WINTER - 14 EXAMINATION

Important Instructions to examiners:

1) The answers should be examined by keywords and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more Importance. (Not applicable for subject English and Communication Skills.)
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
6) In case of some questions credit may be given by judgments on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

$\begin{array}{\|l} \hline \text { Q. } \\ \text { No. } \\ \hline \end{array}$	Question \& Model Answer			Remark	Total Marks
1.A	Attempt any Three:				12
a)	Distinguish between open and closed loop system (any four points)				04
Ans:	Sr.No 1 2 3 4 5 6 7 8 9	Open loop No Feedback element Error detector is absent Inaccurate Small bandwidth More stable Simple construction Less costly Affected by non linearity Sensitive to disturbance	Closed loop Feedback element is present Error detector is present Accurate large bandwidth less stable Complex construction more costly not affected by non-linearity not sensitive to disturbance	1 mark for each point (releva nt 4 points only)	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

WINTER - 14 EXAMINATION

Subject Code: 17538
Model Answer

b)	Draw graphical representation of the following test signal and give their Laplace representation. i.) Step input ii.) Impulse input iii.) Ramp input iv.) Parabolic input				04
Ans:	Test Signal	Graphical representation	Laplace representation	$\begin{aligned} & 1 \text { mark } \\ & \text { for } \end{aligned}$	
	Unit Step Input		$\frac{1}{s}$	each input graphic	
	Unit Ramp Input		$\frac{1}{s^{2}}$	represe ntation and LT	
	Unit Parabolic Input		$\frac{1}{s^{3}}$		
	Unit Impulse		1		
c)	Define the term stability and relative stability.				04
Ans:	Stability: A linear time invariant system is set to be stable if following conditions are satisfied. i.)When the system is excited by a bounded input the output is also bounded and controllable. ii.) In the absence of input output must tend to zero irrespective of the initial conditions. Relative Stability: The system is said to be relatively more stable on the basis of settling time. i.)If the settling time for a system is less than that of another system then the former system is said to be relatively more stable than the			$\begin{aligned} & \mathbf{2} \\ & \text { marks } \end{aligned}$ each	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(ISO/IEC - 27001-2005 Certified)

WINTER - 14 EXAMINATION

Subject Code: 17538
Model Answer

	second one. ii)As the location of the poles move towards left half of S- plane, the settling time becomes smaller and system becomes relatively more stable.		
d)	Define ON -off controller. Give 2 examples.		04
Ans:	On- Off Controller :- It has only two fixed positions such as on (1) and off (0). The output signal P remains either 0% or 100% depending upon whether the error is negative or positive. $\mathrm{P}=100 \%(\mathrm{ON})$ for positive error $\mathrm{P}=0 \%$ (OFF) for negative error . Consider a practical example of temperature control system with Set Point " x ". When the temperature is more than " x " the on - off controller will be off and when it is less than " x ", on - off controller will be on. Example:- Relays, Thermostat	02 marks For definiti on and$\|$ 02 marks for any relevan t exampl es	
1.B	Attempt any One:		06
a)	Define transfer function. Derive the equation of transfer function for closed loop system.		
Ans:	Transfer Function is defined as the ratio of Laplace transform of Output to that of Laplace transform of input under the assumption of zero initial condition. Block diagram: (for negative feedback system)	1 mark for definati on 1mark For BD	

