

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Subject Code: 17536

WINTER – 14 EXAMINATION Model Answer

Important Instructions to examiners:

1) The answers should be examined by keywords and not as word-to-word as given in the model answer scheme.

2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.

3) The language errors such as grammatical, spelling errors should not be given more Importance. (Not applicable for subject English and Communication Skills.)

4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.

5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.

6) In case of some questions credit may be given by judgments on part of examiner of relevant answer based on candidate's understanding.

7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No.	Question & Model Answer	Remark	Total Marks
1.A	Attempt any Three:		12
i)	Define stable and unstable system ; critically stable and conditionally stable system		04
Ans:	 <u>STABLE</u> : A linear time invariant system is said to be stable if following conditions are satisfied: When the system is excited by a bounded input, output is also bounded and controllable. In the absence of the input, output must tend to zero irrespective of the initial condition. <u>UNSTABLE</u>: A linear time invariant system is said to be unstable if following conditions are satisfied: If for a bonded input it produces unbounded output. In absence of the input, output may not return to zero it shows certain output without input. <u>CRITICALLY STABLE</u>: A linear time invariant system is said to be critically stable if for a bounded input its output oscillates with constant frequency and amplitude. <u>CONDITIONALLY STABLE</u>: A linear time invariant system is called as conditionally stable system if the stability of system depends on certain conditions of parameters of the system. 	1 mark for each definiti on	

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 14 EXAMINATION Model Answer

	OD			
	OR			
	In this type of system for some bounded input output is bounded for			
	certain conditions of a particular parameter.			
	parameter changed then for the same bound	ed input, the output		
	becomes unbounded.			
ii)	Name any 4 input and output devices eac	h used with PLC		04
Ans:	Input device:		1 mark	
	Push button :		for	
	Temperature switches:		each	
	Limit switches.		I/O	
	Pressure switches:		device	
	Output devices:			
	Motor:			
	display:			
	Heater coil:			
	Relay:			
	• Note: ant other relevant I/O device	can be considered.		
iii)	Compare open loop and closed loop syste	m based on block		04
,	diagram, transfer function, examples an			
Ans:	parametre Open loop	Closed loop	1	
	r	Crossed roop	marks	
	Block B(s) E(s) C(s)	R(s) E(s) C(s)	each	
	diagram: $\rightarrow \bigcirc \rightarrow \bigcirc $	\rightarrow $G(s)$ \rightarrow \rightarrow	point	
		B(s)	Point	
		0(0)		
	Tronsfor C(s)	C(s) G(s)		
	Transfer function: $\frac{C(s)}{R(s)} = G(s)$	$\frac{1}{R(s)} = \frac{1}{1 \pm G(s) * H(s)}$		
	function:			

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

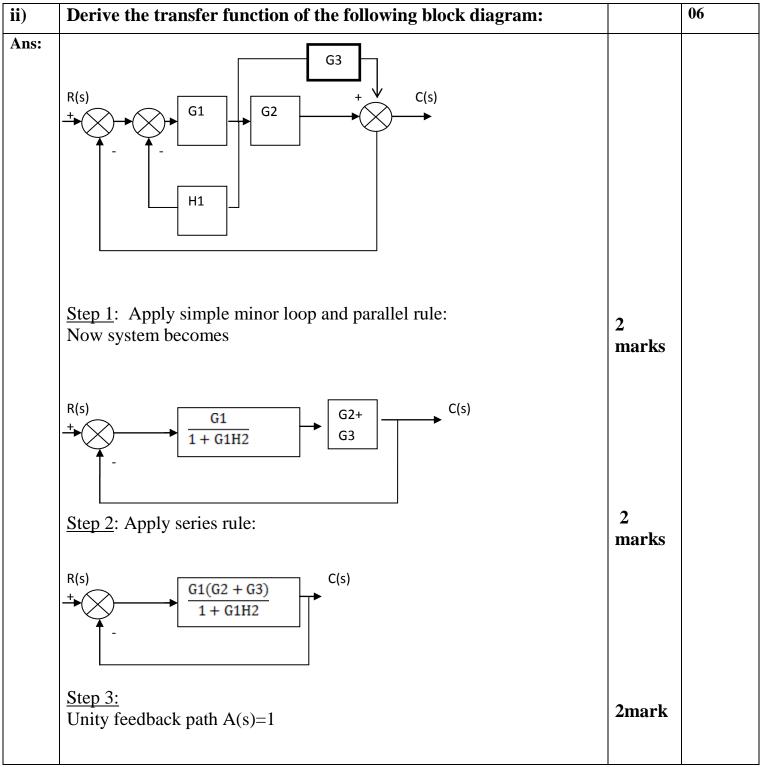
(ISO/IEC - 27001 - 2005 Certified)

