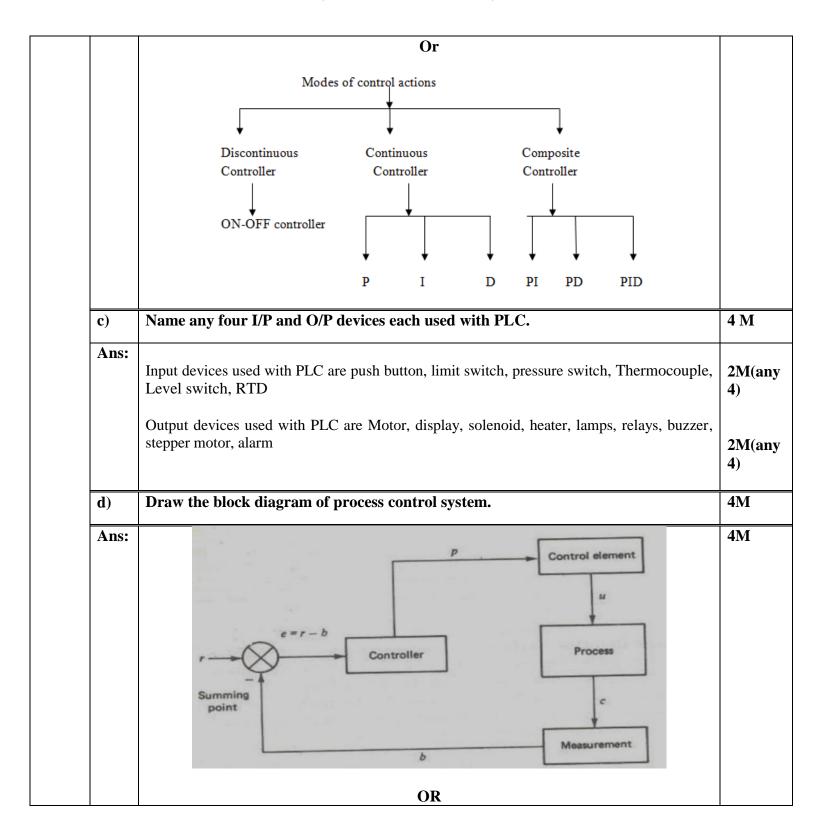
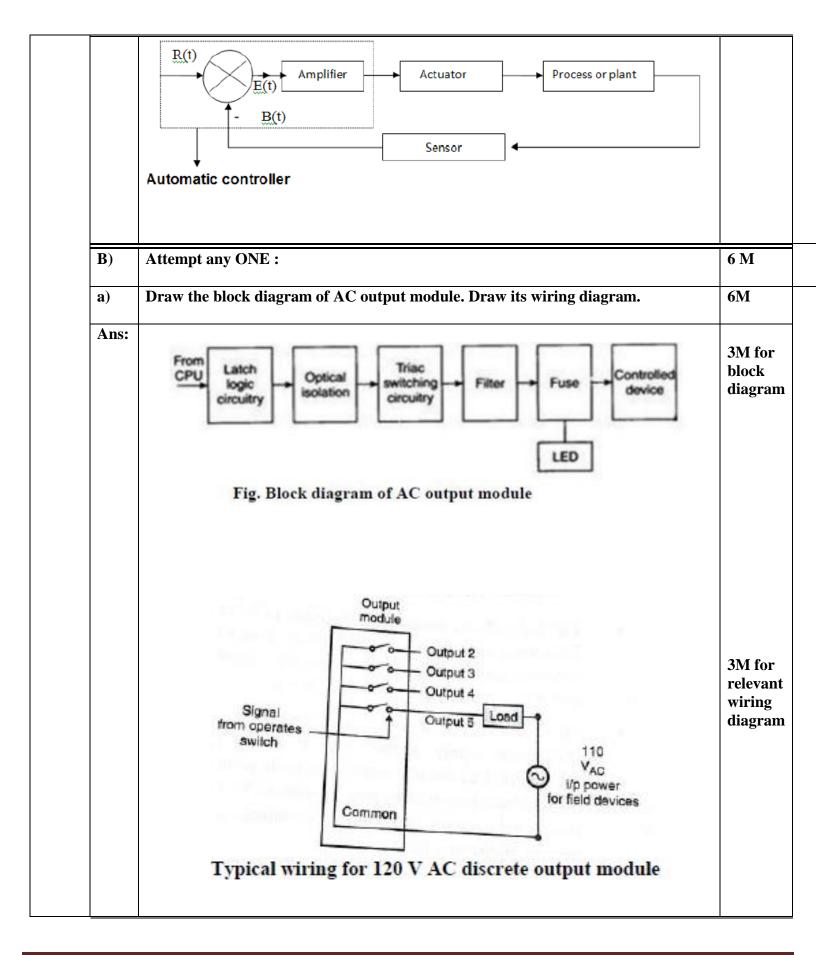


