

Subject Code:17536

Model Answer

Important Instructions to examiners:

1) The answers should be examined by keywords and not as word-to-word as given in the model answer scheme.

2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.

3) The language errors such as grammatical, spelling errors should not be given more Importance. (Not applicable for subject English and Communication Skills.)

4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.

5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.

6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.

7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No.	Question & its Answer	Remark	Total Marks
01 A)	Attempt any THREE of the following		12
a)	Define stability. Sketch the root locations in the s-plane for stable and unstable system.	04	
Ans.	Stability: The system is said to be stable if it produces bounded output for a bounded input. It is used to define usefulness of the system. The stability implies that the system performance should not change even if there are small changes in system input. Any control system must be stable. $\int lm(s) \int \omega$	02 marks stability	
	× × × × All roots are in the left half of the plane Stable System Unstable System • The system is said to be stable if poles of closed loop the system lies on left half of s-plane • The system is said to be unstable if poles closed loop of the	02 Marks Root Location on s-plane	

Subject Code:17536

		r	
	system lies on right half of s-plane		
	OR		
	• STABILITY : A linear time invariant system is said to be		
	stable if the system is excited by a bounded input, output is also		
	bounded and controllable. In the absence of the input, output		
	must tend to zero irrespective of the initial condition.		
	• UNSTABLE : A linear time invariant system is said to be unstable if for a bonded input it produces unbounded output. In		
	absence of the input, output may not return to zero it shows		
	certain output without input.		
b)	Give the classification of PLC. Explain modular PLC in brief.	04	
Ans.	Give the classification of 1 LC. Explain modular 1 LC in orier.	04	
AIIS.	CLASSIFICATION OF PLC		
	PLC can be classified as follows	02 Marks	
		Classification	
	1.According to structure of PLC		
	a. Integral type		
	b. Modular Type		
	2. Depending upon the no. of I/Os		
	a. Small(<100)		
	b. Medium(<10000)		
	c. Large(>10000)		
	3 Depending upon the $I/\Omega_{\rm S}$ supported		
	3. Depending upon the I/Os supported a. Digital		
	b. Analog		
	U. Analog		
	Modular PLC		
	• Modular PLC Modular PLC is a constituent part of the PLC, are		
	made of several separate modules, such as CPU module, I / O	02 Marks	
	modules, power modules (including some in the CPU module)		
	and a variety of functional modules.	explanation	
	• Modular PLC by the frame or the substrate and the various	_	
	modules.		
	• Module installed in the socket frame or substrate.		
	• Features The modular PLC is flexible configuration, the system		
	can choose different sizes according to needs, and easy to		
	assemble, easy expansion and maintenance.		
	• Large and medium-sized PLC generally use the modular		
	structure.		
		0.4	
c)	Define servo system. Draw the block diagram of DC Servo System.	04	
Ans.			

Subject Code:17536

	Definition: Servo system is defined as automatic feedback control system working on error signals giving the output as mechanical position, velocity or acceleration.	01 Mark Servo System definition
	Image: construction of the second s	03 Marks Diagram
	 The servo system consists of error detector, amplifier, motor as controller, load whose position is to be changed. DC servo system consists of potentiometer as a error detector, DC amplifier, DC motor, DC gear system and the DC load whose position is to be changed. (NOTE:Explanation is optional) 	
d) Ans.	Draw electronic PID controller. State its equation.	04 03 Marks Diagram

Subject Code:17536

	Equation $V = V_s + K_P *E + K_1 * \int_0^t E * dt + K_D * \frac{dE}{dt}$ Where: $V = \text{Control variable}$ $V_g = \text{Output Set point}$ $K_p = \text{Proportional gain}$ $E = \text{Error (SP-PV)}$ $K_I = \text{Integral gain}$ $K_D = \text{Derivative gain}$ $t = \text{Time}$	01 Mark Equation	
01 B)	Attempt any ONE of the following		06
a)	Using block diagram reduction technique, obtain T.F. from block diagram, $\overbrace{G_2}$ $\overbrace{G_1}$ $\overbrace{G_1}$ $\overbrace{H_1}$ $\overbrace{H_1}$	06	
Ans.	RUS to FAI - 8+ CUSD		
	1)Shifting take-off point of H1 before G1, we get,		
	RCS) + (X) FGT X CCS)	02 Marks	

