

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified) SUMMER – 15 EXAMINATION Model Answer

Subject Code: 17538

Important Instructions to examiners:

1) The answers should be examined by keywords and not as word-to-word as given in the model answer scheme.

2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.

3) The language errors such as grammatical, spelling errors should not be given more Importance. (Not applicable for subject English and Communication Skills.)

4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.

5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.

6) In case of some questions credit may be given by judgments on part of examiner of relevant answer based on candidate's understanding.

7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No.	Question & Model Answer	Remark	Tot al Ma rks
1. A	Attempt any Three:		12
i)	Define transfer function. Derive an expression for transfer function of closed loop system.		04
Ans:	Definition: TF is defined as the ratio of Laplace transform of output to that Laplace transform of input under the assumption of zero initial condition Transfer function of closed loop system:- $ \begin{array}{c} $	Definition- 01 mark, expression -03 marks	

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER – 15 EXAMINATION

Subject Code: 17538

	R(s) – Laplace of reference i/p $R(t)$.	
	C(s) – Laplace of controlled o/p $C(t)$.	
	E(s) – Laplace of error signal $e(t)$.	
	B(s) – Laplace of feedback signal $b(t)$.	
	G(s) – Equivalent forward path transfer function	
	H(s) – Equivalent feedback path transfer function.	
	Referring to this Fig.	
	E(s) = R(s) + B(s)(1)	
	B(s) = C(s) H(s)(2)	
	C(s) = E(s) G(s)(3)	
	B(s) = C(s) H(s) and substituting in equation (1)	
	E(s) = R(s) + C(s) H(s).	
	E(s) = C(s) / G(s)	
	C(s) / G(s) = R(s) + C(s) H(s).	
	C(s) = R(s) G(s) + C(s) G(s) H(s)	
	Hence, $C(s) [1 \pm G(s) H(s)] = R(s) G(s)$	
	$C(s) / R(s) = G(s) / 1 \pm G(s) H(s).$	
ii)	What are different standard test inputs? Draw them and give their	04
	laplace transform.	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified) SUMMER – 15 EXAMINATION

Subject Code: 17538

Test Signal	Graphical representation	Laplace representation	Sketches& L.T-03 marks
Unit Step Input	$\begin{array}{c} r(t) \\ A \\ \hline \\ 0 \\ \hline \\ 0 \\ \hline \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} $	$\frac{1}{s}$	
Unit Ramp Input	r(t) Slope = A 0 t	$\frac{1}{s^2}$	
Unit Parabolic Input	r(t) Slope = At	$\frac{1}{s^3}$	
Unit Impulse	$r(t)$ \uparrow \downarrow	1	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified) SUMMER – 15 EXAMINATION <u>Model Answer</u>

	 1.) When the system is excited by a bounded input, output is also bounded and controllable. 2.) In the absence of the input, output must tend to zero irrespective of the initial condition. UNSTABLE: A linear time invariant system is said to be unstable if following conditions are satisfied: If for a bonded input it produces unbounded output. In absence of the input, output may not return to zero it shows certain output without input. CRITICALLY STABLE: A linear time invariant system is said to be critically or marginally stable if for a bounded input its output oscillates with constant frequency and amplitude. 	4-marks for each definition	
iv)	Draw electronic PI controller diagram and write its output equation.		04
Ans:	$F_{2} \subset F_{1}$ $V_{e} \circ F_{1}$ $F_{2} \subset F_{2}$ $F_{2} \subset F_{2$	Diagram- 02 marks, equation- 02 marks	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER – 15 EXAMINATION

<u>Model Answer</u>

	$V_{out} = \frac{R_1}{R_2} V_{in} + \frac{1}{R_1 C} \int V_{in} dt$	
	$V_{out} = [\frac{R1}{R2}]V_{in+}[\frac{R1}{R2}][\frac{1}{R2C}]. \int V_{in}dt$	
1.B	Attempt any One:	06
i)	Find the transfer function of RLC circuit shown in figure 1	
	Figure 1: RLC circuit	
Ans:	Vi = iR + Ldi / dt + 1 / c idt. 04 marks	
	Take Laplace transform,	
	Vi(s) = I(s) [R + SL + 1/SC]	
	I(s) / Vi(s) = 1 / [R + SL + 1 / SC] (1)	
	Vo = 1 / C (idt)	
	Hence, Vo (s) = $1 / SC I(s)$	
	I(s) = SC Vo(s)(2)	
	Substituting value of I (s) in equation 1	
	SC Vo(s)/ Vi(s) = $1/[R + SL + 1/SC]$	
	Vo(s) / Vi(s) = 1 / SC[R + SL + 1 / SC]	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified) SUMMER – 15 EXAMINATION

