subject Code: 17538

			1 Mark for forming and solving the auxiliar y equatio	
	equation, the new routh array will be: S^5 1 2 2		n	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1 Mark for complet ing the Routh Array	
d)	The first column in routh's array has 2 are two poles on right side of S-plane. Compare stepper motor and DC ser	·	1 Mark for comme nton the stability	04
Ans	Stepper Motor	DC Servomotor	1 Mark	
	No control winding	Control winding is present.	for	
	Number of steps can be precisely controlled.	It gives continuous rotation.	each point (any 4	
	It is brushless.	It has brushes.	(any 4 points)	
	Due to absence of brushes, no wear and tear and hence less maintenance	Maintenance is required	points)	
	Load and no load condition does not affect the running current of stepper motor	These conditions affect the running current		
	Speed(stepping rate) is governed by frequency of switching	Speed is controlled by supply voltage.		
e)	Compare proportional and integral (i) Nature of output	controller on the basis of		04

Subject Code: 17538

	(ii) (iii) (iv)	Respons Output Applicat	-				
ns	Contro 1 Action	Nature of output	Equation	Response of Error	Applicati on	1 Mark each for the	
	Proport ional	Controll er output is proportio nal to error	$K_P E_P + P_0$	controller 1001/	Used in processe s with medium process lags	specific points	
	Integra 1	Rate of change of controlle r output is proportio nal to error.	$p(t) = K_I \int_0^t e_p dt + p(0)$		 Used in processe s with small process lags & small capacitan ce such as flow & level control system 		
4 A	Attemnt	any THR	राह				12
- f / 1	Describe	principle	of automatic elec	ctric iron as ON-OFF c	ontroller with		04
15	its standard equation ON-OFF controller is a two position discontinuous controlling mode. The mathematical equation of ON-OFF Controller is shown below : Output Equation					1 mark	
		$%, e_p$	<0			1 Mark	
	$100\% e_p > 0$						
	Where, P is the controller output and e_p is the error signal.						
	OR ON-OFF controller – it is simplest and cheapest type of discontinuous type of controller. In this controller when measured value is less than SP full controller output results. When it is more than SP controller output is zero.						

Subject Code: 17538

	Explanation: In automatic electric iron, a resistive heating element is used to generate heat. A thermostat is used as controller to control the temperature. The reference input is the desired temperature of the electric iron. When the output temperature is less than the thermostat reference setting, the thermostat is actuated which, in turn, switches on the heating element. As a result, the temperature increases, and when it exceeds the thermostat setting (desired value of temperature) by a small amount, the heating element is turned off. The temperature then starts decreasing. When it falls below the thermostat setting by a small amount, the heating element is switched on. The heating cycle is thus repeated. The sole plate of the iron of which the temperature is to be controlled is the Process. The actuator is the heating element and the thermostat acts as the error detector and controller. Disturbance to the system is the heat loss due to radiation. Diagram of Electric Iron as On-Off Controller: Temperature setting Temperature setting Thermostat Reference input Control signal Switch and heating element Actuator Block diagram of Electric Iron as On-Off Controller	1 Mark 1 mark for figure	
	(Any other relevant diagram should be considered)		
b)	Give need of bode plot & describe straight line magnitude plot & Phase angle plot.		04
Ans	 Need Of Bode Plot: 1) To find the stability of control system 2) The experimental determination of transfer function is easier if frequency response data is presented in the form of logarithmic plot. Such plot shows both low and high frequency characteristics in the same diagram. 	1 mark (any relevant 1 point)	
	Magnitude Plot : The magnitude plot is expressed in its logarithmic values by finding out the value $20 \log_{10} Gj(\omega)$ dB. Such decibel values are plotted against $\log_{10} \omega$.	1.5 marks	