MODEL ANSWER

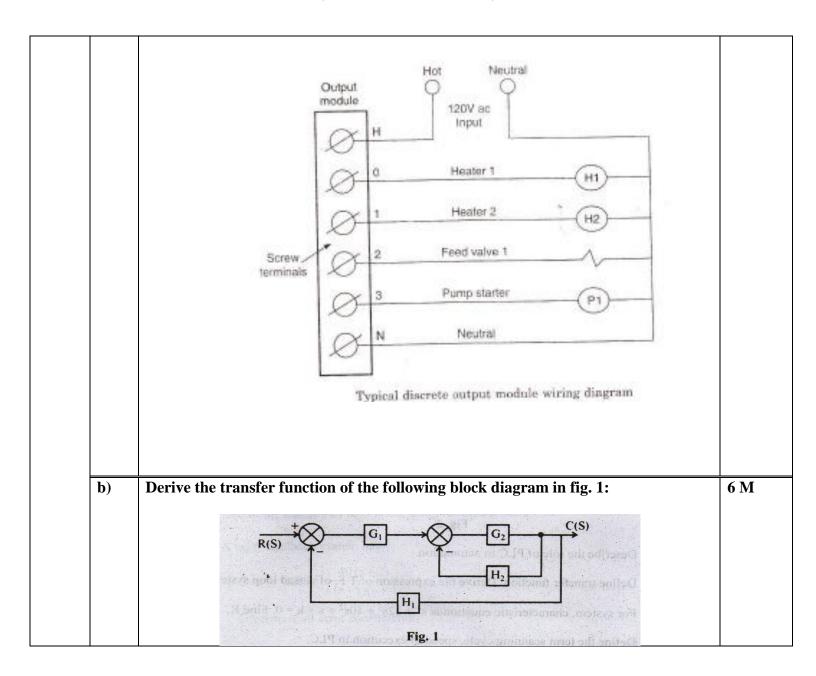
WINTER- 18 EXAMINATION

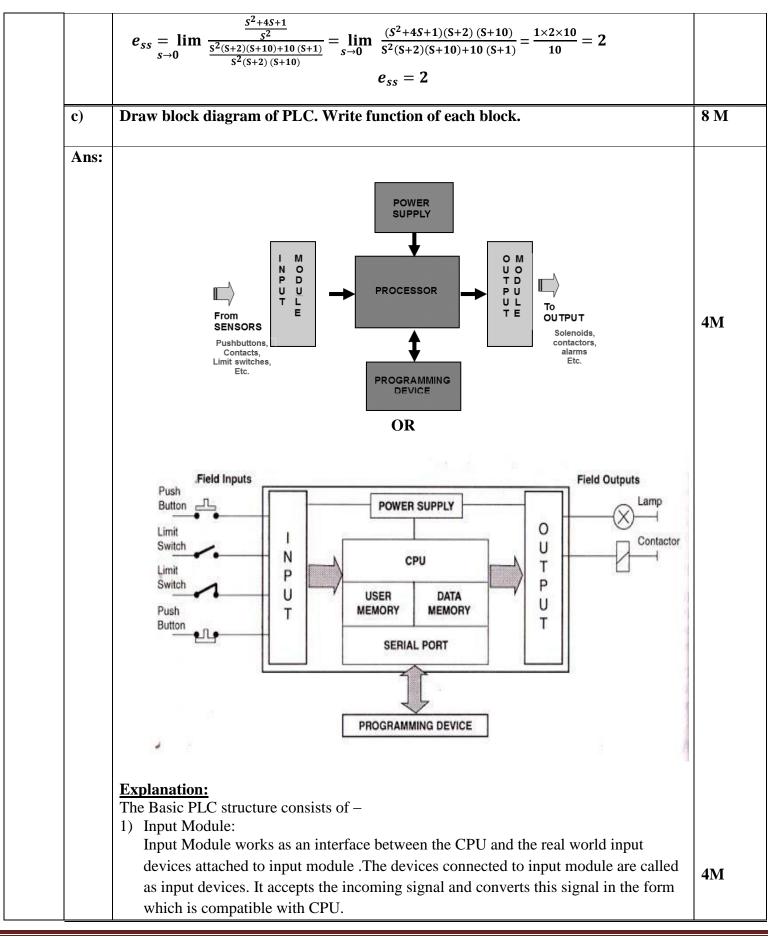

Subject Title: CONTROL SYSTEM & PLC Subject Code: 17536

Important Instructions to examiners:


- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

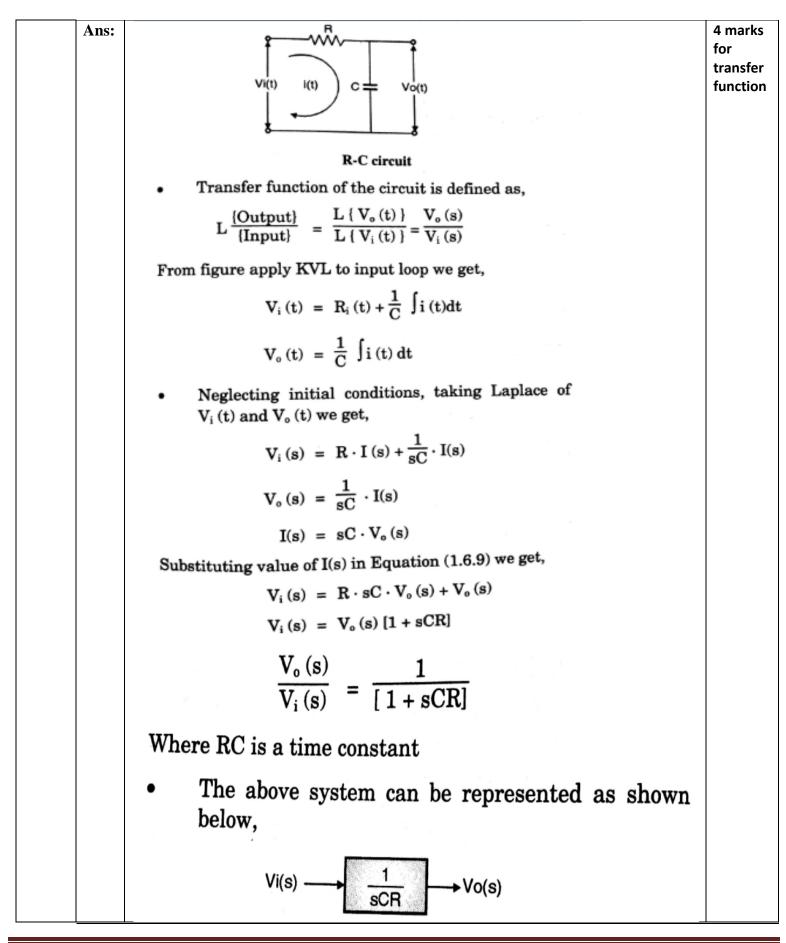
Q. No.	Sub Q.N.	Answer	Markin g Scheme
Q.1		Attempt any THREE :	12-Total Marks
	a)	Draw the block diagram of DC servo system.	4 M
	Ans:	input Frror detector feedback Load output	4M
	b)	Classify the different modes of process control actions.	4 M
	Ans:	Discontinuous control actions: on-off controller Continuous control actions: Proportional, Integral and Derivative Combinational control actions: Proportional Integral (PI), Proportional Derivative (PD) and Proportional Integral and Derivative (PID)	4M ^{1/2} marks for each modes





	Ans:	1,(B) (b) Closed loop	2 M
		$\frac{R(s)}{H_1} \xrightarrow{(G_1)} (G_2) \xrightarrow{(G_2)} (G_3)$ $\frac{H_1}{H_1} \xrightarrow{(G_2)} (G_3)$ $\frac{R(s)}{R(s)} \xrightarrow{(G_1)} (G_2) \xrightarrow{(G_2)} (G_3)$ $\frac{G_2}{1+G_2H_2} \xrightarrow{(G_3)} (G_3)$ $\frac{H_1}{H_1} \xrightarrow{(G_2)} (G_3)$	2 M
		$\frac{F(0)}{1+G_2H_2} = \frac{G_1 G_2}{1+G_2H_2} = \frac{G_1 G_2}{1+G_2H_2}$ $Tf = \frac{G_1 G_2}{1+G_2H_2} = \frac{G_1 G_2}{1+G_2H_2+G_1G_2H_1}$	
		$TF = \frac{1+G_2H_2}{1+G_1G_2H_1} = \frac{1+G_2H_2+G_1G_2H_1}{1+G_2H_2}$ $R(0) = \frac{G_1G_2}{1+G_2H_2+G_1G_2H_1} \rightarrow (0)$	2 M
Q 2		Attempt any TWO :	16 - Total Marks
	a)	For a unity feedback system, the TF is given by $C(s)$ 25 $=$ $=$ $R(s)$ $S^2 + 6S + 25$ Find i) rise time ii) peak time iii) peak overshoot iv) settling time.	8 M

Ans:	Comparing with standard equation $\frac{\mathcal{C}(S)}{R(S)} = \frac{\mathcal{G}(S)}{1 + \mathcal{G}(S)H(S)} = \frac{w_n^2}{S^2 + 2\xi w_n S + w_n^2} = \frac{25}{S^2 + 6S + 25}$	2M
	$w_n^2 = 25, \ w_n = 5$	
	$W_n^2 = 25, \ W_n = 5$	
	$2\xi w_{n=6}, \xi = 0.6$	
	$w_d = w_n \sqrt{1-\xi^2} = 4 rad/sec$	1.5N
	1) <u>Rise Time</u> : $T_r = \frac{\pi - \theta}{w_d}$	1.51
	$\theta = \tan^{-1}(\frac{\sqrt{(1-\xi^2)}}{\xi}) = 0.92$	
	$T_r = \frac{\pi - 0.92}{4} = 0.55 sec$	1.5N
	2) <u>Peak Time</u> : $T_p = \frac{\pi}{w_d} = \frac{\pi}{4} = 0.785 \ sec$	
	2) 0/ D 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.5N
	3) <u>% Peak overshoot:</u> % $M_p = e^{-\pi \xi/\sqrt{(1-\xi_2)}} \times 100\% = 9.47\%$ 4) <u>Settling time:</u> $T_s = \frac{4}{\xi w_n} = 1.33 \ sec$	1.5N
	$\frac{5}{\xi} \frac{1}{w_n} = 1.55 \text{ sec}$	
b)	An unity feedback system has G(S),	8 M
	$G(S) = \frac{10 (S + 1)}{S^2(S + 2) (S + 10)}$	
	Find,	
	i) Type of system	
	ii) Error coefficient kp, kv & ka	
	iii) Steady state error for i/p, $r(t) = 1 + 4t + t^2/2$	
Ans:	i) Type of system is 2	1 M
	ii) Error coefficient $K_P = \lim_{s \to 0} G(S)H(S) = \infty$	3 M
	$K_V = \lim_{s \to 0} S G(S) H(S) = \infty$	
	$K_a = \lim_{s \to 0} S^2 G(S) H(S) = \frac{10}{2 \times 10} = 0.5$	
	iii) Steady state error for i/p, $r(t) = 1 + 4t + t^2/2$	4 M
	$R(S) = \frac{1}{S} + \frac{4}{S^2} + \frac{1}{S^3} = \frac{S^2 + 4S + 1}{S^3}$	4101
	$e_{ss} = \lim_{s \to 0} \frac{SR(S)}{1 + G(S)H(S)} = \lim_{s \to 0} \frac{\frac{S^2 + 4S + 1}{S^2}}{1 + \frac{10(S+1)}{S^2(S+2)(S+10)}}$	
	$1 + G(S)H(S) = \frac{10}{s \to 0} + \frac{10}{1 + 10} + \frac{10}{s \to 0} + 1$	