Subject Code: 17538

<u>Model Answer</u>

	Vo(s) / V	$i(s) = 1 / S^2$	2 LC + SRC	+1				
ii)	Draw the	bode plot	for open lo	op transfei	function.			06
	G(s)H(s)	$=\frac{10}{s(1+5s)(1$	- 20 <i>s</i>)					
Ans:	Ste	p 1: Identif	y the factors	,				
		1. Oper	n loop gain K	K=10, M in	$dB=20\log 1$	0= 20 dB	2 mark	
		2. Pole	at origin (1	/S) which	has a magni	tude plot wi	th	
		slope	e of -20Db/de	ecade. For v	w=0.01,			
		M in	dB for $(1/S)$	$= -20 \log 0$.01 = 40 dB			
		3. First	order poles	s (5S+1) a	and (20S +1). The corn	er	
		frequ	encies of the	em are w _{c1} =	$= 1/5 = 0.2, w_0$	$z_2 = 1/20 = 0.0$	5	
		Till 1	the corner fi	requencies	the magnitud	le plot's sloj	pe	
		will	be 0 dB/deca	ade and fro	m the corner	• frequencies	it	
		chan	ges to -20d	B /decade.				
	Ste	p 2: Phase	angle <i>ø</i> :				2 marks	
	Freque	For	For Factor	For	For Factor	Total		
	ncy	Factor1,	2,	Factor 3,	3,	phase		
	=w	K=10	1/S	1/	1/(20S+1)	angle		
		$\phi_1 =$	$\phi_2 =$	(5S+1)	$\phi_4 = -\tan^{-1}$			
				$\phi_3 = -$	20w	$\phi_2 + \phi_3 +$		
				tan ⁻¹ 5w		ϕ 4		

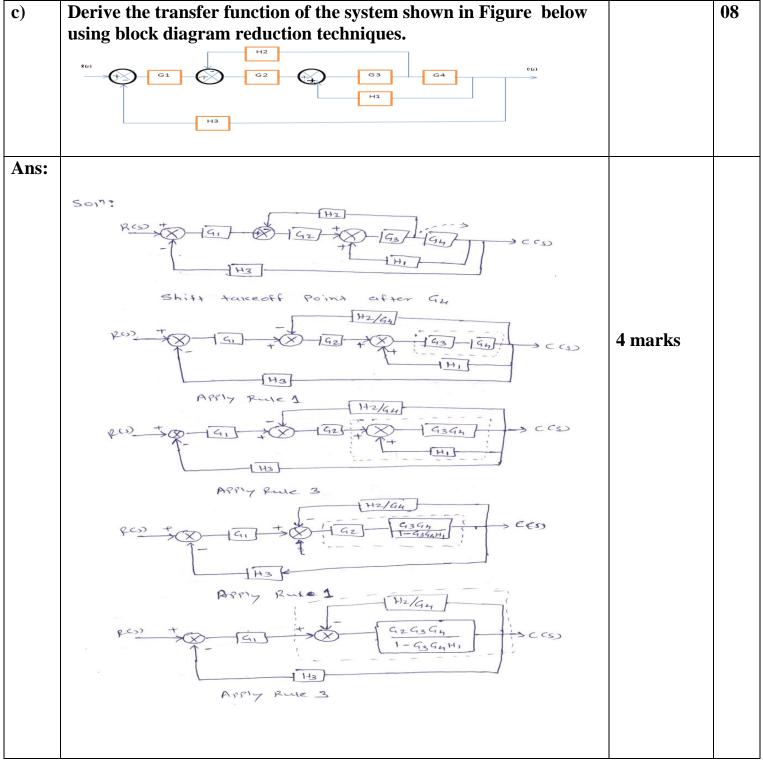
(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER – 15 EXAMINATION