WINTER - 14 EXAMINATION

Subject Code: 17538
Model Answer

	Derivation: $\begin{align*} & \mathrm{G}(\mathrm{~s})=\frac{\mathrm{C}(\mathrm{~s})}{\mathrm{E}(\mathrm{~s})} \\ & \mathrm{E}(\mathrm{~s})=\frac{\mathrm{C}(\mathrm{~s})}{\mathrm{G}(\mathrm{~s})} \\ & \mathrm{C}(\mathrm{~s})=\mathrm{E}(\mathrm{~s}) \times \mathrm{G}(\mathrm{~s}) \\ & \mathrm{B}(\mathrm{~s})=\mathrm{C}(\mathrm{~s}) \times \mathrm{H}(\mathrm{~s}) \\ & \mathrm{E}(\mathrm{~s})=\mathrm{R}(\mathrm{~s})-\mathrm{B}(\mathrm{~s}) \text { (for negative feedback) } . \tag{.I.} \end{align*}$ Substitute for $\mathrm{E}(\mathrm{s}) \& B(s)$ in $\frac{\mathrm{C}(\mathrm{~s})}{\mathrm{G}(\mathrm{~s})}=\mathrm{R}(\mathrm{~s})-\mathrm{C}(\mathrm{~s}) \mathrm{H}(\mathrm{~s})$ $\mathrm{C}(\mathrm{~s})\left\{\frac{1}{\mathrm{G}(\mathrm{~s})+\mathrm{H}(\mathrm{~s})}\right\}=\mathrm{R}(\mathrm{~s})$ $\mathrm{C}(\mathrm{~s}) \frac{[1+\mathrm{G}(\mathrm{~s}) \mathrm{H}(\mathrm{~s})]}{\mathrm{G}(\mathrm{~s})}=\mathrm{R}(\mathrm{~s})$ Transfer Function: $\frac{\mathrm{C}(\mathrm{~s})}{\mathrm{R}(\mathrm{~s})}=\frac{\mathrm{G}(\mathrm{~s})}{1+\mathrm{G}(\mathrm{~s}) * \mathrm{H}(\mathrm{~s})}$	4 marks for Derivat ion	
b)	For the unity feed back control system : $G(S)=\frac{10}{S(S+1)(S+5)}$ Sketch the bode plot.		06

WINTER - 14 EXAMINATION

Subject Code: 17538
Model Answer

Frequ ency $=\omega$	For Factorl $\begin{aligned} & , \mathrm{K}=2 \\ & \phi_{1}= \end{aligned}$	$\begin{aligned} & \text { For } \\ & \text { Factor } \\ & 2,\left(\frac{1}{s}\right) \\ & \phi= \end{aligned}$	For Factor 3 , $\left(\begin{array}{l} \left(\frac{1}{s+1}\right) \phi_{3}= \\ -\tan ^{-1} \omega \end{array}\right.$	For Factor $3, \frac{1}{0.2 s+1}$ $\phi 4=-$ $\tan ^{-1} 0.2 \omega$	Total phase angle $\begin{aligned} & \phi=\phi_{1+} \phi_{2} \\ & +\phi_{3+} \phi_{4} \end{aligned}$
0.1	00	-900	-5.70	-1.10	-96.80
1	00	-900	-450	-11.30	-146.30
10	00	-900	-84.20	-63.40	-237.60
100	00	-900	-89.40	-87.10	-266.50
1000	00	-900	-89.90	-89.70	-269.60

2marks

Step 4: Draw the magnitude plot and phase angle plot on semilog paper.

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)
(ISO/IEC - 27001-2005 Certified)

WINTER - 14 EXAMINATION

Subject Code: 17538
Model Answer

2.	Attempt any Two:		16
a)	Consider fifth order system with characteristics equation given by: $S^{5}+S^{4}+2 S^{3}+2 S^{2}+3 S+5=0$. Determine stability using Routh's criterion.		08
Ans:	S^{5} 1 2 3 $\mathrm{~S}^{4}$ 1 2 5 $\mathrm{~S}^{3}$ 0 -2 0 special case S^{2} ∞ -- -- Routh 'array failed S S^{0} Substitute a small positive number ε in place of 0 occurred as a first element in a row. Complete the array with this number ε. Then examine the sign change by taking $\lim _{\varepsilon \rightarrow 0}$.	Initial Rouths Array: 2 mark,	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)
(ISO/IEC - 27001-2005 Certified)

WINTER - 14 EXAMINATION

Model Answer
Subject Code: 17538

WINTER - 14 EXAMINATION

Subject Code: 17538
Model Answer

	Routh's array should not have any sign change for the system to be stable. The number of sign changes in the 1st column indicates the number of Poles on RHS which makes the system unstable. Here, 2 sign changes in the 1st column indicate 2 RHS poles. Therefore system is unstable.	Conclu sion - $\mathbf{0 2}$ marks (Note:- Alternative method of Rouths Array by replacing S with $\frac{1}{z}$ in the original equation also can be considered n .)	
b)	Define servo system. Draw block diagram of it. Compare AC Servo motor with DC servomotor. (any 4 points)	(
Ans:	Definition:Servo system is defined as automatic feedback control system working on error signals giving the output as mechanical position, velocity or acceleration.	marks	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(ISO/IEC - 27001-2005 Certified)