WINTER – 14 EXAMINATION

Subject Code: 17536

Model Answer

	D				
	Examples	Automatic toaster, coffee maker,	Air contioning,		
		hand drier, traffic control etc	automatic iron,		
			water level		
			controller,		
			automatic speed		
			controller, voltage		
	<u> </u>		stabilizer etc		
	Stability	Generally Stable in nature	Generally unstable		
			in nature due to		
			feedback.		
iv)	Classify dif	fferent modes of process control			04
Ans:		ollowing three mode of control action	n:		
	1. Conti	inuous control action mode.:			
	a.	Proportional control			
	b.	Integral control			
		Derivative control			
	2. Dis C	Continuous control action mode.			
	a.	On-off control			
	3. Com	posite control action mode.			
	a. l	Proportional Integral control			
	b.]	Proportional Derivative control			
	c. 1	Proportional Integral Derivative cont	trol		
1.B	Attempt an	y One:			06
i)	Describe in	brief memory organization of PL	С		
Ans:	Different ty	pes of memory that are generally use	ed in PLC s are as	6	
	follows:			marks	
	1. RAM:			for	
	2. ROM			releva	
	A.)EPR	OM		nt	
	B.)EEP			explain	
		gram instructions are stored in the m	emory.	ation	
		communication high way also know			
		rmation to and fro from the CPU, M	-		
	under the co	ontrol of CPU Memory unit for stor	age of program.		


Model Answer

Subject Code: 17536

The user ladder logic program, is in the memory of PLC. The main program and other programs are necessary for operation of PLC. The organization of the data and information in the memory is called memory map There are two types of memory used in PLC: Volatile and non volatile memory, in non volatile memories are generally used for storing user program so that the programs can return during power failure. OR Memory is classified into two types: 1. Storage memory: in storage memory store information on the status of i/o devices, pre assigned value of internal relay status and values for mathematical functions, this is called a data table or register table and stores information in two types: status and numbers,. Status is stored in the form of ON or OFF and nos are stored in the form of 1's and 0's is unique bit of memory. 2. User memory: in this memory, ladder logic programming is carried out and stored. User memory consists of program files or register table and holds the complete operation. Data Bus Output Input ROM RAM Microprocesso /CPU Address Bus Control Bus **Diagram is optional**

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified) WINTER – 14 EXAMINATION <u>Model Answer</u>

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified) WINTER – 14 EXAMINATION <u>Model Answer</u>

	$R(s) \xrightarrow{G1(G2+G3)}{1+G1H1} C(s)$		
2.	Attempt any Two:		16
a)	Transfer function of second order system is given by $\frac{C(S)}{R(S)} = \frac{2s}{s^2 + 6s + 2s}$ Find Tr, Tp, Ts and % Mp for unit step input.		08
Ans:	In above problem , assume "25" in place of "2s" in numerator and denominator; Then solve as follows: Comparing the given equation with the standard form of second order equation, $\frac{c(s)}{R(s)} = \frac{\omega_n^2}{\omega_n^2 + 2\xi\omega_n s + s^2} = \frac{25}{s^2 + 6s + 25}$ we get, $\omega_n^2 = 25$ Therefore, $\omega_n = 5rad/sec$ $2\xi\omega_n = 6, \xi = 0.6$	 (1 Mark for each param eter Means for ω_n, ξ, θ,ωd ,Tr,Tp, Ts,and %Mp) 	