Model Answer

Subject Code:17536

	• The significance of scan cycle in PLC is to test the program and make it error free by going through above four states i.e. self test, input scan, program scan and output scan.		
	Speed of execution: The speed at which PLC scans memory and executes the program is referred as a speed of execution. Higher CPU speeds provide faster performance that shortens task time.	02 Marks	
02	Attempt any TWO of the following		16
a)	Find Kp, Kv, Ka & steady state error for a system with open loop transfer function as $G(s)H(s) = \frac{10(s+2)(s+3)}{s(s+1)(s+4)(s+5)}$	08	
	Where $r(t) = 3 + t + \frac{t^2}{2}$		
Ans.	i)Positional error coefficient (K _p) is given by,		
	$K_{p} = \lim_{s \to 0} G(s). H(s)$		
	Assuming unity feedback system i.e. $H(s) = 1$, we will get		
	$K_{p} = \lim_{s \to 0} \frac{10(s+2)(s+3)}{s(s+1)(s+4)(s+5)}$	Kp- 02 Marks	
	$K_p = \infty$		
	ii)Velocity error coefficient (K_v) is given by, $K_v = \lim_{s \to 0} s.G(s).H(s)$		
	So, $K_v = \lim_{s \to 0} s \cdot \frac{10(s+2)(s+3)}{s(s+1)(s+4)(s+5)} = \lim_{s \to 0} \frac{10(s+2)(s+3)}{(s+1)(s+4)(s+5)}$		
	$K_v = \frac{60}{20} = 3$	Kv- 02 Marks	
	iii)Acceleration error coefficient (K _a) is given by,		
	$\mathbf{K}_{a} = \lim_{s \to 0} S^{2} \cdot G(s) \cdot H(s)$		
	Assuming unity feedback system i.e. $H(s) = 1$, we will get		

Subject Code:17536

	Γ	
	$K_{a} = \lim_{s \to 0} S^{2} \cdot \frac{10(s+2)(s+3)}{s(s+1)(s+4)(s+5)} = \lim_{s \to 0} S^{1} \cdot \frac{10(s+2)(s+3)}{(s+1)(s+4)(s+5)}$	Ka- 02 Marks
	i.e. $K_a = 0$ iv) Steady State Error is given as,	
	$\mathbf{e}_{ss} = \lim_{s \to 0} \frac{s \cdot R(s)}{1 + G(s) \cdot H(s)}$	
	Here R(s) = L(3+t+ $\frac{t^2}{2}$) = $\frac{3}{s} + \frac{1}{s^2} + \frac{1}{s^3}$ for unit step input, we get	ess -02 Marks
	$= \lim_{s \to 0} \frac{s(\frac{3}{s} + \frac{1}{s^2} + \frac{1}{s^3})}{1 + \frac{10(s+2)(s+3)}{s(s+1)(s+4)(s+5)}} =$	
	$\lim_{s \to 0} \frac{(3s^2 + s + 1)(s + 1)(s + 4)(s + 5)/s}{s(s+1)(s+4)(s+5) + 10(s^2 + 5s + 6)}$	
	$e_{ss} = \infty$	
b)	A unity feedback system is given	08
	$G(s) = \frac{16}{s(s+5)}$	
	If a step input is given	
	1) Rise Time 2) Peak Time 3) Maximum overshoot 4) Settling Time	
Ans.	Comparing above equation with standard equation, $C(s) = Wn^2$	
	$\frac{C(S)}{R(s)} = \frac{Wn}{s^2 + 2.\xi.Wn.s + Wn^2}$	
	We get,	
	$Wn^2 = 16$, So, $W_n = 4 \text{ rad /s}$	W _n -01 Mark
	2. ξ . $Wn = 5$ So, $\xi = 0.625$	ξ -01 Mark
	$W_d = W_n \sqrt{1 - \xi^2}$ So, $W_d = 3.12$ rad /s	W _d - 01 Mark