WINTER - 14 EXAMINATION

Subject Code: 17538
Model Answer

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(ISO/IEC - 27001-2005 Certified)

WINTER - 14 EXAMINATION

Subject Code: 17538
Model Answer

WINTER - 14 EXAMINATION

Subject Code: 17538
Model Answer

		1 mark	
3.	Attempt any four:		16
a)	Find the transfer function of the network given in figure:		04
Ans:	Applying KVL we get the following equations: $R i(t)+\frac{1}{c} \int i(t) d t=e_{i}(t)$	1 Mark	

WINTER - 14 EXAMINATION

Subject Code: 17538
Model Answer

	$\frac{1}{c} \int \mathrm{i}(\mathrm{t}) \mathrm{dt}=\mathrm{e}_{\mathrm{o}}(\mathrm{t})$ Taking Laplace transform, we get $\begin{aligned} & \mathrm{RI}(\mathrm{~s})+\frac{1}{\mathrm{sC}} \mathrm{I}(\mathrm{~s})=\mathrm{E}_{\mathrm{i}}(\mathrm{~s}) \\ & \frac{1}{\mathrm{sC}} \mathrm{I}(\mathrm{~s})=\mathrm{E}_{\mathrm{o}}(\mathrm{~s}) \end{aligned}$ Transfer function $\mathrm{T}(\mathrm{s})=\frac{\mathrm{Eo}(\mathrm{s})}{\mathrm{Ei}(\mathrm{s})}=\frac{\frac{1}{s C} \mathrm{I}(\mathrm{s})}{\operatorname{RI}(\mathrm{s})+\frac{1}{s C} \mathrm{I}(\mathrm{s})}$ On simplifying: $\text { Transfer function } \mathrm{T}(\mathrm{~s})=\frac{1}{1+s C R}$	1 Mark 1Mark 1 Mark	
b)	For given transfer function : $T . F=\frac{40(S+2)}{S(S+1)(S+4)}$, find : i.) poles ii.) zeros iii.) characteristic equation		04
Ans:	i)Poles are obtained by making denominator of the transfer function $=0$ There are three poles at $\mathrm{s}=0, \mathrm{~s}=-1$ and $\mathrm{s}=-4$ ii) Zeros are obtained by making numerator of the transfer function $=0$ There is one zero at $\mathrm{s}=-2$ iii) Characteristic equation: It is given by $s(s+1)(s+4)=0$ On simplifying we get: Characteristic equation $=\mathrm{s}^{3}+5 \mathrm{~s}^{2}+4 \mathrm{~s}=0$	1 Mark 1Mark 2 Marks	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(ISO/IEC - 27001-2005 Certified)

WINTER - 14 EXAMINATION

Subject Code: 17538
Model Answer

c)	State routh's stability criterion. How will you determine whether system is stable or unstable?		04
Ans:	Statement: Routh's stability criterion: The necessary and sufficient condition for a system to be stable is "All the terms in the first column of Routh's array must have same sign. There should not be any change in the first column of Routh's array." If there are any sign changes then, a) The system is unstable. b) The number of sign changes is equal to the number of roots lying in the right half of s- plane. Determination of whether system is stable or unstable: To apply Routh's stability criterion, consider the system whose characteristic equation is given by: $\mathrm{F}(\mathrm{~s})=\mathrm{a}_{0} \mathrm{~s}_{\mathrm{n}}+\mathrm{a}_{1} \mathrm{~s}_{\mathrm{n}-1}+\mathrm{a}_{2} \mathrm{~s}_{\mathrm{n}-2}+--\cdots-\cdots---+\mathrm{a}_{\mathrm{n}}=0$ The coefficients of the characteristic equation of the given system are arranged in an array called Routh's array in the following way: Method of forming an array : The values of $b_{1}, b_{2}, c_{1}, c_{2}$ etc are obtained as follows:	2 Marks 2 Marks (formin g routh array is optional)	