		$ \begin{array}{c} $	
Q. 3		Attempt any FOUR : Derive the transfer function of given network. Refer fig. – 2	16 - Total Marks 4 M
	3	 Output Module: Output module works as an interface or link between the CPU and the real world devices attached to the output module. The main function of output module is to take control signal from CPU and based on signal received from CPU it changes the status of output devices. Central processing unit: The CPU is the main part of any PLC .The CPU solves the user program logic, by using real time input status from input module and updates the status of outputs through output module. Power supply: Power supply is the part of PLC which is used to supply required amount of power to CPU, input module and output module. Programming device: The programming device is used for communication between user and PLC. The programming device help the user to enter and modify the required program into the PLC memory and troubleshoot PLC ladder logic program. Memory: PLC memory is divided in two part, Data memory and User memory. Data memory is used to store data associated with instruction address and user memory is used to store user's application program. 	

b)	Describe the role of PLC automation.	4 M
Ans:	 To reduce human efforts. To get maximum efficiency from machine and control them with human logic To reduce complex circuitry of entire system To eliminate the high costs associated with inflexible, relay-controlled systems. Replacing Human Operators (Dangerous Environments & Beyond Human Capabilities) Higher productivity. Superior quality of end product. Efficient usage of energy and raw materials Improved safety in working conditions. 	1 mark each role (any four)
c)	Define transfer function. Derive the expression of T.F. of closed loop system.	4 M
Ans:	Transfer Function is defined as the ratio of Laplace transform of output variable to that of input variable under the zero initial condition. The transfer function for a general closed loop control $\begin{array}{c} \hline H(s) & \hline E(s) & \hline G(s) & \hline F(s) & \hline C(s) & \hline F(s) & \hline F($	Definiti on 1 Marks, Diagra m 1 M, derivati on 02 M

d)	For system, ch	aracteristics equat	ion is $s^4 + 22$	2s ³ +10s ² +s+k =0. Find K.	4 M
Ans:	 Firstly Find even & odd coefficient from characteristics equation S⁴ + 22S³ + 10S² + S + K The routh's array for above characteristics equation is formed as follows 				
	S^4	1	10	K	-
	S ³	22	1	0	01 mark For K
	S ²	9.95	K	0	
	S^1	9.95-22K 9.95	0		
	S ⁰	K			
	positive		of 1 st colun	nn of routh array should be	
	<u>9.95–22K</u> 9.95	> 0	i.e <i>K</i> <	9.95	
	i.e. 0 < I				
		$_{\rm max}$ is 0.45 for stabl			
<u>e)</u>		n scanning cycle, s	peed of exec	ution in PLC.	4M 2
Ans:	consists of a ser Input scan: Dur ON or OFF input	controls the operatin ries of operations pe ing input scan, the C ut states are stored i	rformed Seq CPU scans (e n the input s	ocessor scan. This operating cy uentially and repeatedly. examines) the external input de- tatus table. ocessor scans the instructions in	vices. The marks
	control program output will or w Output status: I	n, uses the input stat vill not be energized During output scan,	us from the i	r writes ON or OFF status, one	if an
	The operating c normally short,	relative to the time	1 to 25 milli	second. The input and output s the program scan.	can are
	A period	scans memory and e d between one I/O u	pdate and th	ructions is speed of execution ' e next is termed as "One scan"	
	Scan tinSpeed o	ne is generally meas f execution depends	ured in msec on speed of	terminal is Scan time c. CPU, length of ladder diagram	n, types of
		on used in program the CPU speed or lo		der diagram, takes more time to) execute

Q. 4	A)	Attempt any THREE :	12-Total Marks
	a) Ans:	Explain with diagram sinking and sourcing concept in DC input modules. Sinking Input Module:	4 M 1 M for diagram
		PB PB PB PB PB PB PB PB PB PB	& 1 M for explana tion
		Figure, Shows sinking i/p module where current from positive terminal of DC power	
		supply flows first from i/p device to i/p module and then to common terminal. So here, input module is sinking current from input device so it is sinking input module. Sourcing input module: The interface diagram of PLC input module as sourcing is shown in figure. In operation, PLC input module as sourcing, current from power supply first flows from input module to load and then to common terminal so the input module acts as source of current.	1 M for diagram & 1 M for explana tion
		PB	
		24 V _{DC} power supply + Current	