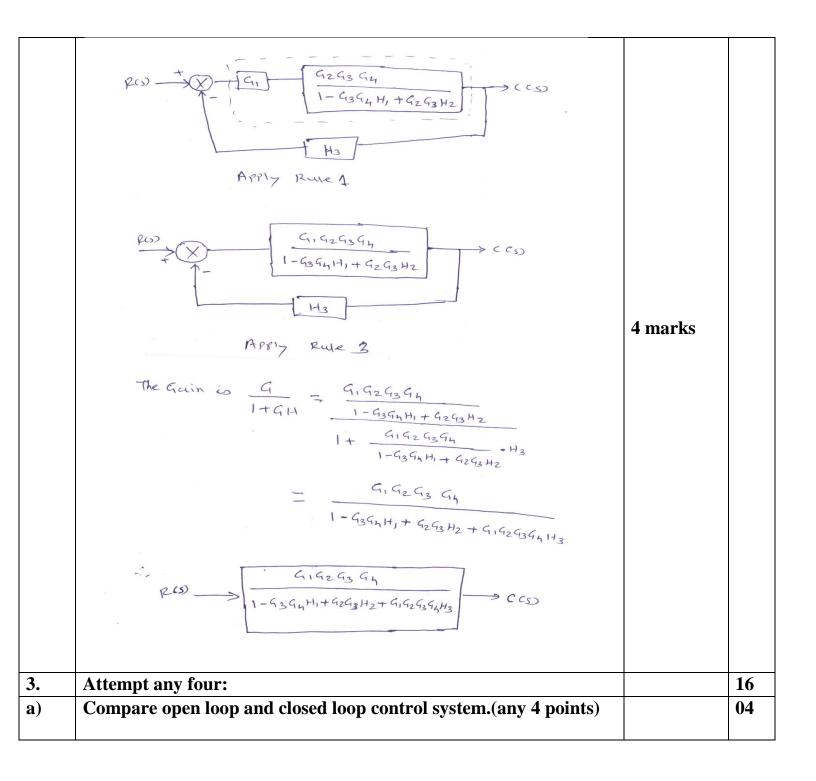
Model Answer

		-90 ⁰	-28 ⁰	-11.30	-129 ⁰	
0.05	00	-90 ⁰	-14 ⁰	-450	-149 ⁰	
0.1	00	-90 ⁰	-26 ⁰	-63.4 ⁰	-179 ⁰	
0.2	00	-90 ⁰	-45 ⁰	-75.9 ⁰	-210.9 ⁰	
1	00	-90 ⁰	-78.6 ⁰	-87.1 ⁰	-255.7 ⁰	
10	00	-90 ⁰	-88.8.2 ⁰	-89.7 ⁰	-267.6 ⁰	
100	00	-90 ⁰	-89.8 ⁰	-89.9 ⁰	-269.5 ⁰	2mark
	Draw th		plot and pł	hase angle	plot on sem	ilog
Step 3:	Draw th		plot and ph	nase angle	plot on sem	log
Step 3:		55)(H3(0)	e plot and ph		plot on sem	ilog


2.	Attempt any Two:		16
a)	Using Routh's criteria, determine the range of K values for system to be stable.		08
Ans:		Char. Equation- 01 M, Routh's array- 2marks,Ra nge- 01mark	
	s' $1374.5 -11K$ so $1374.5 -11K$ so K For stubility column 1 should be positive. K > 0 - (i) 1374.5 -11K > 0 - (ii) $1.6 \cdot 1374.5 -11K > 0$ - (ii) $i.e \cdot 1374.5 -11K > 0$ or $1374.5 > 11K$ or $1374.5 > 11K$ or $1374.5 > 11K$ or $1374.5 > 11K$		

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified) SUMMER – 15 EXAMINATION <u>Model Answer</u>

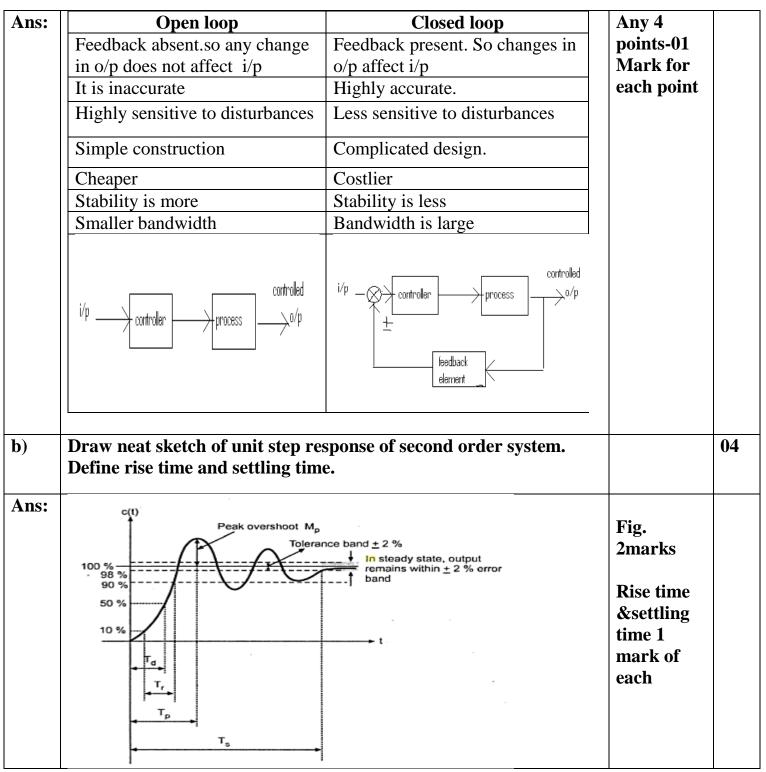
b)	i) ii	Draw a neat sketch of synchro a) Compare DC servomotor with A			08
Ans:	i)	sketch of synchro as an error de		Diagram- 04 marks	
	۵– ۸.(۵ ۵–	Synchiro transformer Error detect			
	ii) Sr.	Compare DC servomotor with A DC servomotor	AC servomotor. AC servo motor	-	
	no	High power o/p	Low power o/p	-	
	2	Maintenance is more maintenance	Maintenance is less	Any 4	
	3	Brushes / problem, commutators present	No Brushes / commutators absent	points-04 marks	
	4	Noisy operation	Stable and smooth operation		
	5	More problem of stability	Less problem of stability		
	6	Brushes produce RF noise.	No RF noise because of absence of brushes		
	7	Linear characteristics	Non – linear characteristics]	
	8	Voltage is given through power supply to rotor.	No voltage supply to rotor, Rotor current is supplied inductively by rotating magnetic field of stator.		
	9	Applications:- high power (machine tools, robotics)	Applications:- low power(computer peripherals, recorders etc.)		



