

Subject Code: 17536

Model Answer

Important Instructions to examiners:

1) The answers should be examined by keywords and not as word-to-word as given in the model answer scheme.

2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.

3) The language errors such as grammatical, spelling errors should not be given more Importance. (Not applicable for subject English and Communication Skills.)

4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.

5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.

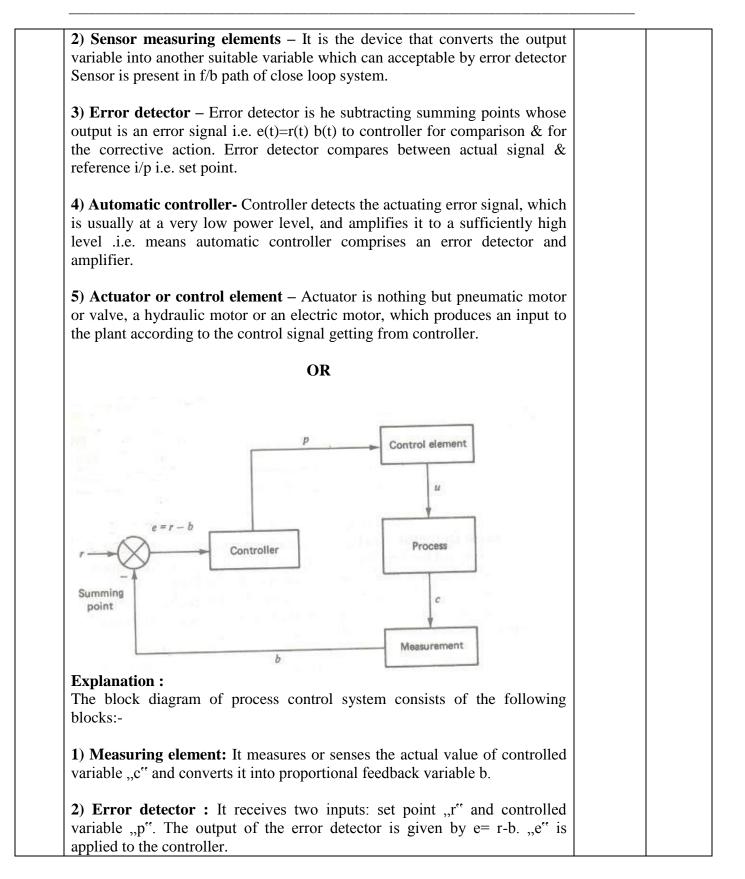
6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.

7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No.	Question & its A	nswer				Remark	Total Marks
01A)	Attempt Any TH	IREE					12
a)	Consider a syste	m with chara	acteristics equat + 10 = 0. Deter	tion mine stab	ility using Routh's		04
Ans		$S^{5} + 2.S$	coefficient from 4 + 2.S ³ + 4.S ² + ve characteristic	- 11.S + 10	= 0.		
		1 2 0 ∞	2 4 6 10	11 10 0	special case	1mark	
	S ⁰ Substitute a smal in a row. Comple change by taking						
	S ⁵	1	2	11			
	S^4	2	4	10		1 Mark	

Μ	odel	Answe	er
_			

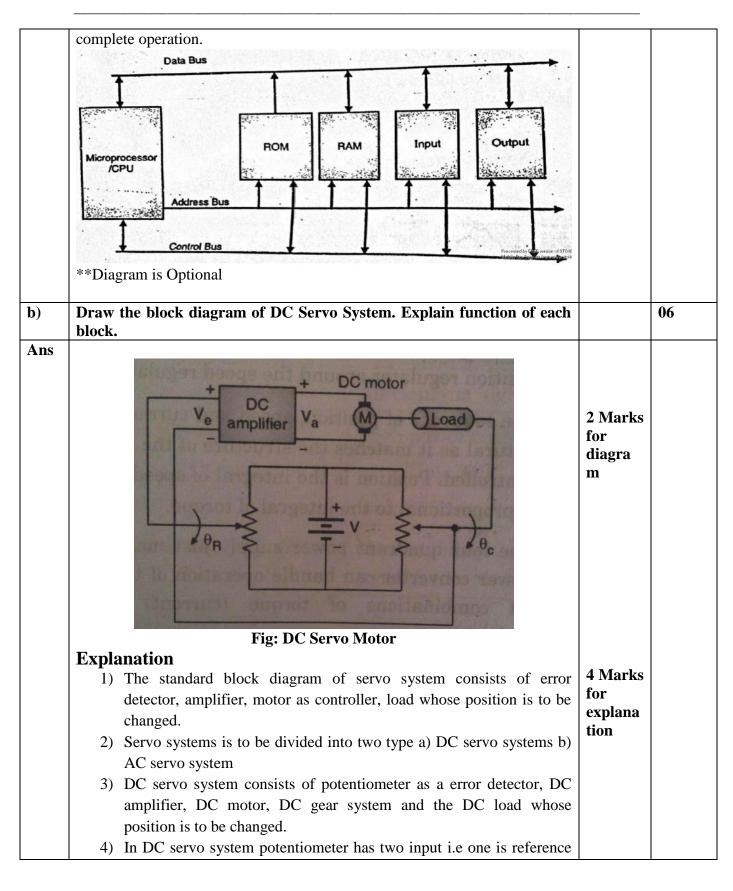
	1					
	S^3	3	6	0		
	S^2	4E–12 / E	10	0		
	\mathbf{S}^1	$\frac{(24E-72 - 10E^2)}{4E-12}$	0	0		
	S^0 To examine sign char	10 nge	0	0		
	lim 4E− 12					
	lim(248-72					
	So, Final Array is					
	S ⁵	1	2	11	1Mark	
	\mathbf{S}^4	2	4	10		
	S^3	3	6	0		
	\mathbf{S}^2	∞	10	0		
	\mathbf{S}^1	6	0	0		
	S ⁰	10	0	0		
	 Routh's stability criteria states that the elements of 1st column of Routh's array should not have any sign change for the system to be stable. The number of sign changes in the 1st column indicates the number of Poles on RHS which makes the system unstable. Here, No sign changes in the 1st column indicate system is stable. (Note:- Alternative method of Rouths Array by replacing S with 1/Z in the original equation also can be considered n .) 					
b)	List any four advan	tages of PLC				04
Ans	 Reduce human efforts Maximum efficiency through machine and logic is controlled by human Higher productivity 					
	Efficient uses	ity of end product of energy and rav high costs assoc	v material	nflexible, relay-controlled	1 mark each point	