Subject Code:17536

	Ideally the above 4 listed parameters can be given as, i) Rise time is given by tr = $\frac{\pi - \beta}{Wd}$, where $\beta = \frac{\sqrt{1 - \xi^2}}{\xi}$	β -01 Mark
	$\beta = \frac{\sqrt{1-\xi^2}}{\xi} = \frac{0.78}{0.625} = 1.24$ $tr = \frac{\pi - \beta}{Wd} = \frac{3.14 - 1.24}{3.12} = \frac{1.9}{3.12} = 0.608 \text{ sec}$	Tr-01 Mark
	ii) Peak Time is given by $t_p = \frac{\pi}{Wd} = \frac{3.14}{3.12} = 1$ sec	Tp- 01 Mark
	iii) Max overshoot is given by Mp% = 100 x $e^{-\frac{\pi\xi}{\sqrt{1-\zeta^2}}}$	%Mp-01 Mark
	Mp = 100 x $e^{-\frac{\pi.\xi}{\sqrt{1-\xi^2}}}$ = 100 x $e^{-\frac{3.14 \times 0.625}{\sqrt{1-0.39}}}$	
	$Mp = 100 \text{ x}e^{-\frac{1.962}{0.781}} = 100 \text{ x}e^{-2.51}$	
	Mp= 8.12 % iv) Settling time is given by ts = $\frac{4}{\zeta . Wn} = \frac{4}{0.625x4} = 1.6$ sec	Ts- 01 Mark
c)	 ζ.Wn 0.625x4 Draw ladder diagram for ON-OFF of lamps for following conditions: i) START Push button switch ON green and red lamp & ii) STOP push button switch OFF green lamp first and after 20 seconds red lamp 	08
Ans.	II & I2 are start & stop push buttons. Q1 & Q2 are Green & Red Lamps T1 is On Delay Timer which turns on after 20 seconds after getting I2 pulse	
	i) start operation	04 mark

Model Answer

Subject Code:17536

Ans.	Applying KVL to input and output loop we get,	
	$V_{i}(t) = L \frac{di(t)}{dt} + R \cdot i(t) \qquad \dots (1)$	
	$V_{o}(t) = R \cdot i(t)$ (2)	
	Taking Laplace transform of Equations (1) and (2)	
	$V_{i}(s) = sL \cdot I(s) + R \cdot I(s)$	02 marks
	$V_i(s) = [sL + R] I \cdot (s)$ (3)	
	$V_{o}(s) = R \cdot I(s)$	
	$\therefore \qquad I(s) = \frac{V_o(s)}{R} \qquad \dots (4)$	
	Substituting value of I (s) in Equation (3) we get,	
	$V_i(s) = [sL + R] \frac{V_o(s)}{R}$	
	$\therefore \qquad V_{i}(s) = \left[\frac{sL}{R} + 1\right] V_{o}(s)$	01 mark
	$ \therefore \qquad \frac{V_{o}(s)}{V_{i}(s)} = G(s) = \frac{1}{\left[1 + \frac{sL}{R}\right]} $	
	Transfer function of given circuit is, $G(s) \frac{V_o(s)}{V_i(s)} = \frac{R}{R+sL}$	01 mark
b)	List any four input and four output devices used with PLC.	04
Ans.	¥ A A	02 marks for
	Input device:	input
	1. Push button.	devices(Any
	2. Temperature switches.	four)
	3. Limit switches.	
	4. Pressure switches.	
	 Level Switches. Proximity Switches. 	
	Output devices:	
	1. Motor.	
	2. Display.	02 marks for
	3. Heater coil.	output
1 1	4. Relay.	devices(Any