Subject Code: 17538

Subject Code: 17538

Subject Code: 17538

	equation	for	
	$\frac{C(s)}{R(s)} = \frac{\omega_n^2}{\omega_n^2 + 2\xi\omega_n s + s^2}$	finding	
	$\overline{R(s)} = \omega_n^2 + 2\xi \omega_n s + s^2$	ωn. 1 mark	
		for	
	we get, $\omega_n^2 = 25 2\xi \omega_n = 6$	finding	
		ξ.	
	Therefore, $\omega_n = \sqrt{25} = 5 \text{ rad/s}$	1 mark	
		for each	
	And $2^{*} \xi^{*} 5=6$, therefore, $\xi=0.6$	correct	
		answer	
	$\theta = \tan^{-1}[\sqrt{(1-\xi^2)}/\xi] = 0.9272$ radians	of	
		parame	
	$\omega_{d==}\omega_n \sqrt{(1-\xi^2)} = 4 \text{ rad/s}$	ters.	
		(Tr,Ts,	
	Rise Time . Tr = $\pi -\theta / \omega_d$	Tp,Mp)	
	$=(\pi - 0.9272)/4 = 0.5535$ sec	- P , P)	
		(Due	
	Settling Time , Ts=4 / $\xi \omega_n$ =1.33 sec (for a tolerance band of + 2%)	conside	
		ration	
	Peak Time , Tp = $\pi/\omega_d = \pi/4 = 0.785$ sec	should	
		be given	
	% Peak overshoot,% Mp= $e^{-\pi \xi/\sqrt{(1-\xi^2)}} x100=9.48\%$	to	
		correct	
		formula	
)	
b)	Identify with servo component can be used as error detector in AC servo	,	06
~)	system. Draw and explain it.		
Ans	Usually, synchos are used as error detector in AC servo systems.	1 Mark	
	Diagram of Synchro as error detector	for	
		identific	
	Electrical zero	ation	
	position		
	θ	3 Marks	
	Synchro control transformer	for	
		labeled	
	Contraction Contra	diagra	
	A.C. (position voltage	m	

	10 ¹ S ₃ S ₁ ¹ S ₃ S ₁ ¹ S ₃ S ₁ ¹		
	Synchiro transformer		
	Error detector		
	Explanation :		
	I		

Subject Code: 17538

	Synchro transmitter along with synchro control transformer is used as error detector. The control transformer is similar in construction to that of synchro transmitter except that its rotor is cylindrical in shape. Therefore, the flux is uniformly distributed in the air gap. The output of the Synchro transmitter is given to the stator windings of the control transformer as shown. The voltage induced in the stator coils and corresponding currents of the transmitter are given to the control transformer stator coils Circulating currents of same phase but different magnitude will flow through both set of stator coils. This establishes an identical flux pattern in the air gap of control transformer. The flux pattern in the air gap of control transformer will have the same orientation as that of transmitter rotor. The voltage induced in the two rotors. The output equation is given by : $e_0(t) = V_r \sin \omega t + \cos \phi$ where $V_r \sin \omega t = \text{input voltage to the transmitter rotor and } \phi$ is the angular difference between both rotors. When $\phi=90$ both rotors are perpendicular to each other and the output voltage is zero This position is called electrical zero and is used as reference position.	2 Marks for the explana tion	
Q.5)	Attempt any FOUR		16
<u>a)</u>	Draw and explain block diagram reduction rules. (Any four)	0.1	04
Ans.	 i) Combining a block in cascade: When two or more blocks are connected in series, their overall transfer function is the product of individual block transfer function. R(S) → G₁(S) → G₂(S) → C(S) ⇒ R(S) → G₁(S) ⋅ G₂(S) → C(S) ii) Combining two blocks in parallel: When two or more blocks are connected in parallel, their overall transfer function is the addition or difference of individual transfer function. 	01 Mark for each (any 04 correct rules)	
	 <i>R(S)</i> G₁(<i>S</i>) + G₂(<i>S</i>) <i>G</i>₁(<i>S</i>) + G₁(<i>S</i>) <i>G</i>₁(<i>S</i>) + G₁(