WINTER - 14 EXAMINATION

Subject Code: 17538
Model Answer

	$\begin{array}{ll} b_{1}=\frac{a_{1} a_{2}-a_{0} a_{3}}{a_{1}} ; & b_{2}=\frac{a_{1} a_{4}-a_{0} a_{5}}{a_{1}} ; b_{3}=\frac{a_{1} a_{6}-a_{0} a_{7}}{a_{1}} \\ c_{1}=\frac{b_{1} a_{3}-a_{1} b_{2}}{b_{1}} ; & c_{2}=\frac{b_{1} a_{5}-a_{1} b_{3}}{b_{1}} \end{array}$ The process is continued till the coefficient for s_{0} is obtained which will be a_{n}. From this array, the stability of the system is predicted.		
d)	Explain synchro as error detector with diagram.		04
Ans:	Explanation: Synchro transmitter alongwith synchro control transformer is used as error detector . The control transformer is similar in construction to that of synchro transmitter except that its rotor is cylindrical in shape. Therefore, the flux is uniformly distributed in the air gap. The output of the synchro transmitter is given to the stator windings of the control transformer as shown. The voltage induced in the stator coils and corresponding currents of the transmitter are given to the control transformer stator coils Circulating currents of same phase but	2 Marks For diagra m 2 Marks For related explain ation	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(ISO/IEC - 27001-2005 Certified)

WINTER - 14 EXAMINATION

Subject Code: 17538
Model Answer

	different magnitude will flow through both set of stator coils. This establishes an identical flux pattern in the air gap of control transformer. The flux pattern in the air gap of control transformer will have the same orientation as that of transmitter rotor. The voltage induced in the transformer rotor will be proportional to the cosine of angle between the two rotors. The output equation is given by: $e_{0}(\mathrm{t})=V_{r} \sin \omega t+\cos \phi$ where: $V_{r} \sin \omega t$: input voltage to the transmitter rotor and ϕ is the angular difference between both rotors. When $\phi=90^{\circ}$ both rotors are perpendicular to each other and the output voltage is zero.This position is called electrical zero and is used as reference position.		
e)	Draw the neat diagram of electronics PID controller using Op-amp . List two advantages.		04
Ans:	Any 2 advantages: Advantages of electronic PID controller: 1) It is the most powerful mode of controllers	03 Marks for diagra m 01 Marks For any relevan t advant age	

WINTER - 14 EXAMINATION

Subject Code: 17538
Model Answer

	2) It eliminates offset		
4.A.	Attempt any four:		16
a)	Draw block diagram of process control system and explain each block.		04
Ans:	Block diagram of process control system Explanation : The block diagram of process control system consists of the following blocks:- 1) Measuring element: It measures or senses the actual value of controlled variable ' c ' and converts it into proportional feedback variable b. 2) Error detector: It receives two inputs: set point ' r ' and controlled variable ' p '. The output of the error detector is given by $e=r-b$. ' e ' is applied to the controller. 3) Controller: It generates the correct signal which is then applied to the final control element. Controller output is denoted by ' p '. 4) Final control element: It accepts the input from the controller which is then transformed into some proportional action performed by the process. Output of control element is denoted by ' u '. 5) Process: Output of control element is given to the process which	2 Marks For diagra m 2 Marks For related explain ation	

WINTER - 14 EXAMINATION

	changes the process variable. Output of this block is denoted by 'u'.		
b)	List ant two advantages and two disadvantages of frequency response analysis.		04
Ans:	Advantages: 1) The absolute and relative stabilities of the closed loop systems can be found out from open loop frequency response characteristics by using methods like Nyquist stability criteria. 2) The transfer functions of complicated systems can be found out practically by frequency response method when it is difficult to determine using differential equations. 3) Frequency response tests are simple and can be easily performed using by using equipments available in laboratories. 4) Without the knowledge of transfer function, the frequency response of a stable open loop control system can be obtained experimentally. 5) Due to close relationship between frequency response and step response of a system, idea about step response can be obtained from its frequency response. Disadvantages: 1) Obtaining frequency response practically is time consuming. 2) It is applicable to linear systems only. 3) The methods are considered to be old and outdated as compared to methods like digital computer simulation and modelling. 4) It is not recommended for systems with large time constants.	2 Marks for any 2 advant ages 2 marks for any two disadv antages	
c)	Transfer function of second order system is given by $: \frac{C(S)}{R(S)}=\frac{10(S+1)}{S^{2}+6 S+25} \quad$ Find Tr, Tp, Ts and \% Mp for unit step input.		04
Ans:	Comparing the given equation with the standard form of second order equation,	(1 Mark for	