Subject Code: 17536

	•	Improved safety in working cond	ditions.		
	•	Easily programmed and have	an easily understood programming		
c)	Comp		04		
Ans					
	No.	Open Loop Control System	Close Loop Control System		
	1	It is simple and economical	It is complex and costlier		
	2	It is easier to construct, as it	•	1 mark	
		requires less number of	1	each	
		components	components	point	
	3	It consumes less power	It consumes more power		
	4	It is more stable	Lit is less stable		
	5	It does not require feedback			
		path element	element		
	6	It has poor accuracy	It has better accuracy		
	7	It does not give automatic	0		
		correction for external	for external disturbances		
		disturbances			
	8	It is more sensitive to noise	It is less sensitive to noise		
	9	It is dependent on operating	It is not dependent on		
		condition	operating conditions		
	10	Its operation is degraded if			
		non linearity are present	independent on conditions		
	11	It has slow response	It has fast response		
	12	It has high bandwidth	It has low bandwidth		
l)	Draw	block diagram of Process Con	ntrol System. Explain functions of		04
	each b	olock.			
Ans	Autom	2 Marks for diagra m			
	error d	letector, automatic Controller, act	ome manufacturing sequence. It has	2 Marks	
			ant or process is an important element able of process is to be controlled.	for explana tion	

Subject Code: 17536

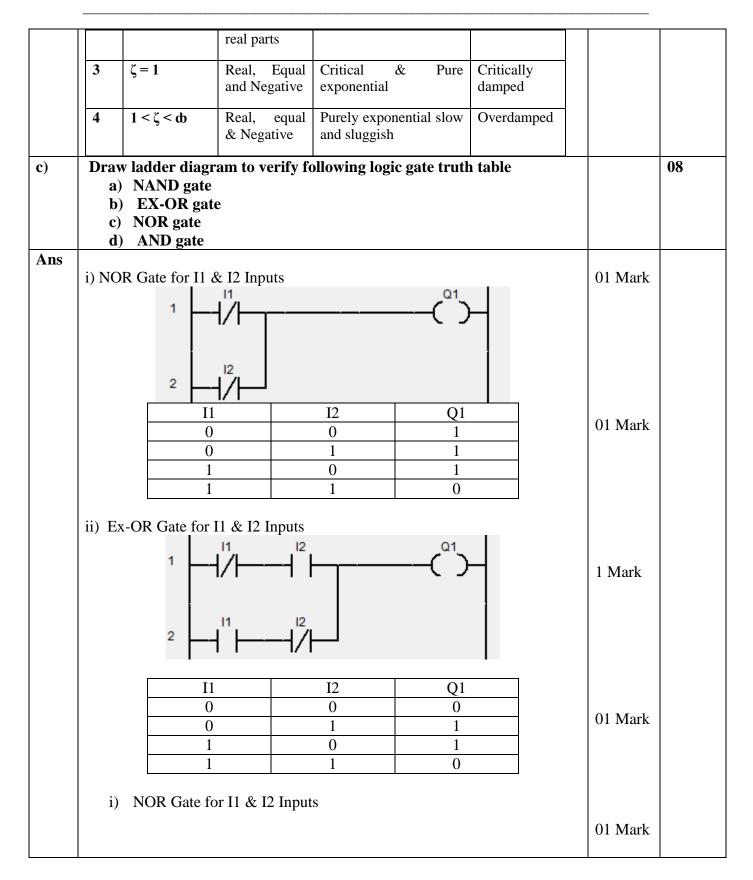


Subject Code: 17536

		-	
	3) Controller: It generates the correct signal which is then applied to the final control element. Controller output is denoted by " p".		
	4) Final control element: It accepts the input from the controller which is then transformed into some proportional action performed by the process. Output of control element is denoted by ",u".		
	5) Process: Output of control element is given to the process which changes the process variable. Output of this block is denoted by "u".		
Q1 B)	Attempt Any One	06	-)
a)	Explain the memory organization of PLC	06)
Ans	Different types of memory that are generally used in PLC s are as follows: 1. RAM: 2. ROM: A.)EPROM B.)EEPROM In PLC program instructions are stored in the memory. An internal communication high way also known as a bus system, carries information to and fro from the CPU, Memory and I/O units under the control of CPU Memory unit for storage of program.		
	The user ladder logic program, is in the memory of PLC. The main program and other programs are necessary for operation of PLC. The organization of the data and information in the memory is called memory map		
	There are two types of memory used in PLC: Volatile and non volatile memory , in non volatile memories are generally used for storing user program so that the programs can return during power failure.		
	OR		
	 Memory is classified into two types: 1. Storage memory: in storage memory store information on the status of i/o devices, pre assigned value of internal relay status and values for mathematical functions, this is called a data table or register table and stores information in two types: status and numbers,. Status is stored in the form of ON or OFF and nos are stored in the form of 1"s and 0"s is unique bit of memory. User memory: in this memory, ladder logic programming is carried out and stored. User memory consists of program files or register table and holds the 		