	Assuming unity feedback system i.e. $H(s) = 1$, we will get $K_p = \lim_{s \to 0} G(s) = \lim_{s \to 0} \frac{8}{(s^2 + 4.s + 8)}$ $K_p = \frac{8}{8} = 1$	Kp – 01 Mark
ii)	Velocity error coefficient (K _v) is given by, $K_v = \lim_{s \to 0} s. G(s). H(s)$ Assuming unity feedback system i.e. $H(s) = 1$, we will get	
	$K_{v} = \lim_{s \to 0} s. G(s)$ $K_{v} = \lim_{s \to 0} s. G(s) = \lim_{s \to 0} \frac{8.s}{(s^{2} + 4.s + 8)}$	Kv – 01 Mark
	$s \to 0$ $s \to 0$ $(s^2 + 4.s + 8)$ $K_v = 0$	
iii)	Acceleration error coefficient (K _a) is given by, $K_a = \lim_{s \to 0} S^2 . G(s) . H(s)$ Assuming unity feedback system i.e. $H(s) = 1$, we will get $K_a = \lim_{s \to 0} S^2 . G(s) = \lim_{s \to 0} \frac{8.S^2}{(s^2 + 4.s + 8)}$	Ka – 01 Mark
	i.e. $K_a = 0$	
iv) Steady	y State Error is given as,	
ess = lim	$s \to 0 \frac{s \cdot X(s)}{1 + G(s) \cdot H(s)}$	Ess –
Assuming	g H(s) = 1 & X(s) = $\frac{1}{s}$ for unit step input, we get	01 Mark
ess = lim	$s \to 0 \frac{s \cdot X(s)}{1 + G(s)}$	
ess = lim	$s \to 0 \frac{s*1/s}{1+\frac{8}{(s^2+4.s+8)}} = \lim_{s \to 0} \frac{(s^2+4.s+8)}{8+(s^2+4.s+8)}$	
$ess = \frac{(0+1)}{8+(0)}$	$(\frac{1}{2})^{+}($	

Subject Code: 17538

	$ess = 0.5 \text{ or } \frac{1}{2}$		
c)	What do you mean by stability? Define critically stable system.		04
Ans.	 Stability: i) The system is said to be stable if it produces bounded output for a bounded input. ii) It is used to define usefulness of the system. iii) The stability implies that the system performance should not change even if there are small changes in system input. iv) Any control system must be stable. v) The system is stable if poles of the system lie on left half of s-plane vi) The system can be classified into six types based on stability. i.e. stable system, unstable system, limitedly stable system, absolutely stable system, critically stable system, conditionally stable system and relatively stable system. 	2 Mark for meanin g of stability	
	 Critically Stable System: i) The (linear-time invariant) system is said to be critically stable system, if the system output does not go on increasing infinitely nor does it go to zero as time increases, when it is excited by input signal. ii) The output of a system usually oscillates in a finite range or remains steady at some value. Such systems are not stable as their response does not decay to zero. iii) Neither the system is defined as unstable because its output does not go on increasing infinitely. iv) This system is also called as marginally stable system v) For critically stable system, the location of poles is on the iw-axis and they are not repeated as shown below 	2 Mark for relevant definitio n of criticall y stable system	
	- jω (a) Bounded input producing neither (b) Location of roots bounded nor unbounded output		
d)	Give four advantages and four disadvantages of bode plot.		04
Ans.	Advantages of bode plot:i) It is based on the asymptotic approximation, which provides a simple		