Subject Code:17536

<u>Model Answer</u>

	 Lamp. Buzzer. 	four)
	(Note: any other relevant I/O device can be considered.)	
c)	Explain the significance of the Laplace transform in control system.	04
Ans.	 Significance of Laplace Transform- Laplace transform convert higher order integral differential equation into simple algebraic form. Laplace transform converts the differential equation into an algebraic equation in s, which may be real or complex. Analysis of each component in the system is possible. It is possible to manipulate the algebraic equation by simple algebraic rules to obtain the solution. Initial conditions are automatically incorporated. Both complementary and particular solution can be obtained in one operation, thus gives complete solution. Allows the use of graphical techniques, for predicting the system performance without actual solving of system differential equations. Laplace transform convert time domain to frequency domain (s-plane). 	04 marks for significance (Any four points)
d)	For a system with the characteristics equation $S^4 + 6S^3 + 21S^2 + 36S + 20 = 0$, Find the stability of the system with Rouths Stability criterion.	04
Ans.		03 marks for Routh array

Model Answer

Subject Code:17536

	DI C	T	1
	PLC. The organization of the data and information in the memory is called memory map There are two types of memory used in PLC: Volatile and nonvolatile memory, in nonvolatile memories are generally used for storing user program so that the programs can return during power failure.		
	OR		
	 Memory is classified into two types: 1. Storage memory: in storage memory store information on the status of i/o devices, pre assigned value of internal relay status and values for mathematical functions, this is called a data table or register table and stores information in two types: status and numbers,. Status is stored in the form of ON or OFF and nos are stored in the form of 1"s and 0"s is unique bit of memory. User memory: in this memory, ladder logic programming is carried out and stored. User memory consists of program files or register table and holds the complete operation. 		
04 A)	Attempt any THREE of the following		12
a)	State the principle of ON-OFF control action. Write its standard equation & define neutral zone.	04	
Ans.	 This is one of the most common & simplest mode of controller. It has to control two positions of control element, either on or off hence this mode is called as ON OFF controller, it is the cheapest controller & often used if its limitations are well within the tolerance. This controller mode has two possible output states namely 0 % & 100%. Mathematically this can be expressed as 	02 marks for principle	
	$P(t) = \begin{array}{l} 0\% (OFF) & \text{for } e_p < 0\\ 100\% (ON) & \text{for } e_p > 0 \end{array}$	01 mark for equation	
	 Where p (t) – Controlled output ep - Error based on % of span Hence if the error rises above a certain critical value, the output changes from 0% to 100%. If the error decreases below certain critical value, the output falls from 100% to 0%. 		

Ne	eutral Zone-	
Controller output	(On) V_0 (Off) V_1 (Off) V_1 (Off) V_1 (Off) V_1 (Off) V_1 (Off) V_1 (Off) V_1 (Constrained by the second secon	01 mark for neutral zone definition
	 In practical implementation of the two-position controller, there is an overlap as e(t) increases through zero or decreases through zero. In this span, no change in the controller output occurs. Until an increasing error changes by Δe(t) above zero, the controller output will not change state. In decreasing, it must fall Δe(t) below zero before the controller changes to 0%. The range 2Δe(t) is referred to as neutral zone or differential gap. Two-position controllers are purposely designed with neutral zone to prevent excessive cycling. The existence of such a neutral zone is an example of desirable hysteresis in a system. 	
	raw typical wiring details & four specifications of AC output odule of PLC.	04
Ans. The mo cor dia PL ¹ It c the stat mo pro	the below figure show the basic field wiring for digital 120V AC output bodule. The Wiring diagrams show how wires of output devices are nnected to screw terminals of PLC modules. As per the wiring agram, User has to connect the wires of input and output devices to C or Module. can be thought of as a simple switch power can be provided to control e output device. During normal operation, processor sends the output the that was determined by logic diagram of output module. The odule then switches the power to the field devices. A fuse is normally povided in that the output circuit of the module to prevent excessive rrent from damaging the wiring to the field devices.	02 marks for wiring details