Subject Code: 17536

		[1
	input and another is actual load position. Potentiometer finds the		
	error between two position. The error between two position is given		
	to DC amplifier which amplify the error. Output of DC amplifier is		
	given to DC motor &finally Dc motor change the position of DC		
	load. In this way servo system is used to change the load position		
	with help of motor & error detector.		
Q2	Attempt any TWO		16
a)	For a unity feedback system having open loop transfer function		08
	$G(s) = \frac{K(s+2)}{S(s^3+7s^2+12s)}.$		
	Determine :		
	i) type of system		
	ii) error constant Kp, Kv and Ka		
	iii) steady state error for unit parabolic input		
Ans	1) Comparing the equation in stanadard form:		
	K(1+T1s)+(1+T2s)		
	$G(s)H(s) = \frac{K(1+T1s) + (1+T2s)}{S^{j}(1+Tas)(1+Tbs)} \dots$	2 Mark	
	- (- · ·)		
	Where j is type of system		
	$G(s).H(s) = \frac{K(s+2)}{s^2(s^2+7s^1+12)}H(s) = 1$		
	So, This is type – 2 system.		
	2) $K_p = \lim_{s \to 0} G(s) \cdot H(s)$	1Mark	
	$K_{p} = \lim_{s \to 0} G(s) = \lim_{s \to 0} \frac{K(s+2)}{s^{2}(s^{2}+7s^{4}+12)} = \infty$		
	3) $K_v = \lim_{s \to 0} s. G(s). H(s)$	1Mark	
	$K_{v} = \lim_{s \to 0} s. G(s) = \frac{K(s+2)}{s^{1}(s^{2}+7s^{1}+12)} = \infty$		
	4) $K_a = \lim_{s \to 0} S^2 . G(s) . H(s)$	1 Mark	
	$K_{a} = \lim_{s \to 0} S^{2} \cdot G(s) = \lim_{s \to 0} \frac{K(S+2)}{(S^{2}+7S^{1}+12)} = \frac{K}{6}$		
	5) Steady state error is given by		



Subject Code: 17536

	ess	$(t) = \lim_{s \to 0} \frac{1}{s}$	$\rightarrow 0 \frac{s.R}{1+s.G(s)}$	$\frac{(s)}{(s).H(s)}$ Here	H(S)=1	1 Mark	
	$R(s) = 1 / S^3$ for unit parabolic input						
	So $e_{ss}(t) = \text{Lim}_{s \to 0} \frac{1/S^2}{1 + \frac{K(s+2)}{s^1(s^2 + 7s^1 + 12)}}$						
	After $e_{ss}(t)$	r solving equ = Lim _{s->0} s²	ation we get, $(s^2 + 7s^1 + 12)$ $(s^2 + 7s^1 + 12) + 12$	$\frac{1}{K(S+2)} = \frac{6}{K}$		2 Mark	
b)	Drav		onse of second o	order system. Explain effo	ect of damping on		08
Ans	S Under damped Limits of system permissible dynamic error					02 mark for diagram	
	 Damping : i) Damping is an influence within or upon an oscillatory system that has the effect of reducing, restricting or preventing its oscillations. ii) The damping ratio is a dimensionless measure describing how oscillations in a system decay after a disturbance. iii) The damping ratio is generally denoted by zeta (ζ) iv) The damping ratio is a measure of describing how rapidly the oscillations decay from one bounce to the next. Effect of damping in response of 2nd order control system: 						
	No	Range of ζ	Type of close loop poles	Nature of response	System Classificatio n	04 mark	
	1	$\zeta = 0$	Purely imaginary	Oscillations with constant amplitude & frequency	Undamped	for response on system	
	2	0 < ζ < 1	Complex Conjugates with negative	Damped Oscillations	Underdampe d		