Subject Code: 17538

	 method to plot the logarithmic magnitude curve. ii) The multiplication of various magnitude appears in the transfer function can be treated as an addition, while division can be treated as subtraction as we are using a logarithmic scale. iii) With the help of this plot only we can directly comment on the stability of the system without doing any calculations. iv) Bode plots provides relative stability in terms of gain margin and phase margin. v) It also covers from low frequency to high frequency range. 	mark each (any four advanta ges)	
	Disadvantages of bode plot:		
	i) Absolute of only minimum-phase system can be determine from bode	1/2	
	plot. ii) Relative stability of only minimum-phase system can be determine	mark	
	from bode plot.	each (any	
	iii) If the phase margin is measure below the -180 degree axis, the phase	four	
	margin is negative and the system is unstable.	disadva ntages)	
	iv) It is not so easy to carry out the design of controller by referring to	0 /	
	the bode plot.		
e)	Define damping. Show effect of damping in response of 2 nd order control system.		04
Ans.	 bystem. Damping : i) Damping is an influence within or upon an oscillatory system that has the effect of reducing, restricting or preventing its oscillations. ii) The damping ratio is a dimensionless measure describing how oscillations in a system decay after a disturbance. iii) The damping ratio is generally denoted by zeta (ζ) iv) The damping ratio is a measure of describing how rapidly the oscillations decay from one bounce to the next. 	01 Mark	
	OR		
	Damping: Every system has a tendency to oppose the oscillatory behavior of the system which is called damping. OR		
	Damping ratio/factor explain us how much dominant the opposition from		

Subject Code: 17538

Effe	ect of damp	oing in response of	2 nd order control s	ystem:	03	
N 0.	Range of ζ	Type of close loop poles	Nature of response	System Classification	marks	
1	$\zeta = 0$	Purely imaginary	Oscillations with constant amplitude & frequency	Undamped		
2	0 < ζ < 1	Complex Conjugates with negative real parts	Damped Oscillations	Underdamped		
3	$\zeta = 1$	Real, Equal and Negative	Critical & Pure exponential	Critically damped		
4	1 < ζ < Φ	Real, equal & Negative	Purely exponential slow and sluggish	Over damped		
		elled diagram of P nal Band (2) Offset		fine		04

Subject Code: 17538

Ans.	R_{i} R_{i	02 Marks	
	Proportional Band: Proportional band is defined as the amount of change in the controlled variable required to drive the loop output from 0 to 100%. In a controller the manipulating variable is proportional to the control deviation within the proportional band. The gain of the controller can be matched to the process by altering the proportional band. If the proportional band is set to zero, the controller action is ineffective.	01 Mark	
	Offset: A common characteristic of proportional control is an error between the set point and control point, which is referred to as offset or droop. As the system load and/or proportional band increases, so does throttling range. Offset is an undesirable characteristic of proportional only control action and is easily eliminated by adding Integral Action.	01 Mark	
Q. 6	Attempt any FOUR		16
a)	Give advantages and Disadvantages of Frequency Response Analysis		04
	(four each)		
Ans.	 Advantages of Frequency Response Analysis i) It is easy to get a frequency response in laboratory with good accuracy ii) It is useful to determine the transfer function of complicated system, which can not be determined by analytical technique. iii) The signal generators and precise measuring instruments for generation of sinusoidal signals of various ranges of frequency and amplitude are readily available. iv) The absolute stability and relative stability of closed loop control system can be estimated from the knowledge of open loop frequency 	1/2 mark each (any four advanta ges)	