(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER – 15 EXAMINATION Model Answer



(Autonomous)

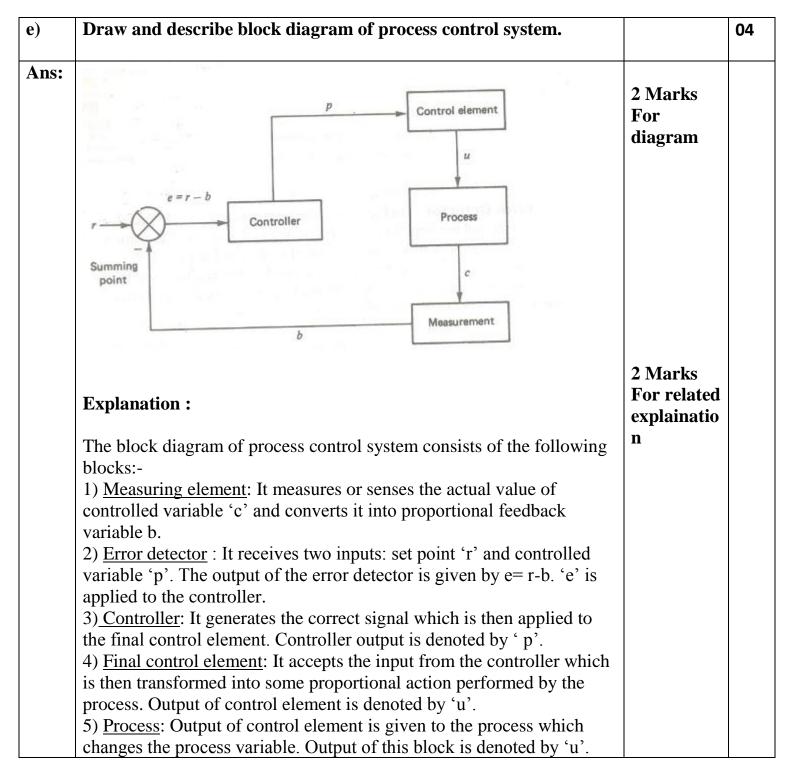
(ISO/IEC - 27001 - 2005 Certified)

Subject Code: 17538

SUMMER – 15 EXAMINATION Model Answer

c)	Rise the f valu Sett with (usu Dra	inition: Time : Time request inal value for over e for underdamped ling time: Time re- tin specified percest ally 2%). w the diagrams fe- plane.	rdamped systems d systems. equired for the res ntage of if final va	and 0% to 100% ponse to decrease alue and within to	of the final e and stay plerance band		04
Ans:	Sr. No.	Nature of closed loop poles	Locations of closed loop poles in s-plane	Step response	Stability condition	Ref. table	
	1.	Real, negative i.e. in L.H.S. of s-plane	$\begin{array}{c} \downarrow j \omega \\ \uparrow j \omega \\ \hline -a_2 - a_1 \\ 0 \end{array} \sigma$	c(t) Pure exponential	Absolutely stable	Any 4- points 4 marks	
	2.	Complex conjugate with negative real part i.e. in L.H.S. of s-plane	$\begin{array}{c} & & j \omega \\ & & j \omega_1 \\ & & j \omega_1 \\ & & j \omega_1 \\ & & \sigma \\ & & & \sigma \\ & & & -a_1 \\ & & & & -a_1 \\ & & & & -a_2 \end{array}$	C(t) Damped oscillations	Absolutely stable		
	3.	Real, positive i.e. in R.H.S. of s-plane (Any one closed loop pole in right half irrespective of number of poles in left half of <i>s-plane</i>)	•jω +a ₁ σ	C(t) Exponential but t increasing towards ∞	Unstable		
	4.	Complex conjugate with positive real part i.e. in R.H.S. of s-plane	jω ₁ →jω ₂ →jω ₂ →	C(t) Oscillations with increasing amplitude	Unstable		
	5.	Non repeated pair on imaginary axis without any pole in R.H.S. of s-plane	+ ^{jω} × jω ₁ × −jω ₂		Marginally or critically stable Marginally or critically stable.		

(Autonomous)


(ISO/IEC - 27001 - 2005 Certified)