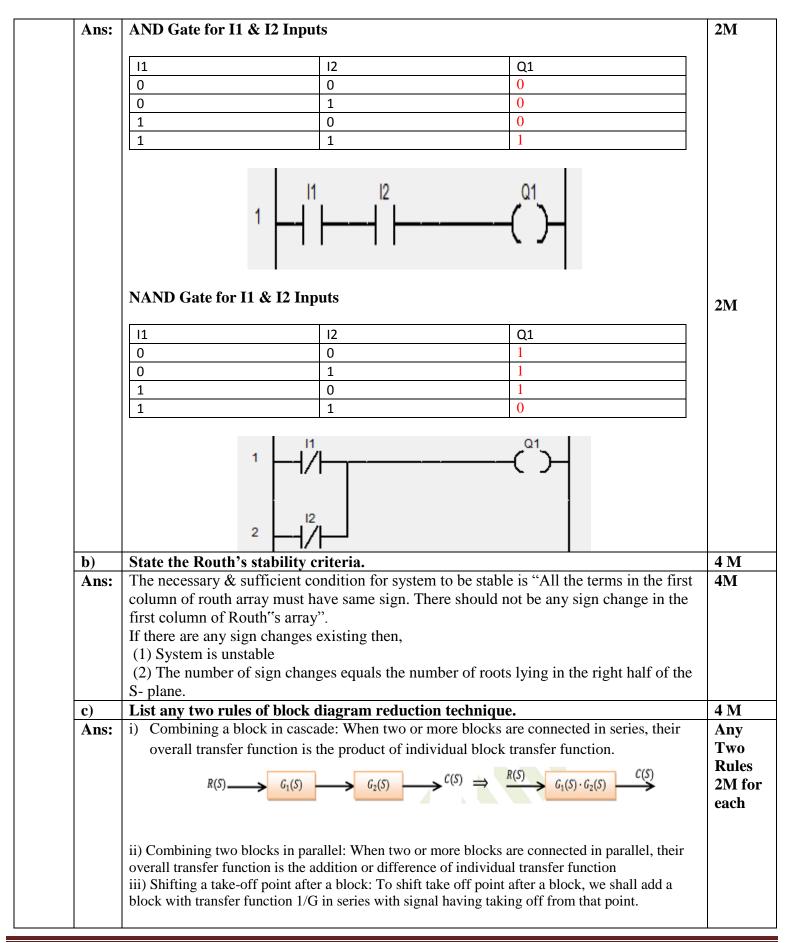
b)	Define . Give its S-plane representation.	4 M					
Ans:	Definition : Poles : The values of 's' which makes the transfer function infinity after substitution in the denominator of a transfer function are called poles of the transfer function.						
	Zeros : The values of 's' which makes the transfer function zero after substitution in the numerator of a transfer function are called zeros of the transfer function.	1M					
	System stability is determined from the location of closed loop poles in the s- plane. If the poles are located on the left half of s-plane, then such system is absolutely stable. If the poles are located on the right half of s-plane, then such system is unstable. If one or more pairs of non- repeated roots are located on the jw axis, then the system is critically stable or marginally stable						
	j∞↑	2M					
	$j\omega$ s-plane						
	$\omega = \frac{\omega g}{2} = \pi f s$						
	Stable Region Unstable Region						
	<i>σ</i>						
	$\omega = \frac{-\omega g}{2} = -\pi f s$						
c)	Compare proportional and integral controller on the basis of equation,	4 M					

iny one)	 1.looks into present error 2.moderate response speed 3.moderate stability 	1.looks into Past history of error2.eliminates noise3.eliminates Offset	
esponse to rror	Response to direction of error. Controller output α to error. In inner loop cascade control	Response to magnitude of error i.e. size and time duration. Rate of change of output α error Robotic arm movement	
			4 M
		wo operands.	1 mark each instructi on. Any four instructi on (descript ion is not expecte d)
Experience of the bit	ogical OR operation between two or both the bits of two operands a OR Source A N7 : 0 Source B N7 : 1 Destination N7 : 2	are 1 then output bit is 1 otherwise 0.	
	esponse to ror Application ite any four AND instruct berforms the I OR instruction berforms the I berforms the I berforms the I berforms the I control of the bit	ny one) 2.moderate response speed 3.moderate stability esponse to Response to direction of error. ror Controller output α to error. Application In inner loop cascade control rite any four logical instructions in PLC AND instruction: eerforms the logical AND operation between two AND Source A N7 : 0 Source B N7 : 1 Destination N7 : 2 OR instruction: eerforms the logical OR operation between two OR instruction: eerforms the logical OR operation between two OR instruction: eerforms the logical OR operation between two OR instruction: eerforms the logical OR operation between two OR Source A N7 : 0 Source B N7 : 1 Destination N7 : 2 KOR instruction:	ny one) 2.moderate response speed 2.eliminates noise 3.moderate stability 2.eliminates noise 3.moderate stability 3.eliminates offset esponse to Response to direction of error. Controller output α to error. Response to magnitude of error i.e. size and time duration. Rate of change of output α error Application In inner loop cascade control Robotic arm movement rite any four logical instructions in PLC AND instruction: erforms the logical AND operation between two operands. Image: Control I in the bit of N7 : 0 Source A N7 : 1 Destination N7 : 2 OR Source A N7 : 0 Source A N7 : 0 Source B N7 : 1 Destination N7 : 2