Subject Code:17536

	terminals	Neutral 120V ac Input Heater 1 Heater 2 Geed valve 1 Pump starter Neutral Poutput module wiring diagram	02 marks for
	Item	24V DC Output	specification
	Rated Voltage	24V DC	(Any four)
	Voltage Range	20.4 to 28.8 V DC	1
	Max. Surge Current	8 A for 100 ms	
	Rated current per point	0.75 A	
	Rated current per common		
	On state contact resistance		
:) Ans.	Explain the need of PLC in Need of PLC in automation	automation.	04
	 human logic To reduce complex ci To eliminate the hig controlled systems. 	ciency from machine and control rcuitry of entire system gh costs associated with inflexit Operators (Dangerous Environ pilities) ion d product.	ble, relay-
1)	 Improved safety in we Fast and Easily proprogramming language 	orking conditions. grammed and have an easily u	
Ans.			

Subject Code:17536

	 Ramp in Parabol 	out signal nput signal ic input signal e input signal		(any four Laplace transform each)	
	Standard test input	Laplace	Waveforms		
	Step input(position function) r(t)	Representation L.T of r(t) =R(s)=A/s			
	Rampinput(Velocity function) r(t)	L.T of $r(t) = R(s)=A/s^2$	skopu = A		
	Parabolic input(Acceleration r(t) function)	L.T of $r(t) = R(s) = A/s^3$	Giope = At		
	Impulse input r(t)	L.T of $r(t) = R(s)= 1$ if A=1			
04	Attempt any ONE of	the following	<u>+</u> 1		06
B) a)	Draw the block diag	gram of discrete inpu	t module & explain ea	ich 06	
A	block.				
Ans.	Input Bridge Signal fill	03 marks for diagram			
		ich is passed through fi	incoming AC signal to lter and other logic in or		
	Threshold detector:				

Subject Code:17536

	It detects if monitoring signal has reached or exceeded a predetermined value. A valid ON sate will be between 80- 132V ac. The upper voltage limit for a valid OFF state is below 20V. The voltage between 20V and 80V is called undefined Zone.		
	80 Volts Input state undefined zone 0 Volts		
	 Isolation: It is made up of an optical isolator which separate high voltage from CPU"s low voltage control logic. Logic section: 		
b)	It passes the input signal to the module's input address LED and the CPU. Draw the labeled block diagram of process control system and explain each block.	06	
Ans.	$\begin{array}{c} R(t) \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	03 marks for diagram	
	 Explanation - Process control system consists of process or plant, sensor, error detector, automatic Controller, actuator or control element. 1) Process or plant- process means some manufacturing sequence. It has one variable or multivariable output. Plant or process is an important element of process control system in which variable of process is to be controlled. 2) Sensor measuring elements – It is the device that converts the output variable into another suitable variable which can acceptable by error detector Sensor is present in f/b path of close loop system. 3) Error detector – Error detector is he subtracting summing points whose output is an error signal i.e. e(t)=r(t) b(t) to controller for comparison & 	03 marks for explanation	