SUMMER – 15 EXAMINATION

Subject Code: 17538

6.	Repeated pair on	or $j\omega$ $j\omega_2$ $j\omega_2$ $j\omega_1$ $x -j\omega_1$ $x -j\omega_2$ two non repeated on imaginary axis	→ σ pairs Sustain with two	t ed oscillations frequency ients ω_1 and ω_2	Unstable			
	imaginary axis without any pole in R.H.S. of s-plane	χά jω ₁ 		ciliations of sing amplitude				
	e: Any relevant d	•	-		tion in b	ooth		
plaı	ne and imaginary	axis may be	e considere servo moto	d. or.		ooth	Any 4	0
plaı Cor	ne and imaginary npare stepper mo Stepper Mo	axis may be	e considere servo moto D	d. or. C Servom	otor	ooth	points- 4	0
plan Cor No	ne and imaginary npare stepper mo Stepper Mo control winding	y axis may be otor and DC otor	servo moto D Control w	d. or. C Servom inding is p	otor resent.	ooth	•	0
plan Cor No Nu	ne and imaginary npare stepper mo Stepper Mo control winding mber of steps can	y axis may be otor and DC otor	servo moto D Control w	d. or. C Servom	otor resent.	ooth	points- 4	0
plan Cor No Nu pre	ne and imaginary npare stepper mo Stepper Mo control winding	y axis may be otor and DC otor	servo moto D Control w	d. or. <u>C Servom</u> inding is p ontinuous r	otor resent.	ooth	points- 4	0
Dan Cor No Nu pre It i Du we	ne and imaginary npare stepper mo Stepper Mo control winding mber of steps can cisely controlled.	be ushes, no	servo moto Servo moto D Control w It gives co It has brus	d. or. <u>C Servom</u> inding is p ontinuous r	otor resent. otation.	ooth	points- 4	0
Plan Cor No Nu pre It i Du we ma Lo not	ne and imaginary npare stepper mo Stepper Mo control winding mber of steps can ecisely controlled. s brushless. e to absence of bru ar and tear and her	be ushes, no nce less	servo moto Servo moto D Control w It gives co It has brus Maintenar	d. or. C Servom inding is p ontinuous r shes. ice is required ditions affe	otor resent. otation.	both	points- 4	0

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified) SUMMER – 15 EXAMINATION <u>Model Answer</u>

Ans: $ \begin{array}{c} $	4.A.	Attempt any three:		12
$\mathbf{Equation:} \\ V = V_{S} + K_{P}*E + K_{I}*\int_{0}^{t}E*dt + K_{D}*\frac{dE}{dt} \\ Where: \\ V_{S} = Output Set point \\ \end{bmatrix}$	i)	Draw electronic PID controller and state its equation.		04
$K_P = Proportional gain$ E = Error (SP-PV) $K_I = Integral gain$	i) Ans:	R_{i} R_{2} R_{i} R_{2} R_{i} R_{2} R_{i} R_{i	3Marks Equation-	04

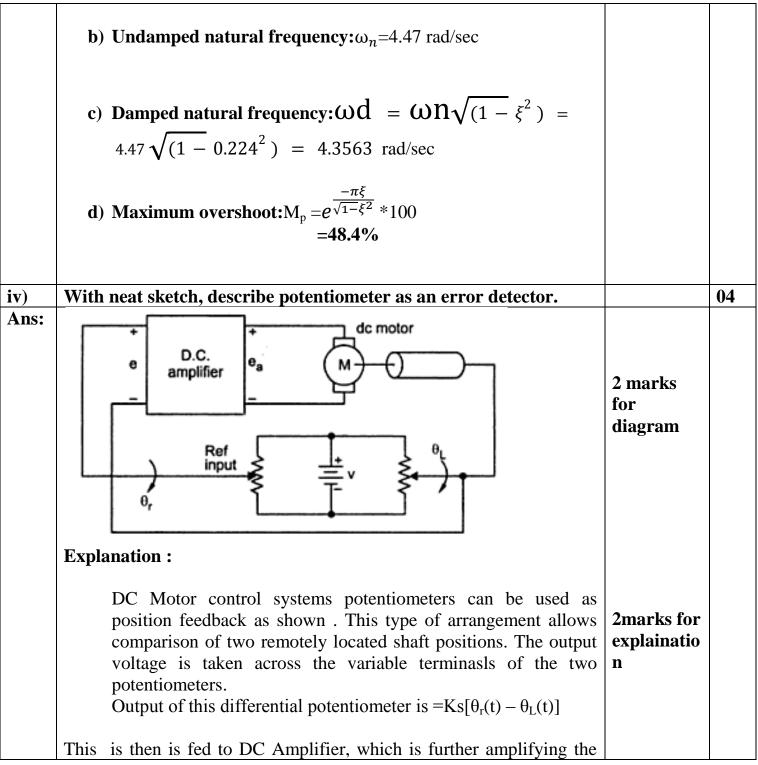
	Note: Any relevant equation of PID controller may considered.		
ii)	Define following terms related with frequency response. a) Bandwidth b) Cut of frequency c) Gain margin		04
•	d) Phase margin		
Ans:	Bandwidth: Range of the frequencies over which the system will respond satisfactorily. It is also defined as range of the frequency over magnitude of closed loop response does not drop by more than 3db from its zero value.	Each definition 1 mark	
	Cut of frequency: Frequency at which the magnitude of closed loop response is 3db down from its zero frequency value.		
	Gain margin: Gain Margin is gain allowable by which the gain can be increased till system reaches on the verge of instability . Mathematically: $GM=-20log_{10} G(jw)H(jw) w=w_{pc}$ Where, $w_{pc}=$ phase cross over frequency		
	Phase margin: The amount of additional phase lag which can be introduced in the system till system reaches on the verge of instability. Mathematically: $PM=180^{\circ}+ G(jw)H(jw) w=w_{gc}$ Where, $w_{gc}=$ gain cross over frequency		
iii)	For open loop transfer function $G(s) = \frac{10}{s(0.5s+1)}$		04
	Determine:		
	a) Damping ratio		
	b) Undamped natural frequency		
	c) Damped natural frequencyd) Maximum overshoot		
Ans:	The closed loop transfer function will be $T(f) = \frac{G(s)}{1+G(s)} ; H(s) = 1 \text{ (assumed)}$	1 mark each	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified) SUMMER – 15 EXAMINATION <u>Model Answer</u>