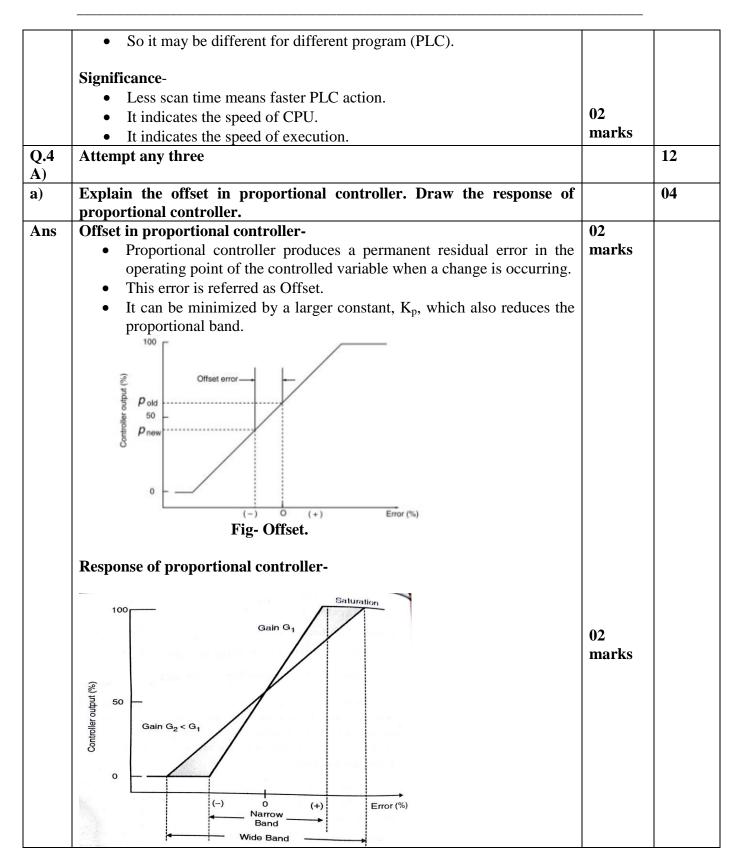
Subject Code: 17536

Subject Code: 17536

	1 1 1 1 0 0 0 1 1 1 ii) AND Gate for I1 & I2 Ir	I2 Q1 I2 Q1 0 1 1 0 0 0 1 0 0 0 1 0 0 0 1 0	01 Mark 01 Mark	
Q. 3 a)	1 1 1 1 0 0 0 1 1 1 Note: Any relevant ladder logi Attempt any four Compare Linear and non-line		01 Mark	<u>16</u> 04
Ans	Linear System	Non-Linear System	1 Mark	
	Obeysuperpositiontheorem/principle.Can be analyzed by standardtest input signalDo not exhibit limit cyclesDo not exhibit limit cyclesDo not exhibit Hysteresis/jump resonance.Stability depends only onroot locationCan be analyzed by Laplace,Fourier, Z transforma patentiameter	Do not obey superposion theorem/principle. Cannot be analyzed by standard test input signal exhibit limit cycles Exhibit Hysteresis/ jump resonance. Stability depends only on root location, initial condition and type of input. Cannot be analyzed by these methods.	for each point	
b)	theorem/principle.Can be analyzed by standard test input signalDo not exhibit limit cyclesDo not exhibit Hysteresis/ jump resonance.Stability depends only on root locationCan be analyzed by Laplace,	theorem/principle. Cannot be analyzed by standard test input signal exhibit limit cycles Exhibit Hysteresis/ jump resonance. Stability depends only on root location, initial condition and type of input. Cannot be analyzed by these methods. e.g Logarithmic amplifier	for each	04

Subject Code: 17536

	 high or low, true or false or zero or one. This module is connecting the PLC to the output field devices. Output devices used with PLC are Motor, display, solenoid, heater, lamps, relays, buzzer etc. Output module also performs the four important functions. Signal conditioning Indication Termination. 	tion	
	Output status indicator Digital signal from processor Fig- Output module of PLC	02 for diagra m	
c)	What is Laplace transform? Explain the significance of Laplace transform in control system.		04
Ans	Laplace Transform- The Laplace transform is defined in the following way. Let $f(t)$ be defined for $t \ge 0$. Then the Laplace transform of f , which is denoted by $\mathcal{L}[f(t)]$ or by $F(s)$, is defined by the following equation $\mathcal{L}[f(t)] = F(s) = \lim_{T \to \infty} \int_0^T f(t)e^{-st}dt = \int_0^\infty f(t)e^{-st}dt$	02 marks for definitio n	
	 Significance- Laplace transform converts the integro differential equation into simple algebraic equation in s, which may be real or complex. Analysis of each component in the system is possible. It is possible to manipulate the algebraic equation by simple algebraic rules to obtain the solution. Initial conditions are automatically incorporated. Both complementary and particular solution can be obtained in one operation, thus gives complete solution. Allows the use of graphical techniques, for predicting the system performance without actual solving of system differential equations. 	02 marks for significa nce	
d)	Define: i. Stability ii. Relative stability		04
Ans	Stability-	02	



Subject Code: 17536

	• The system is said to be stable if it produces		
	bounded output for a bounded input.		
	• It is used to define usefulness of the system.		
	• The stability implies that the system performance		
	should not change even if there is small change in		
	system input. Any control system must be stable.		
	• The system is said to be stable if poles of closed		
	loop TF of the system lies in left half of s-plane		
	• The system is said to be unstable if poles closed		
	loop TF of the system lies in right half of s-plane		
	Relative stability-		
	• It is a quantitative measure of how fast the transient die out in the	02	
	system.	marks	
	• Relative stability may be measured by relative settling times of each root or pair of roots.		
	 The settling time of a pair of complex conjugate poles is inversely 		
	proportional to the real part of the root.	(only	
	 As the root moves further away from the imaginary axis the relative 	suitable	
	stability of the system improves.	explana	
	jø	tion)	
	-α ←		
	s - plane		
	Relative stability		
	improves as one _j_m		
	moves away from		
	imaginary axis on half of s - plane		
	Relative stability improvement area.		
e)	Define the scan time of PLC. Explain the significance of scan time.		04
Ans	Scan time-	02	
	• The time taken by PLC to get from one I/O update to the next is	marks	
	known as PLC scan time.		
	• It is typically measured in milliseconds (ms).		
	• PLC scan time depends on number of inputs,		
	outputs and program size (total memory used,).		