Subject Code: 17538

	 function of a system for a specified closed loop performance can be carried out easily. vi) The effect of noise disturbance and parameter variations can be easily visualized and assessed. vii) The transient response of a system can be obtained from its frequency response. viii) It can be extended to certain non-linear systems ix) There is no need to evaluate the roots of the characteristics equation. x) It can give more quickly the design and analysis specification of the control system having multiple loops and poles. Disadvantages of Frequency Response Analysis i) It cannot be used for linear systems having large time constant. 	¹ /2 mark	
	 ii) It cannot be used for non-interruptible systems. iii) It gives only indirect indication of the nature of the time response of the system which is always the final aim of studying system behavior. iv) It can give approximate results only, as it is graphical method. v) With the increased use of digital computers and available software's, it is not used for analysis. 	each (any four disadva ntages)	
b)	Derive expression of output response of 1 st order system for unit step input.		04
Ans.	The T.F. of First order system is , $\frac{Vo(s)}{Vi(s)} = \frac{1}{1 + sRC}$	01 Mark for TF.	
	For Unit Step Input $V_i(s) = \frac{1}{s}$ So, $Vo(s) = \frac{1}{s(1+sRC)} = \frac{A'}{s} + \frac{B'}{1+sRC}$ Where $A' = 1$ & $P' = -PC$	01 Mark for Value of A And B	
	Where A' = 1 & B' = -RC So, Vo(s) = $\frac{1}{s} - \frac{RC}{1+sRC}$		
	Taking Laplace inverse, we get $Vo(t) = 1 - e^{\frac{-t}{RC}} = >C_{ss} + C_t(t)$	01Mark for Inverse LT	
	$C_{ss=1 \text{ and }}C_t(t) = -e^{\frac{-t}{RC}}$		

Subject Code: 17538

		$A(1 - e^{-t/RC})$	01 Mark for final answer and Respons e	
c)		y feedback system		04
	Find G(s	$s) = \frac{50}{(1+0.1s)(1+2s)}$		
	Find Kp	, Kv, Ka.		
Ans.	i)	Here system is unity feedback system so, $H(s) = 1$		
	So,	$G(s).H(s) = \frac{50}{(1+0.1s)(1+2s)} = \frac{50}{(1+\frac{s}{10})(1+2s)} = \frac{500}{(s+10)(1+2s)}$ $G(s) = \frac{250}{(s+10)(s+0.5)}$	01 Mark	
	ii)	Positional error coefficient (K _p) is given by, K _p =lim _{s→0} G(s). H(s) As, H(s) = 1, we will get K _p =lim _{s→0} G(s) = lim $_{s\to0} \frac{250}{(s+10)(s+0.5)}$	Kp – 01 Mark	
	iii)	$K_{p} = \frac{250}{5} = 50$ Velocity error coefficient (K _v) is given by, $K_{v} = \lim_{s \to 0} s. G(s). H(s)$ As, H(s) = 1, we will get $K_{v} = \lim_{s \to 0} s. G(s)$	Kv – 01 Mark	
		$Kv = \lim_{s \to 0} s. G(s) = \lim_{s \to 0} \frac{250.s}{(s+10)(s+0.5)}$ K _v =0	Ka – 01 Mark	
	iv)	Acceleration error coefficient (K _a) is given by, $K_a = \lim_{s \to 0} S^2. G(s). H(s)$	Mark	

Subject Code: 17538

	As, $H(s) = 1$, we will get		
	$K_a = \lim_{s \to 0} S^2. G(s) = \lim_{s \to 0} \frac{250.S^2}{(s+10)(s+0.5)}$		
	i.e. $K_a = 0$		
d)	Describe PID control action with neat sketch.		04
Ans.	Explanation:		
	 i) The combination of proportional control action, derivative control action and integral control action is called as PID controller action. ii) The combined action has advantage of the three individual control actions. The proportional controller stabilizes gain but produces steady state error. iii) The integral action reduces the steady state error. The derivative action reduces the rate of change of error. iv) PID controller is a band pass or band attenuate filter, depending on the values of the control parameters. v) The response characteristics of PID controller is shown in figure. The proportional part of the control action repeats the change of deviation. vi) The derivative action of the control action adds on increment of manipulated variables so that the proportional plus derivative control action is shifted ahead in time. vii) The integral part of the control action adds a further increment of manipulated variable. 	Explana tion 02 Mark	

Subject Code: 17538

$\overline{\mathbf{S}^4}$	1	5	4	Array solving 02
S ³	5	4	0	Marks
S^2	4.2	K	0	
S^1	$\frac{16.8-5K}{4.2}0$	1		
S^0	К			
	ility all element		n should be positive.	
i.e. $\frac{10.0}{4.2}$ i.e. K < ¹	.6.8			