	$\frac{C(s)}{R(s)}=\frac{\omega_{n}^{2}}{\omega_{n}^{2}+2 \xi \omega_{n} s+s^{2}}=\frac{25}{s^{2}+6 s+25}$ we get, $\omega_{n}{ }^{2}=25$ Therefore, $\omega_{n}=5 \mathrm{rad} / \mathrm{sec}$ $\begin{aligned} & 2 \xi \omega_{n}=6, \xi=0.6 \\ & \theta=\tan ^{-1}\left(\frac{\sqrt{1-\xi^{2}}}{\xi}\right)=\tan ^{-1}\left(\frac{\sqrt{1-0.6^{2}}}{0.6}\right)=0.9272 \mathrm{rad} \\ & \omega \mathrm{~d}=\omega \mathrm{n} \sqrt{\left(1-\xi^{2}\right)=5 \sqrt{\left(1-0.6^{2}\right)}=4 \mathrm{rad} / \mathrm{sec}} \\ & \mathrm{~T}_{\mathrm{r}}=\frac{\pi-\theta}{\omega \mathrm{d}}=\frac{\pi-0.9272}{4}=\underline{\underline{0.5535 \mathrm{sec}}} \\ & \mathrm{~T}_{\mathrm{p}}=\frac{\pi}{\mathrm{wd}}=\frac{\pi}{4}=\underline{\underline{0.785 \mathrm{sec}}} \\ & \mathrm{~T}_{\mathrm{s}}=\frac{4}{\xi w_{n}}=\underline{\underline{1.33 \mathrm{sec}}} \\ & \% \mathrm{M}_{\mathrm{p}}=e^{\frac{-\pi \xi}{\sqrt{1-\xi^{2}}} * 100=\underline{\underline{9.48 \%}}} \end{aligned}$	each parame ter Means for Tr,Tp, Ts, and \%Mp)	
d)	Explain construction of variable reluctance stepper motor with diagram.		04

WINTER - 14 EXAMINATION

Subject Code: 17538
Model Answer

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)
(ISO/IEC - 27001-2005 Certified)

WINTER - 14 EXAMINATION

Subject Code: 17538
Model Answer
In

WINTER - 14 EXAMINATION

Subject Code: 17538
Model Answer

Explanation :
Synchro transmitter along with synchro control transformer is used as error detector . The control transformer is similar in construction to that of synchro transmitter except that its rotor is cylindrical in shape. Therefore, the flux is uniformly distributed in the air gap.
The output of the Synchro transmitter is given to the stator windings of the control transformer as shown. The voltage induced in the stator coils and corresponding currents of the transmitter are given to the control transformer stator coils Circulating currents of same phase but different magnitude will flow through both set of stator coils.
This establishes an identical flux pattern in the air gap of control transformer. The flux pattern in the air gap of control transformer will have the same orientation as that of transmitter rotor. The voltage induced in the transformer rotor will be proportional to the cosine of angle between the two rotors.
The output equation is given by :
$e_{0}(\mathrm{t})=V_{r} \sin \omega t+\cos \phi$
where $V_{r} \sin \omega t=$ input voltage to the transmitter rotor and ϕ is the angular difference between both rotors. When $\phi=90^{\circ}$ both rotors are perpendicular to each other and the output voltage is zero This position is called electrical zero and is used as reference position.

| 2 |
| :--- | :--- |
| Marks |
| For |
| Diagra |
| m |$|$

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)
(ISO/IEC - 27001-2005 Certified)