$$= \frac{\frac{10}{s(0.5s+1)}}{1 + \frac{10}{s(0.5s+1)}}$$

$$= \frac{\frac{10}{s(0.5s+1)}}{\frac{1}{s(0.5s+1)+10}}$$

$$T(f) = \frac{10}{0.5s^{2} + s + 10} = \frac{10}{0.5(s^{2} + \frac{s}{0.5} + \frac{10}{0.5})}$$


$$= \frac{20}{s^{2} + 2s + 20}$$
Comparing the above transfer function with the standard form
$$T(f) = \frac{w_{n^{2}}}{s^{2} + 2\xi w_{n} + w_{n^{2}}}$$

$$w_{n^{2}} = 20 \quad \text{and} \ 2\xi w_{n} = 2$$

$$w_{n} = 4.47 \quad \text{and} \quad \xi = \frac{2}{2 \times 4.47}$$

$$= 0.224$$
a) Damping ratio = \xi = 0.224

armature current of the DC Motor. The motor, in turn moves and with it the shaft connected to the load potentiometer in such a way as to make the output voltage zero. That is the output (Load) potentiometer shaft moves in accordance with the shaft of the input(reference) potentiometer.		
Attempt any one:		06
		06
suitable diagram.		
The variable reluctance stepper motor is characterized by the fact that there is no permanent magnet either on rotor or stator. The rotor is made of soft iron stamping of variable reluctance and carries no windings as shown in the figure. The stator is also made up of soft iron stampings and is of salient poles type and carries stator windings.	Diagram 3 Marks	
Schematic diagram of a three-phase single stack variable reluctance stepper motor. Only the 'A' phase windings are shown for clarity. As shown in the figure, when phase A is energized through supply, the rotor moves to the position in which the rotor teeth align themselves	Relevant Working 3 marks	
	it the shaft connected to the load potentiometer in such a way as to make the output voltage zero. That is the output (Load) potentiometer shaft moves in accordance with the shaft of the input(reference) potentiometer. Attempt any one: Describe working of variable reluctance type stepper motor with suitable diagram. The variable reluctance stepper motor is characterized by the fact that there is no permanent magnet either on rotor or stator. The rotor is made of soft iron stamping of variable reluctance and carries no windings as shown in the figure. The stator is also made up of soft iron stampings and is of salient poles type and carries stator windings. Schematic diagram of a three-phase single stack variable reluctance stepper motor. Only the 'A' phase windings are shown for clarity. As shown in the figure, when phase A is energized through supply, the	it the shaft connected to the load potentiometer in such a way as to make the output voltage zero. That is the output (Load) potentiometer shaft moves in accordance with the shaft of the input(reference) potentiometer. Attempt any one: Describe working of variable reluctance type stepper motor with suitable diagram. The variable reluctance stepper motor is characterized by the fact that there is no permanent magnet either on rotor or stator. The rotor is made of soft iron stamping of variable reluctance and carries no windings as shown in the figure. The stator is also made up of soft iron stampings and is of salient poles type and carries stator windings. Diagram 3 Marks Schematic diagram of a three-phase single stack variable reluctance stepper motor. Only the 'A' phase windings are shown for clarity. As shown in the figure, when phase A is energized through supply, the

	with the teeth of phase A. In this position the reluctance of the magnetic circuit is minimum. After this if phase A is deenergised and phase B is energized by giving proper supply to its winding (not shown in fig.), the rotor will rotate through an angle of 15° in a clockwise direction so as to align its teeth with those of phase B. After this, deenergising phase B and energizing phase C will make the rotor rotate by another 15° in clockwise direction. Thus, by sequencing power supply to the phases the rotor could be made to rotate by a step of 15° each time. The direction of rotation could be reversed by changing the sequence of supply to the phase, that is, for anti-clockwise rotation, supply should be given in the sequence of ACB.		
ii)	A second order system is given by $\frac{C(s)}{R(s)} = \frac{6}{s^2 + 5s + 6}$ Determine: a) Rise time b) Peak time c) Settling time d) Peak overshoot		06
Ans:	Assuming that the second order system is subjected to unit step input. $\frac{C(s)}{R(s)} = \frac{6}{s^2 + 5s + 6}$ Comparing the given equation with the standard form of second order equation, $\frac{C(s)}{R(s)} = \frac{\omega_n^2}{\omega_n^2 + 2\xi\omega_n s + s^2}$ we get, $\omega_n^2 = 6$ and $2\xi\omega_n = 5$ Therefore, $\omega_n = \sqrt{6} = 2.45$ rad/sec and $2 * \xi * 2.45 = 5$ Therefore, $\xi = \frac{5}{4.9} = 1.02$ approximatly=1	2 marks for calculating ζ (zeta) &w _n	