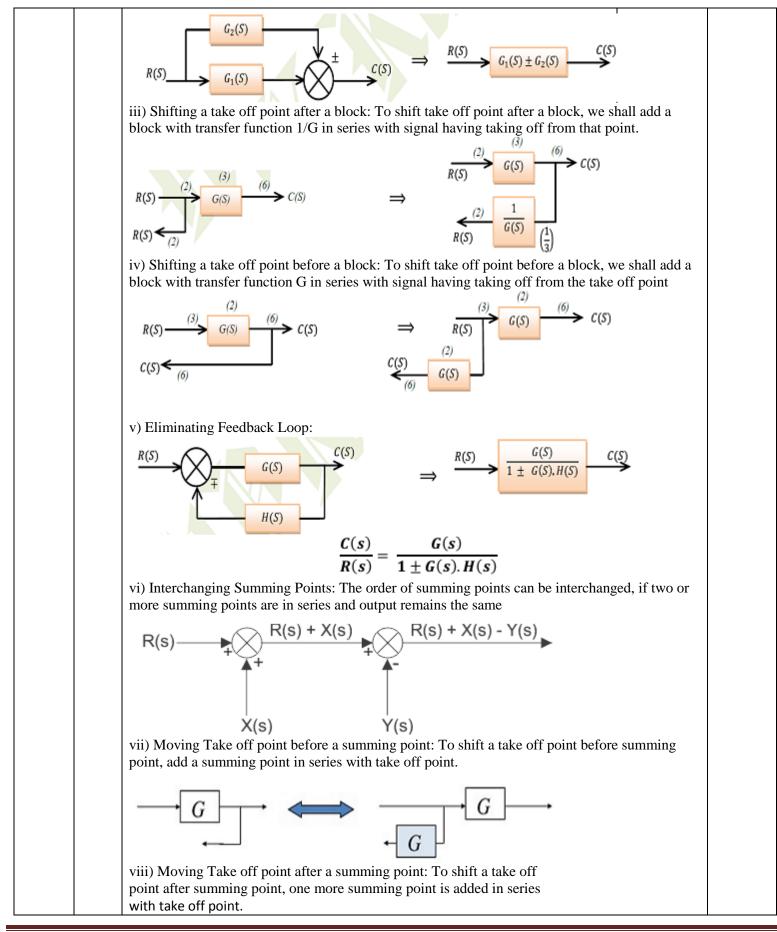
	If odd number of inputs are 1 then output of EX-OR is 1 otherwise 0	
	XOR Source A N7 : 0 Source B N7 : 1 Destination N7 : 2	
	4. NOT instruction:	
	It has single source and perform logical NOT operation and store result in destination memory. Output is complement of input. NOT instruction reverses all of the bits in the source word.	
	NOT Source A N7 : 0 Destination N7 : 1	
B)	Attempt any ONE :	6 -Total
a)	Draw block diagram of AC input module.	Marks 6 M
Ans:	Input signal Bridge and debounce filter detector status table	6 marks
	LED Block diagram of a typical AC input circuit.	
b)	Describe PID control action w.r.t. equation and response to error.	6 M
Ans:	PID controller is the proportional-integral-derivative controller. A PID controller calculates an "error" value as the difference between a measured process variable and a desired set point. The controller attempts to minimize the error by adjusting the process control inputs.	3 marks each

	Equation : Pout= KPEp+ KP KI [t Ep(t)d(t)+KPKDd/dt Ep + P0 KP = proportional gain Ep = error percentage KI = integral gain KD = derivative gain P0 = controller output at time t = 0 When an error is introduced to a PID controller, the controller's response is a combination of the proportional, integral, and derivative actions. Assume the error is due to a slowly increasing measured variable. As the error increases, the proportional action of the PID controller produces an output that is proportional to the error signal. The integral action of the controller produces an output whose rate of change is determined by the magnitude of the error. In this case, as the error continues to increase at a steady rate, the integral output continues to increase its rate of change. The derivative action of the controller produces an output whose magnitude is determined by the rate of change. When combined, these actions produce an output. The output produced responds immediately to the error with a signal that is proportional to the magnitude of the error and that will continue to increase as long as the error remains increasing. The proportional action of the controller stabilizes the process. The integral action combined with the proportional action causes the measured variable to return to the set point. The derivative action combined with the proportional action reduces the initial overshoot and cyclic period.		
Q.5	Attempt any TWO :	16 - Total Marks	
<u>a)</u>	List and explain the timer instructions of PLC.	8 M	
Ans:	Depending on the time delay and operation there are two types of timers PLC timer- (i) ON delay timer(ii) OFF delay timerON delay timerThis instruction counts time interval when conditions preceding it in the rung are true.Produces an output when accumulated reaches the preset value.Use Ton instruction to turn an output on or off after the timer has been on for a presettime interval. The Ton instruction begins to count time base intervals when the rungconditions become true.The accumulated value is reset when the rung condition go false regardless of whetherthe timer has timed out Instruction parameter- Timer TON is 3 word element.Image: 14 13 12 11 10 9 8 7 6 5 4 316wordON delay timerImage: 16bittimer ToN is 3 word element.Image: 15 210bitwordON delay timerImage: 16bitImage: 10 preset valueImage: 10 preset valuebitWordImage: 16bit <td co<="" th=""><th>4M</th></td>	<th>4M</th>	4M