Subject Code: 17536

Subject Code: 17536

Item Typical Value for 120/230 V AC each point Rated voltage and current 120V at 64mA 230V at 9 mA pack point Specified operational voltage 264 V AC pack pack pack Signal delay 15.0 ms ON to OFF or OFF to ON Po V AC at 2.5 mA pack pack <th>List any four specifications of</th> <th>AC input module.</th> <th></th> <th></th> <th>0</th>	List any four specifications of	AC input module.			0
Rated voltage and current 120V at 64mA 230V at 9 mA Specified operational voltage 264 V AC range 15.0 ms ON to OFF or OFF Signal delay 15.0 ms ON to OFF or OFF Logic 1 minimum(Threshold 790 V AC at 2.5 mA values for ON and OFF 20 V AC at 1 mA Logic 0 minimum(Threshold 20 V AC at 1 mA values for ON and OFF 20 V AC for 1 sec. Isolation between field to 1500 V AC for 1 sec. logic 0R Any Other relevant specifications may considered 20 V AC for 1 sec. Explain in detail the role of CPU in PLC. 02 • Central Processing unit is heart of PLC. CPU controls, monitors and supervises all operations within PLC. 02 • The CPU makes decision and executes control instruction based on the program instruction in memory. 02 • The processor has three operating modes- 9 • Program Mode—in this mode the processor allows the user to make changes in the program including entry and editing. 02 • Rum Mode—the processor allows the user to execute the ladder program. explainit • REM—the processor is placed in remote mode. The user is allowed to edit the program and make changes in the program mode. 02	Item	• -			
range 15.0 ms ON to OFF or OFF to ON Logic 1 minimum(Threshold values for ON and OFF conditions) 790 V AC at 2.5 mA Logic 0 minimum(Threshold values for ON and OFF conditions) 20 V AC at 1 mA Logic 0 minimum(Threshold values for ON and OFF conditions) 20 V AC at 1 mA Isolation between field to logic 1500 V AC for 1 sec. logic 0R Any Other relevant specifications may considered 20 V AC at 0 the program instruction based on the program instruction in memory. • Central Processing unit is heart of PLC. CPU controls, monitors and supervises all operations within PLC. 02 marks for explainit program instruction in memory. • The CPU makes decision and executes control instruction based on the program instruction in memory. 02 marks for explainit changes in the program including entry and editing. • Run Mode—the processor allows the user to execute the ladder program. REM—the processor is placed in remote mode. The user is allowed to edit the program and make changes in the program mode. 02 marks	Rated voltage and current	120V at 64mA		pome	
to ON Logic 1 minimum(Threshold values for ON and OFF conditions) 790 V AC at 2.5 mA Logic 0 minimum(Threshold values for ON and OFF conditions) 20 V AC at 1 mA Isolation between field to logic 1500 V AC for 1 sec. Isolation between field to logic 1500 V AC for 1 sec. Isolation between field to logic 1500 V AC for 1 sec. OR Any Other relevant specifications may considered Explain in detail the role of CPU in PLC. 02 • Central Processing unit is heart of PLC. CPU controls, monitors and supervises all operations within PLC. 02 • The CPU makes decision and executes control instruction based on the program instruction in memory. 02 • The processor has three operating modes- 9 • Program Mode—in this mode the processor allows the user to make changes in the program including entry and editing. 02 • Run Mode—the processor allows the user to execute the ladder program. REM—the processor is placed in remote mode. The user is allowed to edit the program and make changes in the program mode. 04	1 1 0				
values for ON and OFF 20 V AC at 1 mA Logic 0 minimum(Threshold values for ON and OFF 20 V AC at 1 mA Isolation between field to logic 1500 V AC for 1 sec. Isolation between field to 1500 V AC for 1 sec. logic OR Any Other relevant specifications may considered 02 Explain in detail the role of CPU in PLC. 02 • Central Processing unit is heart of PLC. CPU controls, monitors and supervises all operations within PLC. 02 • The CPU makes decision and executes control instruction based on the program instruction in memory. 02 • The processor has three operating modes- 02 • Program Mode—in this mode the processor allows the user to make changes in the program including entry and editing. 04 • Run Mode—the processor allows the user to execute the ladder program. REM—the processor is placed in remote mode. The user is allowed to edit the program and make changes in the program mode. 04	Signal delay				
values for ON and OFF	values for ON and OFF	790 V AC at 2.5 mA			
Isolation between field to logic 1500 V AC for 1 sec. logic OR Any Other relevant specifications may considered 02 Explain in detail the role of CPU in PLC. 02 • Central Processing unit is heart of PLC. CPU controls, monitors and supervises all operations within PLC. 02 • The CPU makes decision and executes control instruction based on the program instruction in memory. 02 • The processor has three operating modes- 02 • Program Mode—in this mode the processor allows the user to make changes in the program including entry and editing. 02 • Run Mode—the processor allows the user to execute the ladder program. names is placed in remote mode. The user is allowed to edit the program and make changes in the program mode.	values for ON and OFF	20 V AC at 1 mA			
OR Any Other relevant specifications may considered Explain in detail the role of CPU in PLC. Explain in detail the role of CPU in PLC. • Central Processing unit is heart of PLC. CPU controls, monitors and supervises all operations within PLC. 02 • The CPU makes decision and executes control instruction based on the program instruction in memory. 02 • The processor has three operating modes- 02 • Program Mode—in this mode the processor allows the user to make changes in the program including entry and editing. 02 • Run Mode—the processor allows the user to execute the ladder program. REM—the processor is placed in remote mode. The user is allowed to edit the program and make changes in the program mode.	Isolation between field to	1500 V AC for 1 sec.			
 supervises all operations within PLC. The CPU makes decision and executes control instruction based on the program instruction in memory. The processor has three operating modes- Program Mode—in this mode the processor allows the user to make changes in the program including entry and editing. Run Mode—the processor allows the user to execute the ladder program. REM—the processor is placed in remote mode. The user is allowed to edit the program and make changes in the program mode. 	Explain in detail the role of C	PU in PLC.	monitors and		0
 Program Mode—in this mode the processor allows the user to make changes in the program including entry and editing. Run Mode—the processor allows the user to execute the ladder program. REM—the processor is placed in remote mode. The user is allowed to edit the program and make changes in the program mode. 	 supervises all operations The CPU makes decision the program instruction 	marks			
 Program. REM—the processor is placed in remote mode. The user is allowed to edit the program and make changes in the program mode. 	• Program Mode—in this changes in the program	explainit			
• It also coming out no group and instructions stored in the manager	 program. REM—the processor is to edit the program and progra				
 It also carries out programmed instructions stored in the memory. An internal bus system, carries information to and from the CPU, memory and I/O units under the control of the CPU. 	• An internal bus system	, carries information to and fro			