SUMMER – 15 EXAMINATION

Model Answer

	θ ωd =ωn Hence, System Therefo system. N	re all 4 specifications do 1	1) = 0 rad/sec nce no oscillations and no damped not exist on the response of the above nswer with formula and suitable	02 Marks for relevant Justificatio n	
5.	Attemp	t any four:			16
a)			r from a normal 2-phase induction		04
	motor a	and draw its torque-spee	ed characteristics.		
Ans:	Sr.N	AC servo motor	2 phase induction motor	Any 3	04
	0			points: 3	
	1	Low inertia	High inertia	marks, characteris	
	2	Linear Torque-speed	Nonlinear Torque-speed	tics: 1	
		characteristic	characteristic	marks	
	3	Less susceptible to low frequency noise	Susceptible to low frequency noise		
	4	Low power applications	Low and high power applications		
	5	Diameter of rotor is small	Diameter of rotor is large		
	6	X/R ratio is less	X/R ratio is more		

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER – 15 EXAMINATION Model Answer

		VOMOTOR	SPEED Torque-speed	b b synchor spece	> cous		
b)				ons on the basis of nature	e of input,		04
Ans:	respons Contro 1 Action Proport ional	Nature of output	, equation and a Equation $K_P E_P + P_0$	Response of Error $ \begin{array}{c} \omega \\ \omega \\ \omega \\ \varepsilon \\$	Applicati on Used in processe s with medium process lags	Each Point 1 Mark	
	Integra 1	Rate of change of controlle r output is proportio nal to error.	$p(t) = K_I \int_0^t e_p dt + p(0)$	x_1 $x_2 < x_1$ $x_2 < x_1$ x_3 x_4 $x_5 < x_1$ x_6 x_1 $x_2 < x_1$ x_2 x_3 x_4 x_5 x_6 x_6 x_6 x_1 x_2 x_1 x_2 x_1 x_2 x_1 x_2 x_1 x_2 x_1 x_2 x_1 x_2 x_1 x_2 x_2 x_3 x_4 x_1 x_2 x_2 x_3 x_4 x_1 x_2 x_2 x_3 x_4 x_1 x_2 x_3 x_4 x_1 x_2 x_3 x_4 x_1 x_2 x_3 x_4 x_1 x_2 x_3 x_4 x_5 x_6 x_1 x_2 x_3 x_4 x_5 x_5 x_1 x_2 x_3 x_4 x_5	Used in processe s with small process lags & small capacitan ce such as flow & level		

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER – 15 EXAMINATION

Subject Code: 17538

	Derivat ive	Controll er output is proportio nal to derivativ e of error.	$p(t) = K_D \frac{de_p}{dt}$	Controller output (i) (i) (i) (i) (i) (i) (i) (i)	control system Used in processe s with large process lags & inertia such as temperat ure control system		
c)	By mean	ns of Rout		ermine the stability of th $a^2 + 4s + 3 = 0$.	e system		04
Ans:	Routh's S S^3 S 2 S 1 S 0	4 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			3 marks For routh's array	
	positive,	elements and there	is no sign chang	umn of routh's array ar ge. Therefore, all the pole ne system is stable.		1 mark for conclusion	
d)	Define: i.) Li ii.) N	inear syste onlinear s	em				04

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified) SUMMER – 15 EXAMINATION

Subject Code: 17538

	iv.) Time invariant system.		
Ans	 i) Linear System: System which satisfy superposition theorem with additive and homogeneous property is called linear system. ii) Nonlinear System: System which do not satisfy superposition theorem is called nonlinear system. iii) Time Variant System: system whose parameters change with time irrespective of whether input and output change or not is called time variant system. iv) Time Invariant System: system whose parameters do not change with time irrespective of whether input and output change or not is called time invariant system. 	1 Mark for each	
e)	Derive an expression for unit ramp response of first order system. Draw its response.		04
Ans:	Consider the first order system below: \overrightarrow{R} $\overrightarrow{V_{in}}$ \overrightarrow{C} $\overrightarrow{V_{out}}$ Transfer function= output/input= C(S)/R(S)=V_{out}(S) / V_{in}(S) $=I(S)/SC/{RI(S)+(I(S)/SC)}$ $=1/(RCS+1)$ For unit ramp input, R(S)= V_{in}(S) = 1/S ² Therefore, C(S)= 1/(RCS+1)*S ²	1 mark	
	Applying partial fraction,	1 mark	

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified) SUMMER – 15 EXAMINATION

Subject Code: 17538

	$C(S) = \frac{1}{S(RCS+1)} = \frac{A}{S} + \frac{B}{S^2} + \frac{C}{1+RCS}$ $A=1, B=1 C=-RC,$ Therefore, $C(S) = \frac{1}{S^2(RCS+1)} = \frac{1}{S} + \frac{1}{S^2} + \frac{-RC}{1+RCS} =$ $= \frac{1}{S} + \frac{1}{S^2} + \frac{1}{(1/RC) + S}$ Taking Laplace inverse, $C(t) = 1 + t - e^{-t/RC} (RC \text{ is the time constant } \tau)$ Response:	1 mark 1 mark	
f)	State two advantages and two disadvantages of frequency response		04
Ans:	 analysis. Advantages: The absolute and relative stabilities of the closed loop system can be found out from the open loop frequency response characteristics by using the methods such as Nyquist stability criteria 	Any Two – advantage 2 Marks	
	 The transfer function of complicated systems can be found out practically by frequency response test when it is difficult to find transfer function by writing differential equations. Frequency response test are simple and can be done practically by the readily available laboratory equipment. Without the knowledge of transfer function, the frequency 		