Subject Code:17536

Ans.	Depending on the time delay and operation, there are two types of timers	04 marks for brief	
	(ii) NOR gate logic		
	(i) OR gate&		
	diagram to verify		
a)	List & explain the timer instruction of PLC. Draw the ladder	08	
05	Attempt any TWO of the following		16
	5) Process: Output of control element is given to the process which changes the process variable. Output of this block is denoted by "u".		
	Output of control element is denoted by "u".		
	4) Final control element: It accepts the input from the controller which is then transformed into some proportional action performed by the process.		
	final control element. Controller output is denoted by "p".		
	3) Controller: It generates the correct signal which is then applied to the		
	variable "p". The output of the error detector is given by $e= r-b$. "e" is applied to the controller.		
	2) Error detector: It receives two inputs: set point "r" and controlled		
	variable b.		
	1) Measuring element: It measures or senses the actual value of controlled variable "c" and converts it into proportional feedback		
	blocks:-		
	Explanation : The block diagram of process control system consists of the following		
	b		
	Measurement		
	point		
	Summing		
	r Controller Process		
	e = r - b		
	P Control element		
	OR		
	to the plant according to the control signal getting from controller.		
	or valve, a hydraulic motor or an electric motor, which produces an input		
	detector and amplifier.5) Actuator or control element – Actuator is nothing but pneumatic motor		
	sufficiently high level .i.e. means automatic controller comprises an error		
	which is usually at a very low power level, and amplifies it to a		

Subject Code:17536

\triangleright		(i) ON delay timer			Explanation					
		(ii) OFF delay time	r							
_	on (i) ON dela	ay timer action counts tim	a interval when	anditia	n 0					
	ns en									
	accumulates	d reaches the preset	value.							
		truction to turn an	-							
		n for a preset time								
	-	ount time base inter	rvals when the rung	g conditio	ns					
	become true	ð.								
3) The accum	ulated value is rese	t when the rung c	ondition g	go					
	alse regardless		0	·						
	the timer ha	a timed out								
	the timer na	is timed out.								
nstructio	on parameter	- Timer T _{ON} is 3 wo	ord elements.							
	-									
		14 13 12	11 10 9 8 7 6 5 4							
	15	3210								
word				16						
0	TT\EN	TT\EN DN		bit						
word	preset			16						
1	value			bit						
word	Accumulat			16 hit						
2	or value			bit						
status bit	explanation-	-								
;) '	Timor dono hi	t (hit12) DN is set	when the accumula	tod voluo	ic					
		t (bit13)-DN is set ater than the prese								
-	ndition becom	_	, and . It is reset		"°					
	ii) Timer enable bit (bit 14)-EN is set when rung condition are									
ii)			true. It is reset when rung condition become false.							
ii)			-							
ii)			-							
ii) tru	e. It is reset w		become false.							
ii) tru iii)	e. It is reset w) Timer timin	hen rung condition	become false. set when rung con	nditions a	re					
ii) tru iii) tru	e. It is reset w Timer timin e & the accur	when rung condition g bit (bit15)-TT is	become false. set when rung con ess than the preset	nditions a value. It	re is					
ii) tru iii) tru	e. It is reset w Timer timin & the accus set when the r	when rung condition g bit (bit15)-TT is mulated value is l	become false. set when rung con ess than the preset	nditions a value. It	re is					
ii) tru iii) tru res	e. It is reset w Timer timin & the accus set when the r	when rung condition g bit (bit15)-TT is mulated value is l	become false. set when rung con ess than the preset	nditions a value. It	re is					

Subject Code:17536

Descrip	tion (ii) OFF de	elay timer				
,	nstruction cour g are produces alue.	U				
off for a instructi	C _{off} instruction t a preset timer h on begins to co alse to transition	The Toff				
accumul accumul whether	long as rung co ated value ea ated value is re the timer has ti tion parameter	value.The				
	•					
	15	14	13 12 11	10 9 8 7 6 5 4 3		
word	15	210			16	
	TT\EN	TT\EN	DN		bit	
word			211		16	
1	preset value				bit	
word	Accumulato				16	
2	r value				bit	
i c i t f f	it explanation) Timer done bi s equal to or gr condition are tru i) Timer enable rue. It is reset w ii) Timer timing alse & the accu eset when the ru eset.					
	ate ladder diag	Tram				
u, on g	ut induct ally					
y = A +	- B					