OFF delay timerThis instruction counts time interval when conditions preceding it in the rung are false. Produces low output when accumulated value reaches the preset value. Use Toff instruction to turn an output on or off after the timer has been off for a preset timer has been off for a preset time intervals. The Toff instruction begins to count time base intervals when the rung makes a true to false to transition. As long as rung conditions remains false the timer increments its accumulated value each scan until it reaches the preset value. The accumulated value is reset when the rung conditions go true regardless of whether the timer has timed out. Instruction parameter- Timer TOFF is 3 word element.Void of TTEN TTEN DNbitword Accumulat16OF reset valuebitWord Accumulat1110987654bitWord Accumulate a decumulatedbitVoid Accumulate bitit is set when the accumulated value is equal to or greater than the preset value it is set when rung condition are true.(i) Timer enable bit (bit 14)-EN is set when rung condition are true.	1	done bit is set.	e preset va	alue.	It is reset when			e true & the accumulated aditions go false or when	
As long as rung conditions remains false the timer increments its accumulated value each scan until it reaches the preset value. The accumulated value is reset when the rung conditions go true regardless of whether the timer has timed out. Instruction parameter- Timer TOFF is 3 word element. Image: ToFF is 3 word element. Image: ToFF is 3 word element.<	This Proc Use time	s instruction coun- luces low output Toff instruction er has been off fo	when ac to turn a or a prese	cumu n outj t time	lated value rea put on or off af e intervals. The	ches th ter the Toff in	ne pres timer l nstruct	et value. has been off for a preset ion begins to count time	4N
15 3 2 1 0 16 word 16 0 TT\EN TT\EN word 16 1 preset value bit word 16 2 or value 16 bit 16 bit 16 1 preset value bit word Accumulat 16 2 or value 16 bit 16 bit Status bit explanation- i) i) Timer done bit (bit13)-DN is reset when the accumulated value is equal to or greater than the preset value it is set when rung condition are true.	As l each cond	ong as rung cono scan until it rea ditions go true re	ditions re ches the gardless ord eleme	mains prese of wł nt.	s false the time t value. The ac- nether the timer	r increi cumula r has tii	ments ated va	its accumulated value lue is reset when the rung	
word ITVEN TTVEN DN bit word 16 bit 16 1 preset value bit 16 word Accumulat 16 16 2 or value 16 bit Status bit explanation- i) Timer done bit (bit13)-DN is reset when the accumulated value is equal to or greater than the preset value it is set when rung condition are true.		15		13	12 11 10 9 8 7	654			
1 preset value bit word Accumulat 16 2 or value bit Status bit explanation- i) Timer done bit (bit13)-DN is reset when the accumulated value is equal to or greater than the preset value it is set when rung condition are true.		ord		DN		1		-	
2 or value bit Status bit explanation- i) Timer done bit (bit13)-DN is reset when the accumulated value is equal to or greater than the preset value it is set when rung condition are true.	1	preset value				1	bit		
i) Timer done bit (bit13)-DN is reset when the accumulated value is equal to or greater than the preset value it is set when rung condition are true.						1			
 (ii) Timer enable bit (bit 14)-EN is set when rung condition are true. It is reset when rung condition become false. iii) Timer timing bit (bit1S)-TT is set when rung conditions are false & the accumulated value is less than the preset value. It is reset when the rung conditions go true or when the done bit is reset. 	i) Ti than (ii) T rung iii) valu	imer done bit (bi the preset value Timer enable bit g condition becon Timer timing bit te is less than the	t13)-DN e it is set v (bit 14)-J me false. t (bit1S)-'	when EN is TT is	rung condition set when rung set when rung	are tru condit	ue. tion are ions ar	e true. It is reset when re false & the accumulated	



Ans:	Given Characteristic equation is S ⁴ +6S ³ +26S ² +56S+80=0 Find odd and even coefficients from	6M
	given characteristic equation and me Routh's array	
	$a_0 = 1$ $a_1 = 6$ $a_2 = 26$ $a_3 = 56$ $a_4 = 8$ Malke Routh's array S ⁴ 1 26 80	
	5^{3} 6 56 5^{2} 16.6 80	
	5° 80	
	$b_{0} = \frac{6 \times 26 - 1 \times 56}{6} = 16.6$ $b_{1} = \frac{6 \times 80 - 0}{6} = 80$	
	$C_1 = \frac{16.6 \times 56 - 80 \times 6}{16.6} = 27.08$	
	As there is no change in the sign in the first column of Routh's array. The system is stable	2M
c)	A unity feedback system has $G(S) =$	8 M
	Determine all error coefficients. S (S+1) (S+4)	