Subject Code: 17536

	Data Bus Microprocessor /CPU Address Bus Control Bus Fig- Block diagram of the	02 marks for diagram			
d)	Write the Laplace transfor i. Step ii. Ramp iii. Parabolic iv. Impulse	m for following input s	ignal		04
Ans	Standard test input	Laplace Representation	Waveforms	01 mark for each point	
	Step input(position function) r(t)	L.T of $r(t) = R(s) = A/s$			
	Rampinput(Velocity function) r(t)	L.T of $r(t) = R(s)=A/s^2$	Stope - A		
	Parabolic input(Acceleration r(t) function)	L.T of $r(t) = R(s)=A/s^3$	Giope = At		
	Impulse input r(t)	L.T of $r(t) = R(s)=1$ if A=1			
B)	Attempt any one		· · · · · · · · · · · · · · · · · · ·		06
a)	List the timer instruction of				06
Ans	Depending on the time delay	and operation there are	two types of timers		

Subject Code: 17536

Model Answer

PLC timer- (i)	ON delay	time	er			
(ii) OFF delay timer						
Description (i)		, time	er			
1) This instruction	•			conditio	ns prece	ding it in the
rung are true. Produ	ces an out	tput	when accum	ulated va	lue reac	hes the preset
value.						
2) Use TON instruc	tion to tu	rn ai	n output on	or off aft	er the ti	mer has been
on for a preset time	interval.	The	Ton instruc	tion begi	ns to co	unt time base
intervals when the ru	ing condi	tions	become tru	e.		
3) The accumulate	d value	is r	reset when	the rung	g condit	ion go false
regardless of whethe	er					
the timer has timed of	out.					
Instruction parame	eter- Time	er TO	ON is 3 word	d element	•	
	14	12	10 11 10 0 9	76542		1
15	14	15	12 11 10 9 8	/ 6 5 4 3		
15	210				16	
word					16	

	10	210	
word			16
0	TT\EN	TT\EN DN	bit
word			16
1	preset value		bit
word	Accumulato		16
2	r value		bit

Status bit explanation-

i) Timer done bit (bit13)-DN is set when the accumulated value is equal to or greater than the preset value. It is reset when rung condition become false.
ii) Timer enable bit (bit 14)-EN is set when rung condition are true. It is reset when rung condition become false.

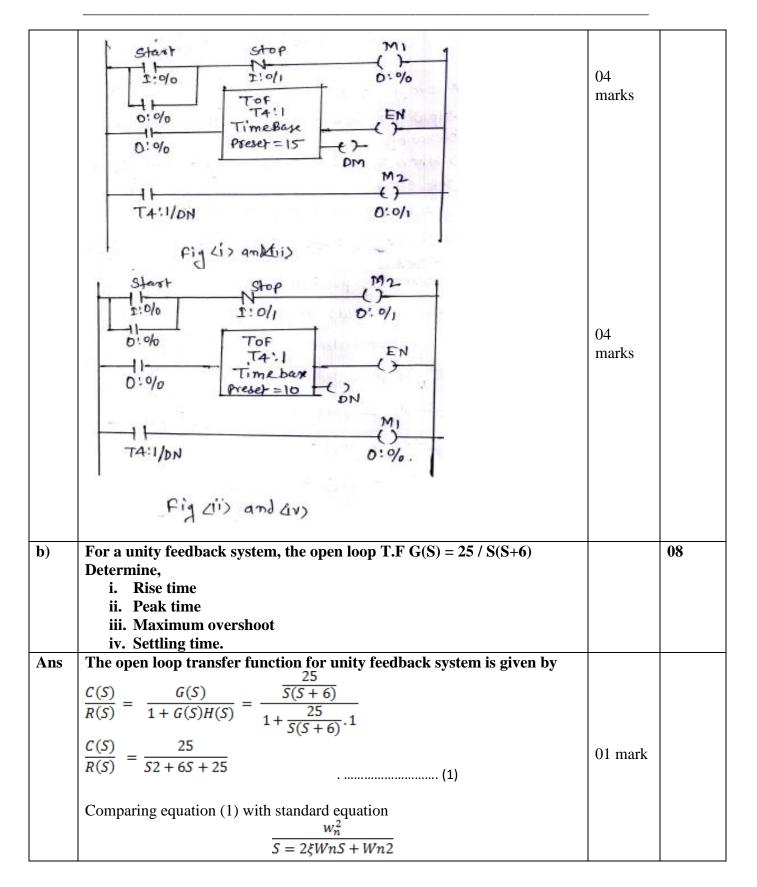
iii) **Timer timing bit (bit15)-**TT is set when rung conditions are true & the accumulated value is less than the preset value. It is reset when the rung conditions go false or when the done bit is set.

Description (ii) OFF delay timer

- 1) This instruction counts time interval when conditions preceding it in the rung are false. Produces low output when accumulated value reaches the preset value.
- Use Toff instruction to turn an output on or off after the timer has been off for a preset timer has been off for a preset time intervals. The Toff instruction begins to count time base intervals when the rung makes a true to false to transition.
- 3) As long as rung conditions remains false the timer increments its accumulated value each scan until it reaches the preset value. The accumulated value is reset when the rung conditions go true regardless of whether the timer has timed out.

Subject Code: 17536

	15	14 3 2 1 0	13 12 11 10 9 8 7 0				
wor				16			
0	TT\EN	TT\EN	DN	bit	_		
wor				16			
1	preset value			bit	_		
wor				16			
2	or value			bit			
accui	nulated value	is less th	TT is set when rung an the preset value. e done bit is reset.				
Com	pare PI, PD ar	nd PID co	4 11 (E				
			ontroller (lour point	t).			06
Sr. No.	PI		PD	PID		1 ¹ ⁄2 Marks	06
		n of ll		PID It is the co Proportiona integral	ombination of al control, control and control action		06