WINTER - 14 EXAMINATION

Subject Code: 17538
Model Answer

b)			06
	$G(s)=\frac{10(s+1)}{s^{2}(s+2)(s=10)}$ find error coefficient Kp,Kv, Ka		
Ans:	$\begin{aligned} & \mathrm{G}(\mathrm{~s})=\frac{10(s+1)}{s^{2}(s+2)(s+10)}, \mathrm{H}(\mathrm{~s})=1 \\ & \mathrm{~K}_{\mathrm{p}}=\lim _{s \rightarrow 0} \mathrm{G}(\mathrm{~s}) \mathrm{H}(\mathrm{~s})=\lim _{s \rightarrow 0} \frac{10(s+1)}{s^{2}(s+2)(s+10)} * 1=\infty \\ & \mathrm{K}_{\mathrm{v}}=\lim _{s \rightarrow 0} s \mathrm{G}(\mathrm{~s}) \mathrm{H}(\mathrm{~s})=\lim _{s \rightarrow 0} \frac{s 10(s+1)}{s^{2}(s+2)(s+10)} * 1=\infty \\ & \mathrm{K}_{\mathrm{a}}=\lim _{s \rightarrow 0} s^{2} \mathrm{G}(\mathrm{~s}) \mathrm{H}(\mathrm{~s})=\lim _{s \rightarrow 0} \frac{s^{2} 10(s+1)}{s^{2}(s+2)(s+10)} * 1 \\ & \quad=\lim _{s \rightarrow 0} \frac{10(s+1)}{(s+2)(s+10)}=\frac{10(0+1)}{(0+2)(0+10)}=\frac{10}{20}=0.5 \\ & \begin{array}{l} \mathbf{K p}=\infty \\ \mathbf{K v}=\infty \\ \mathbf{K a}=\mathbf{0} .5 \end{array} \end{aligned}$	2 Marks 2 Marks 2 Marks	
5.	Attempt any four:		16
a)	Explain how AC servomotor is different from two phase induction motor.		04

WINTER - 14 EXAMINATION

Ans:	Two Phase Induction Motor	AC Servomotor	1 mark each point	04
	In these motor the current flows through rotor due to principle of induction	In these motors, signal error is converted in to angular velocity to correct the error.		
	Two phase induction motor are type of AC motor where power is supplied to the rotor by means of electromagnetic induction, rather than a Commutator or slip rings.	A servomotor is a rotary actuator that allows for precise control of angular position.		
	These motor are widely used in high power industrial drives.	Servomotors are used in applications such as robotics, CNC machinery or automated manufacturing.		
	Speed of the induction motor is controlled by the number of poles pairs and the frequency of the supply voltage.	Servomotors are controlled by microcontrollers.		
	Torque producing capacity is high	Torque speed characteristic is linear.		
b)	Illustrate PI control action with output equation and nature of output response.			04
Ans:	This Control Mode is a combination of the Proportional mode and the integral mode. The output equation of this controlling mode is given by, $\begin{aligned} & \mathrm{P}=K_{p} e_{p}+K_{p} k_{i} \int_{0}^{t} e_{p} d t+p_{i}(0) \\ & \text { where } p_{i}(0)=\text { Integral term value at } \mathrm{t}=0 \end{aligned}$ The main advantage of this composite control mode is that the one to one correspondence of the proportional mode is available and the integral mode eliminates inherent offset.		2 marks for relevan t explan ation 1 mark equatio n	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(ISO/IEC - 27001-2005 Certified)

WINTER - 14 EXAMINATION

Subject Code: 17538
Model Answer

WINTER - 14 EXAMINATION

Subject Code: 17538
Model Answer

	\therefore Range of values of K: $0<\mathrm{k}<6.5$	Marks for margin al value of ' K '	
	The marginal value of ' K ' is a value which makes any row other than s^{0} as row of zeros. $\begin{aligned} & \therefore 0.65-0.1 K_{\text {mar }}=0 \\ & \therefore K_{\text {mar }}=6.5 . \end{aligned}$		
d)	A second order system is given by $\frac{C(S)}{R(S)}=\frac{25}{S^{2}+6 S+25}$, find: i.) Damping ratio ii.) Natural frequency iii.) Peak time iv.) Settling time		04
	Comparing T.F. with Standard Form $\frac{\omega_{\mathrm{n}}{ }^{2}}{\mathrm{~S}^{2}+2 \zeta \omega_{\mathrm{n}} \mathrm{s}+\omega_{\mathrm{n}}{ }^{2}}$ $\omega_{\mathrm{n}}{ }^{2}=25$ and $2 \zeta \omega_{\mathrm{n}}=6$ - so , $\omega_{\mathrm{n}}=5 \mathrm{rad} / \mathrm{sec}$ and - $\zeta=0.6$ $\theta=\tan ^{-1} \sqrt{1}-\frac{\zeta^{2}}{\zeta} \quad=0.9272 \mathrm{rad}$. $\omega_{\mathrm{d}}=\omega_{\mathrm{n}} \sqrt{ } 1-\zeta^{2}=5 \sqrt{ } 1-(0.6)^{2}=4 \mathrm{rad} / \mathrm{sec}$. - $\mathrm{T}_{\mathrm{p}}=\frac{\Pi}{\omega d}=\frac{\pi}{4}=0.785 \mathrm{sec}$ - $\mathrm{Ts}=\frac{4}{\zeta \omega_{\mathrm{n}}}=1.33 \mathrm{sec}$	1 Mark for calcula ting value for each point	
e)	Define transient response and steady state response.		04