Subject

Subject Code:17536	Model Answer	
	Input A output	04 marks ladder
b)NOR gate ladder di . $y = \overline{A} \cdot \overline{A}$	$\overline{A} = \overline{A} \cdot \overline{B}$	diagram
	A B Y	

	A B .Y		
b)	Define the terms (i) Poles,(ii)Zeros,(iii) Order of system&(iv) Characteristics equation. Also for a given transfer function	08	
	$\frac{C(s)}{R(s)} = \frac{10(s+8)}{s(s+4)(s^2+5s+6)}$		
	$\frac{1}{R(s)} = \frac{1}{s(s+4)(s^2+5s+6)}$		
	Find(i) Poles,(ii)Zeros,(iii) Plot them on 's'plane		
Ans.	I. Poles-It is the value of polynomial which makes the transfer function infinite,after putting the value of 's' in denominator of transfer function.	01 mark for each definition	
	II. Zeros- It is the value of polynomial which makes the transfer function zero,after putting the value of s' innumerator of transfer function.		
	III. Order of system-It is the highest power of 's'in characteristics equation of transfer function.		
	IV. Characteristic eqn-The equation which is obtained by equating the denominator of a transfer function equal to zero, whose roots are the poles of a transfer function is called characteristic equation of that system.		
	$F(s) = b_0 s^n + b_1 s^{n-1} + b_2 s^{n-2} + b_3 s^{n-3} + \dots + b_n = 0.$		
	F(s) is called characteristics equation.		
	Given transfer function is		

$\frac{C(s)}{R(s)} = \frac{10(s+8)}{s(s+4)(s^2+5s+6)}$ i) Poles of T.F Characteristics equation is $F(s) = s(s+4)(s^2+5s+6)$ Equating $F(s)$ with zero. $s(s+4)(s^2+5s+6) = 0$ s(s+4)(s+3)(s+2) = 0 Hence poles are 0,-4,-3,-2 ii) Zeros of T.F Numerator of T.F is $10(s+8) = 0$ Hence zero is -8. iii) Pole-Zero plot	01 mark for each pole & zero calculation
i) Poles of T.F Characteristics equation is $F(s) = s(s+4)(s^2+5s+6)$ Equating $F(s)$ with zero. $s(s+4)(s^2+5s+6) = 0$ s(s+4)(s+3)(s+2) = 0 Hence poles are 0,-4,-3,-2 ii) Zeros of T.F Numerator of T.F is $10(s+8) = 0$ Hence zero is -8.	each pole & zero
Equating $F(s)$ with zero. $s(s + 4)(s^2 + 5s + 6) = 0$ s(s + 4)(s + 3)(s + 2) = 0 Hence poles are 0,-4,-3,-2 ii) Zeros of T.F Numerator of T.F is $10(s + 8) = 0$ Hence zero is -8.	each pole & zero
$s(s + 4)(s^{2} + 5s + 6) = 0$ s(s + 4)(s + 3)(s + 2) = 0 Hence poles are 0,-4,-3,-2 ii) Zeros of T.F Numerator of T.F is $10(s + 8) = 0$ Hence zero is -8.	each pole & zero
s(s + 4)(s + 3)(s + 2) = 0 Hence poles are 0,-4,-3,-2 ii) Zeros of T.F Numerator of T.F is $10(s + 8) = 0$ Hence zero is -8.	each pole & zero
Hence poles are 0,-4,-3,-2 ii) Zeros of T.F Numerator of T.F is $10(s + 8) = 0$ Hence zero is -8.	zero
ii) Zeros of T.F Numerator of T.F is $10(s + 8) = 0$ Hence zero is -8.	calculation
Numerator of T.F is $10(s + 8) = 0$ Hence zero is -8.	
Hence zero is -8.	
iii) Pole-Zero plot	
Imaginary axis S-plane	
$\leftarrow 0 \qquad XX \qquad X \qquad \rightarrow$ - 8 -7 -6 -5 -4 -3 -2 -1 0 Real axis (σ)	02 marks for pole-zero plot
	08
$G(s)H(s) = \frac{k}{s(s+2)(s+4)(s+8)}$ Where k is positive. Determine the range of values of k for the system	
(i) characteristics equation of given T.F is given as $F(s) = 1 + G(s)H(s) = 1 + \frac{k}{s(s+2)(s+4)(s+8)}$	01 mark characteristics equation
	$G(s)H(s) = \frac{k}{s(s+2)(s+4)(s+8)}$ Where k is positive. Determine the range of values of k for the system to be stable.