Subject Code: 17536

<u>Model Answer</u>

	4	P(%) P(%) P(%) P(%) P(%) Composit (P) t me	ettilles () () () () () () () () () ()	Error (Input to controller) P(%)(output to controller) P(%)(output to controller) P(%)(output to controller) Desired value P(%)(output to controller) Desired value P(%)(output to controller) Desired value P(%)(output to controller) Composite (P(D) (I)	
	5	It eliminate steady state error.	It compensate rapidly changing error.	It eliminate steady state and rapidly changing error.	
	6	It stabilize controller gain.	It increase controller gain during error change.	The gain of controller is stable.	
	7	It require Expensive stabilization when process has many energy storage elements.	It cannot eliminate offset of proportional controller.	More effective for control process when many energy storage element than PI.	
	8	It is used in control systems with large load changes.	It is used in temperature cascade systems and batch neutralization.	A PID controller can be used for regulation of speed, temperature, flow, pressure and other process variables.	
Q.5	-	pt any two			16
a)	i. ii. iii. iv.	the ladder diagram for When start button is After 10 sec. motor 1 Motor M ₂ stops 15 s Both M ₁ and M ₂ will	s pushed motor M_1 a M_1 stops. ec. after motor M_1 h l stop when stop pus	nd M ₂ start. as stopped.	08
Ans	Start bu Stop bu List of Motor	inputs and there address atton - $0/0$ atton - $0/1$ outputs and their addr $(M_1) = 0; 0/0$ $(M_2) = 0; 0/1$ ay timer - $T_4:1$			

Model Answer

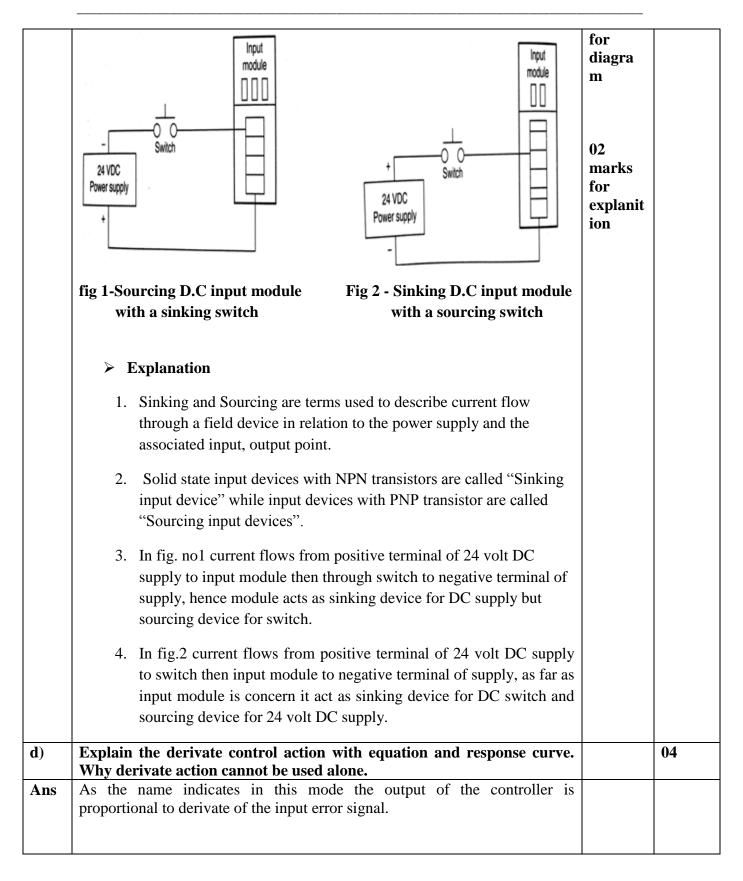
Subject Code: 17536

	We get, $W_n^2 = 25$		
	So, Wn =5 rad/sec.	01 mark	
	2ξWn = 6;	01 mark	
	So, $\xi = 0.6 \text{ rad/sec.}$		
	$W_d = 5\sqrt{1 - (0.6)^2}$	01 mark	
	Wd = 4 rad/sec.		
	i. Raise time		
	$tr = \pi - \beta$		
	where, $\beta = \frac{\sqrt{1-\xi^2}}{\xi}$		
	$\beta = \frac{\sqrt{-5}}{\xi}$		
	$t_r = \frac{3.14 - 1.33}{3.16}$		
	^{cr} 3.16		
	$\beta = \frac{0.8}{0.6} = 1.33$	01 mark	
	$t_r = 0.572 sec$		
	ii. Peak time		
	$t_p = \frac{\pi}{W_d} = \frac{3.14}{4}$	01 mark	
	$t_p = 0.785 \ sec$		
	iii. Maximum overshoot $-\pi \xi$		
	$M_p\% = 100 * e^{\sqrt{1-\xi^2}}$		
	$= 100 * e^{\frac{-(3.14*0.6)}{\sqrt{1-0.06^2}}}$		
	$= 100 * e^{-2.355}$	01 mark	
	$M_p \% = 9.48$	01 mark	
	iv. Settling time		
	$T_s = \frac{4}{\xi W_n} = \frac{4}{0.6 * 5}$	01 mark	
	$T_s = 1.33 sec$	UTIHAIK	
c)	i. Define critically stable and conditionally stable system.		08
	ii. For the characteristic equation $S^4 = 20VS^3 = 5S^2 = (10 VS) = 15 = 0$ have the first fir		
	$S^4 + 20KS^3 + 5S^2 + (10+K)S + 15 = 0$ determine value of K for stable system.		
Ans	i. Definition		
	Critically stable system: A linear time invariant system is called as	02 mark	