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(ISO/IEC - 27001-2005 Certified)

WINTER - 14 EXAMINATION

Subject Code: 17538
Model Answer

Ans:	Transient Response: The output variation during the time, it takes to achieve its final value is called as transient response. Steady state Response: It is that part of the time response which remains after complete transient response vanishes from the system output. It is also define as response of the system as time approaches infinity from the time at which transient response completely dies out. (a) $c_{t}(t)$ is exponential (b) $c_{t}(t)$ is oscillatory	2 marks for each definati on with respons e	
f)	Define gain margin and phase margin.		04
Ans:	- Gain Margin: The Margin in gain allowable by which gain can be increased till system reaches on the verge of instability. $\text { G.M. }=-20 \log _{10}\|\mathrm{G}(\mathrm{j} \omega) \mathrm{H}(\mathrm{j} \omega)\| \omega=\omega_{\mathrm{pc}}$ - Phase Margin: The amount of additional phase lag which can be introduced in the system till system reaches on the verge of instability is called as phase margin.	2 marks for gain margin 2 marks for phase margin	

	MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001-2005 Certified)
	WINTER - 14 EXAMINATION
Subject Code: 17538	Model Answer

	P.M. $=180^{\circ} \pm \mathrm{G}(\mathrm{j} \omega) \mathrm{H}(\mathrm{j} \omega) \omega=\omega_{\mathrm{gc}}$		
6.	Attempt any four:		16
a)	Draw the transient response of second order system for different values of ζ (zeta)		04
Ans:	 $\xi<1$	1 mark for each respons e	

WINTER - 14 EXAMINATION

Subject Code: 17538
Model Answer

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)
(ISO/IEC - 27001-2005 Certified)

WINTER - 14 EXAMINATION

Subject Code: 17538
Model Answer

		zone	
c)	Derive the unit step response of first order system.		04
Ans:	The T.F. of First order system is , $\frac{\mathrm{V}_{0}(\mathrm{~s})}{\mathrm{V}_{\mathrm{i}}(\mathrm{~s})}=\frac{1}{1+\mathrm{sRC}}$ For Unit Step input $\mathrm{V}_{\mathrm{i}}(\mathrm{s})=\frac{1}{\mathrm{~S}}$ So, $V_{0}(s)=\frac{1}{s(1+s R C)}=\frac{A^{\prime}}{s}+\frac{B^{\prime}}{1+s R C}$ Where: $A^{\prime}=1$ and $B^{\prime}=-R C$ $V o(s)=\frac{1}{s}-\frac{R C}{1+s R C}=\frac{1}{s}-\frac{1}{s}+\frac{1}{R C}$ Taking Laplace inverse, $\begin{aligned} & \operatorname{Vo}(\mathrm{t})=1-e^{\frac{-t}{R C}}=>\operatorname{Css}+\operatorname{ct}(\mathrm{t}) \\ & \operatorname{Css}=1 \text { and } \operatorname{ct}(\mathrm{t})=-\mathrm{e}^{\frac{-\mathrm{t}}{\mathrm{RC}}} \end{aligned}$	01 Mark for TF. 01 Mark for Value of A And B 01 M for ILT	

WINTER - 14 EXAMINATION

Subject Code: 17538
Model Answer

| | The Response is shown in fig.
 and | 01 M
 for
 final
 answer
 and
 Respon
 se |
| :--- | :--- | :--- | :--- |

WINTER - 14 EXAMINATION

Subject Code: 17538
Model Answer