	response for stable open loop system can be obtained experimentally.5. Due to the close relation between frequency response of a system and its step response, idea about step response can be obtained from the frequency response.		
	Dis advantages:		
	1. Time consuming		
	2. Out dated methods compared to digital computation, simulation and modeling.	Any Two – disadvanta ge 2 Marks	
	3. Methods can be applied mainly to linear systems.	8	
	4. Not recommended for systems with larger time constants.		
6.	Attempt any four:		16
a)	With a neat diagram define steady state response and transient		04
	response of system.	1 1 0	
Ans:	Steady state response: response of the system after the transients die out is called steady state response.	1 mark for each definition	
	Transient response : the response which shows how the system settles down to the final steady state is called transient response. It is due to the energy storage elements present in the system.		
	olp Steadystate response Stransient response	Diagram 2 marks	

	Note: Time response of second order system may also considered.		
b)	For a given TF $\frac{C(S)}{R(S)} = \frac{S(S+2)}{(S^2+2S+2)(S^2+7S+12)}$ Find: i) Pole ii) zero iii) pole zero plot iv) characteristic equation		04
Ans:	i) poles: i) $(S^2 + 7S + 12) = 0$ therefore $S = -3, -4$ 2) $(S^2 + 2S + 2) = 0$ Which is a quadratic equation. For the quadratic equation $ax^2+bx+c=0$, the poles are $=-\underline{b\pm\sqrt{b^2-4ac}}$ $= -\underline{2\pm\sqrt{2^2-(4*1*2)}}$ $= -\underline{2\pm\sqrt{4-8}}$ $= -2\pm\sqrt{4-8}$ $= -2\pm4-$	1 mark	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified) SUMMER – 15 EXAMINATION <u>Model Answer</u>

	(iii) Pole zero plot		
	1×1 -×	1 mark	
	-6 -3 -210 -6 -3 -210 -1-3	1 mark	
	(iv) Characteristic equation= $(S^2 + 2S + 2) (S^2 + 7S + 12)$ A unity feedback control system $G(S) = \frac{40(S+2)}{S(S+1)(S+4)}$		04
c)	A unity feedback control system $G(S) = \frac{10(S+2)}{S(S+1)(S+4)}$ Find i. Type of the system ii. Error coefficient		04
Ans:	i. Type of the system=type one	1 mark	
	ii. Error coefficient $K_p = \lim_{x \to \infty} G(s) H(s) = \lim_{x \to \infty} \frac{40(S+2)}{S(S+1)(S+4)} = \infty$ -S = 0 $K_v = \lim_{x \to \infty} S G(s) H(s) = -S = 0$ $\lim_{x \to \infty} S = \frac{40(S+2)}{S(S+1)(S+4)} = 20$ $K_a = \lim_{x \to \infty} S^2 G(s) H(s) = -S = 0$ $\lim_{x \to \infty} S^2 \frac{40(S+2)}{S(S+1)(S+4)} = 0$ -S = 0	1mark each for K _p , K _v ,K _a	
d)	State any two advantages and two disadvantages of routh array		04

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified) SUMMER – 15 EXAMINATION

Model Answer

Subject Code: 17538

Advantages of Routh array: 2 points/2Ans: i) Simple criterion that enables to determine the no of marks closed loops which lie in right half of s-plane without factorizing the characteristic equation. ii) Without actually solving characteristic equation, it tells us whether or not there are positive poles in a polynomial equation iii) We can judge whether system is stable or not by seeing the sign changes in the first column. iv) It tells the number of poles present on imaginary axis i.e. it tells about critical stability. 2 points/2 marks **Disadvantages of Routh array:** Cannot find out the value of poles. i) It is not a sufficient condition for stability. ii) Lengthy procedure. iii) Determine the stability of the system by routh's criterion. 04 e) $S^{5}+S^{4}+2S^{3}+2S^{2}+2S+2=0$ Ans: The Characteristic equation $isS^5+S^4+2S^3+2S^2+2S+2=0$ So, Apply Routh's Array S^5 1 2 2 S^4 2 1 2 S^3 0 0 0 special case S^2 Routh 'array failed S^1 S^0

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC 27001 2005 Contignal)

(ISO/IEC - 27001 - 2005 Certified) SUMMER – 15 EXAMINATION

Subject Code: 17538

Taking By rep	g derivation	ve, dA(S)/ e row of ze	$S^4+2S^2+2=0$ dS= 4S ³ +4S=0 ros with coefficient y routh array will be	Upto Auxillary equation 2 marks.
S ⁵	1	2	2	Final routh
\mathbf{S}^4	1	2	2	array and
S^3 S^2	4	4	0	conclusion
S^2	1	2	0	2 marks.
S	-4	0	0	
S^0	2	0	0	
		0	n changes which ind S-plane. So the syste	