Subject Code: 17536

	critically stable system if it generates oscillations with constant amplitude and frequency for a bounded input.		
	Conditionally stable system: a linear time invariant system is called as Conditionally stable system if the stability of such system depends on condition of parameters of the system.	02 mark	
	ii. For the characteristic equation $S^4 + 20KS^3 + 5S^2 + (10+K)S + 15$ = 0 determine value of K for stable system. From the given characteristic equation we can write Routh's array		
	591,516	04	
		marks	
	s ³ sok lotk o		
	52 99 E-10 15 0		
	- lok		
	5 980K-5901E-100 53		
	S 791 - 10		
	15 0		
	Consider Row S^2		
	99K - 10 / 20K > 0		
	99K - 10 > 0		
	99K > 0		
	K > 10/99		
	K > 0.1 So value of K for stability should be greater than 0.1		
Q.6	Attempt any four		16
a)	Explain in brief ON-OFF control action.		04
Ans	This is the most elementary controller mode which has only two fixed	02	
	position ON and OFF . positions are commonly used two positions in most	marks	
	of the control systems. In this mode, when the error signed $e(t)$ greater than the set point $r(t)$, the		
	error signal is less than the set point the output maximizes. Fig (1) shows an		
	iron which is an example of the ON/OFF control action, in this system there		
	are only two stages of the output i.e. either the heater coil turn ON or OFF.		
	In this the real time temperature is compared with the set point and error		
	signal is generated by the controller to activate the relay, which ON/OFF the coil supply.		
	con suppry.	l	

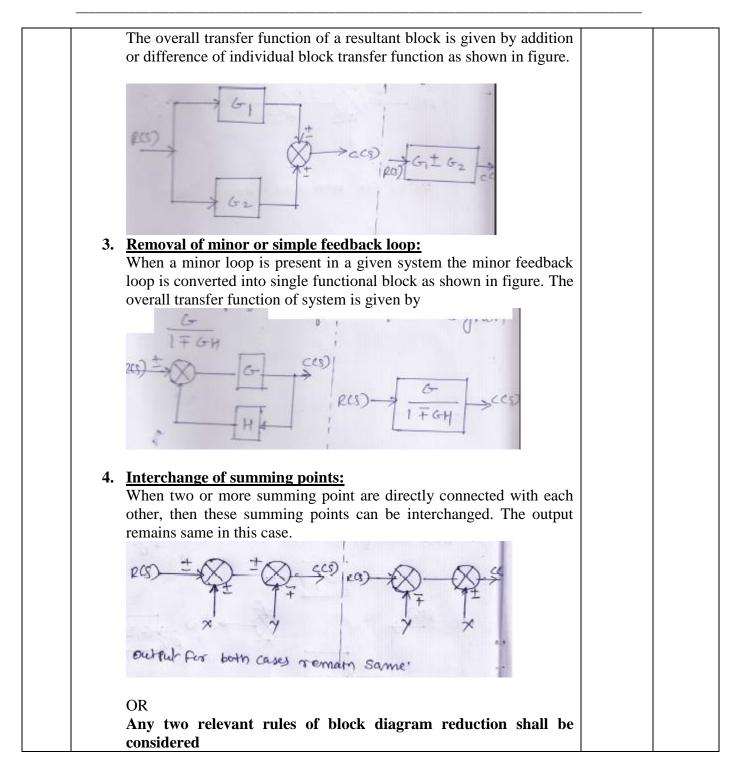
	Relay Relay Electric supply Temp Heater coil		
b)	State the Routh's criteria, Describe different cases to fined stability of		04
Ans	system.(Any two) The necessary & sufficient condition for system to be stable is "All the terms in the first column of routh array must have same sign. There should not be any sign change in the first column of Routh's array". If there are any sign changes existing then, (1) System is unstable (2) The number of sign changes equals the number of roots lying in the right half of the S- plane. <u>Case 1:</u> If first element of any row in the Routh's array is zero, while the rest of row has at least one non zero term then due to this the next row element becomes infinite and Routh's test fails. E.g. characteristics equation $F(S) = S^5 + +S^4 + +2S^3 + 2S^2 + 3S + 5 = 0$. For this equation Routh's array is, $S^5 = 1$ 2 3 $5^4 = 1$ 2 $5^5 = 1$ 2 $5^7 = 2$ $5^2 = 0$ $5^2 = 0$	01 mark 1 ¹ / ₂ Marks	



Subject Code: 17536

	Case 2: If all the element of a row are zero then due to this the elements of the next row cannot be determined and Routh's test fails. E.g. characteristics equation $F(S) = S^5 + +S^4 + +3S^3 + 3S^2 + 3S + 3 = 0$. For this equation Routh's array is, Solution For this equation Routh's array is, Solution For this equation Routh's array is, For this equation Routh's array is, For this equation and the equation with polynomials is formed from the co-efficient of the S⁴- row which is given by $A(S) = S^4 + 3S^2 + 3$. Differentiate this equation w.r.t S Solution Solution Solution Solution Solution For this equation w.r.t Solution Solution Solution For this equation w.r.t Solution For this equation w.r.t Solution For this equation w.r.t Solution For this equation w.r.t For this equation w.r.t 	1 ¹ /2 marks	
c)	With the help of neat diagram explain the concept of sourcing and sinking DC input module of PLC.		04
Ans	Diagram:	02 marks	

Model Answer



	Contraction of the second of t	02 marks for response curve	
	Fig. Response curve of derivative mode. Derivative controller action responds to the rate at which the error is changing, that is the derivative of the error. Mathematically this mode is given by $P(t) = K_D \frac{d(t)}{dt}$. Where gain K _D tells us by how much % to change the controller outpuyt for every %/ sec rate of change of error.	01 mark for equation	
	Derivative action is not used alone because it provides no output when error is constant.	01 mark	
e)	State and explain any two rules of block diagram reduction.	02	04
Ans	Block diagram reduction rules are as follows: <u>Blocks in series or cascade:</u> When two or more blocks are in series with each other then these blocks can be combine to form a single block. The overall transfer function of a resultant block is given be multiplication of individual block 	02 marks for each rule (maxim um 04 marks)	
	2. <u>Blocks in parallel</u> : When two or more blocks are in parallel with each other then these blocks can be combine to form a single block.		