	a)	Draw the ladder diagram for i) AND gate	Total Marks 4 M
Q.6		Attempt any FOUR:	16-
		$\begin{array}{ll} \label{eq:Ku} \hline K_{v} = 20 \\ \mbox{iii]} & \mbox{Acceleration -evror coefficient} \\ & \mbox{Ka} = \mbox{Jim} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	
		- lim 32-20 (1+0.53)	
		iii) Acceleration ever construction V = lim s ² . g(s) H(b)	
		$K_{v} = 20$	2M
		$K_{V} = \lim_{s \to 0} s \cdot g(s) \cdot H(s)$ = $\lim_{s \to 0} \frac{s \cdot 20(1+0.5s)}{(1+0.25s)}$	
		id a sto enpor coefficient	2M
		$V_{0} = \infty$	
		$K_{p} = \frac{At}{s \Rightarrow 0} \frac{G(s) \cdot H(s)}{20 (1+0.5s)}$ = $\lim_{s \Rightarrow 0} \frac{20 (1+0.5s)}{-s (1+s) (1+0.25s)}$	
		Destinal chron westing	2M
		(1+0, 254)	
		G(5).H(6) = 20(1+0.55)	
		s (1+5).4 (1+0.25s)	
		40. 2 (1+0.53)	
		Converting GG) H(s) into standard for	2M
		Q5. c Given $G(s) = \frac{40(s+2)}{s(s+1)(s+4)}$ and $H(s)=1$	
	Ans:	A5.c $40(S+2)$ $H(s)=1$	

	bloc x) M	k having transfer function G is added	To shift summing point before a block, another		
d)		ain on – off controller with neat of		4 M	
Ans:					
		Tem P. Header coil	Electric Supply	examp e	
e)	Com	pare open loop and closed loop s	Electric Supply	examp e 4 M	
e) Ans:	Com Sr. No	pare open loop and closed loop sy Open Loop Control System	ystem Close Loop Control System	e 4 M 1 marl for	
	Sr. No 1	pare open loop and closed loop sy Open Loop Control System It is simple and economical	ystem Close Loop Control System It is complex and costlier	e 4 M 1 marl for each	
	Sr. No	pare open loop and closed loop sy Open Loop Control System It is simple and economical It is easier to construct, as it requires less number of	ystem Close Loop Control System	e 4 M 1 marl for each point (Any 04	
	Sr. No 1	pare open loop and closed loop sy Open Loop Control System It is simple and economical It is easier to construct, as it requires less number of components	ystem Close Loop Control System It is complex and costlier It is not easy to construct, as it requires more number of components	e 4 M 1 marl for each point (Any 04	
	Sr. No 1 2	pare open loop and closed loop sy Open Loop Control System It is simple and economical It is easier to construct, as it requires less number of	ystem Close Loop Control System It is complex and costlier It is not easy to construct, as it requires	e 4 M 1 mar for each point (Any 0	
	Sr. No 1 2 3	pare open loop and closed loop sy Open Loop Control System It is simple and economical It is easier to construct, as it requires less number of components It consumes less power	ystem Close Loop Control System It is complex and costlier It is not easy to construct, as it requires more number of components It consumes more power	e 4 M 1 marl for each point (Any 04	
	Sr. No 1 2 3 4	pare open loop and closed loop sy Open Loop Control System It is simple and economical It is easier to construct, as it requires less number of components It consumes less power It is more stable It does not require feedback path	ystem Close Loop Control System It is complex and costlier It is not easy to construct, as it requires more number of components It consumes more power It is less stable	e 4 M 1 marl for each point (Any 04	
	Sr. No 1 2 3 4 5	pare open loop and closed loop sy Open Loop Control System It is simple and economical It is easier to construct, as it requires less number of components It consumes less power It is more stable It does not require feedback path element	ystem Close Loop Control System It is complex and costlier It is not easy to construct, as it requires more number of components It consumes more power It is less stable It requires feedback path element	e 4 M 1 marl for each point (Any 04	
	Sr. No 1 2 3 4 5 6	pare open loop and closed loop sy Open Loop Control System It is simple and economical It is easier to construct, as it requires less number of components It consumes less power It is more stable It does not require feedback path element It has poor accuracy It does not give automatic correction for external	ystem Vertices and costlier It is complex and costlier It is not easy to construct, as it requires more number of components It consumes more power It is less stable It requires feedback path element It has better accuracy It gives automatic correction for external	e 4 M 1 marl for	
	Sr. No 1 2 3 4 5 6 7	pare open loop and closed loop sy Open Loop Control System It is simple and economical It is easier to construct, as it requires less number of components It consumes less power It is more stable It does not require feedback path element It has poor accuracy It does not give automatic correction for external disturbances	ystem Vertice of the servery System Close Loop Control System It is complex and costlier It is not easy to construct, as it requires more number of components It consumes more power It is less stable It requires feedback path element It has better accuracy It gives automatic correction for external disturbances	e 4 M 1 marl for each point (Any 04	

	linearity is present	conditions	
11	It has slow response	It has fast response	
12	It has high bandwidth	It has low bandwidth	