	Hence $F(s) = s(s)$	(s+2)(s+4)(s+4)	3) + k			
	F(s) = s(s+2)	(s+4)(s+8) + k =				
	F(s)	$= s^4 + 14s^3 + 56s$				
	(ii) Range of k f					
	From above of are 14,64					
	Routh's array is	as follows				
	S^4	1	56	k	05 marks for construction of Routh array	
	S^3	14	64	0	Kouth array	
	S^2	51.42	k	0		
	S^1	$\frac{(51.42X64) - 14k}{51.42}$	0			
	\mathbf{S}^{0}	К				
	be positive Hence element K > 0 From row S ¹ ele (51.42X64) - 1 51.42 32.90-14k > 0 32.90>14k K<235.06 Hence to make s 0 < k < 235.06	$\frac{14k}{2} > 0$ system to be stable, r	ange of I	umn of Routh's array should k is	02 marks for finding range of K	
06		OUR of the following		Inclify	04	16
a)	_	ol action is not used		-	04	
Ans.	(i) It can	why Derivative mod 't not give any outpuneffective for slowly	it for zer		04 marks for relevant	

Subject Code:17536

	1:0	
	drift.	explanation
	(iii) It amplifies the noise signal & causes saturation effect on the	
	system (iv)It does not eliminate the steady state error(offset)	
b)	(iv)It does not eliminate the steady state error(offset) Define:	04
D)	i Linear & Nonlinear system.	04
	ii Time varying& Time in-varying system.	
Ans.	(i)Linear & Nonlinear system.	01 mark each
		definition
	Linear system is defined as a system which satisfies the following properties:	
	1.Additivity property $-f(x + y) = f(x) + f(y)$	
	2Homogenity property- $f(\alpha, x) = \alpha \cdot f(x)$	
	The above equations constitute a principle of superposition.	
	Nonlinear system- It is the system which does not follow the principle of supeposition.	
	(ii)Time varying &Time in-varying system	
	Time varying system –A time variant system is defined as a control system in which parameters of the system are varying with time that means as time passes parameters varies.	
	Input are variable output	
	Time in-varying system-Atime in - variant system is defined as a	
	control system in which parameters of the system does not vary with time.	
	Parameters of system are constant Input output	
c)	List two instructions each of the following:	04
,	i) Relay instruction.	
	ii) Data handling instructions.	
	iii) Logical instructions	
	iv) Comparision instruction	

Subject Code:17536

Ans.	i) Relay instructions	01 mark each	
	a) Normally open contact(NO contact) -		
	b)Normally close contact(NC contact) -		
	c)Set instruction (S): — (S) —		
	 d)Contact coil or outputcoil-()		
	iii) Logical instruction		
	 a) AND-perform logical AND operation between two operands. b) OR- perform logical OR operation between two operands. c) XOR-perform the logical EX-OR operation between two operands. d) NOT- It has single source and perform logical NOT operation and store result in destination memory. e) 		
	iv)Comparison instruction:		
	a)EQU(value, value)-equal b)NEQ(value, value)-not equal c)LES(value, value)-less than d)LEQ(value, value)-less than or equal		
d)	Draw electronic PD-controller. state its equation. Explain PD controller in brief.	04	
Ans.	1)The combination of proportional plus derivative mode gives PD controller.	02 marks for diagram	
	2) Diagram of PD controller is given as		

Subject Code:17536