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

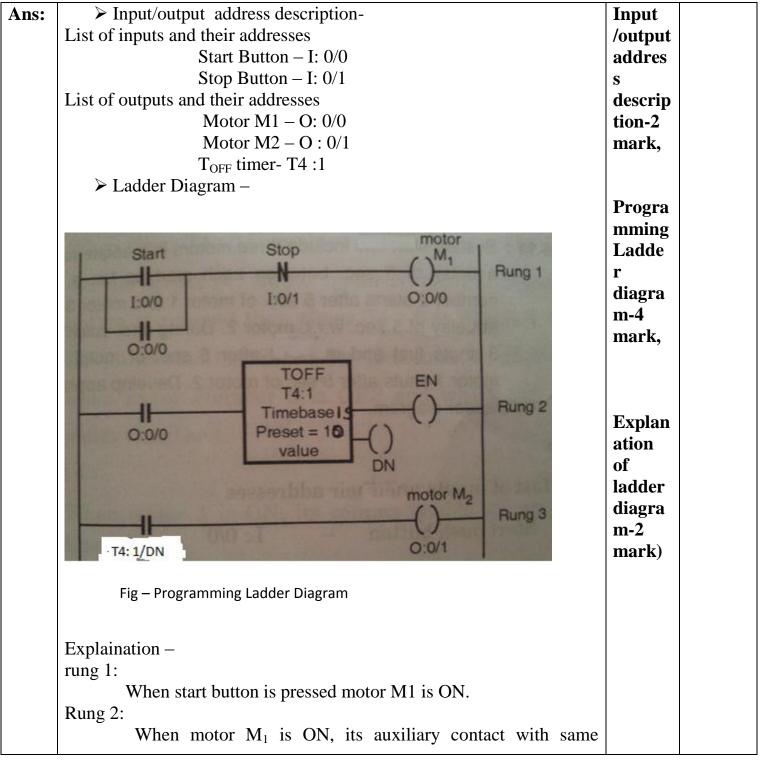
WINTER – 14 EXAMINATION Model Answer

Subject Code: 17536

 $\theta = \tan^{-1}(\frac{\sqrt{1-\xi^2}}{\xi}) = \tan^{-1}(\frac{\sqrt{1-0.6^2}}{0.6}) = 0.9272 \text{ rad}$ $\omega d = \omega_{\rm II} \sqrt{(1-\xi^2)} = 5 \sqrt{(1-0.6^2)} = 4 \text{ rad/sec}$ $T_r = \frac{\pi - \theta}{c_r d} = \frac{\pi - 0.9272}{4} = 0.5535 \text{sec}$ $T_p = \frac{\pi}{wd} = \frac{\pi}{4} = \underline{0.785sec}$ $T_s = \frac{4}{\xi w_m} = \underline{1.33 \text{sec}}$ $\%M_{\rm n} = e^{\frac{-\pi\xi}{\sqrt{1-\xi^2}}} *100 = 9.48\%$ A unity feedback system has b) 08 $G(s) = \frac{10(s+1)}{s^2(s+2)(s=10)}$ find out: 1. type of system 2. static error coefficient Kp,Kv, Ka 3. steady state error for input $r(t)=1+4t+t^2/2$ Comparing the equation in standard form: $G(s)H(s) = \frac{K(1+T_1s) + (1+T_2s)}{s^{j}(1+T_a s)(1+T_b s)} \dots$ 1 mark Ans: for type of system $G(s) = \frac{10(1+s)}{s^2 (1+0.5s)(1+0.1s)}$ Where j = type of system $\therefore j=2$ This is type 2 system. 3

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified) WINTER - 14 EXAMINATION


Subject Code: 17536

<u>Model Answer</u>

	$Kp = \lim_{s \to 0} G(s) H(s) = \lim_{s \to 0} \frac{10(s+1)}{s^2 (s+2)(s+10)} * 1 = \infty$ $Kv = \lim_{s \to 0} s G(s) H(s) = \lim_{s \to 0} \frac{s 10(s+1)}{s^2 (s+2)(s+10)} * 1 = \infty$ $Ka = \lim_{s \to 0} s^2 G(s) H(s) = \lim_{s \to 0} \frac{s^2 10(s+1)}{s^2 (s+2)(s+10)} * 1$ $= \lim_{s \to 0} \frac{10(s+1)}{(s+2)(s+10)} = \frac{10(0+1)}{(0+2)(0+10)} = \frac{10}{20} = 0.5$	marks for each param Kp, Kv, Ka	
	$Kp = \infty$ $Kv = \infty$ $Ka = 0.5$ Steady state error where input r(t)=1+4t+t2/2 Hence steady state error ess1= $\frac{A}{1+K_p} = \frac{1}{1+\infty} = 0$ ess2= $\frac{A}{K_v} = \frac{4}{\infty} = 0$ ess3 = $\frac{A}{K_a} = \frac{1}{0.5} = 2$	4 marks for steady state error	
	Hence total steady state error is Ess= ess1+ ess2+ ess3 = $0 + 0 + 2$ = 2		
c)	Draw ladder diagram for 2 motor operations for following conditions 1. Start push button starts motors M1 and M2 and 2. Stop push button stop motors M1 first and after 10 seconds motor M2		08

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified) WINTER - 14 EXAMINATION Model Answer

	address gets closed which turn ON the OFF delay timer T_4 :1. Rung 3: When OFF delay timer gets supply DN bit is set which turn ON the output O:0/1 i.e motor $M_{2.}$ When stop button is pressed then main motor M_1 shutdown immediately &its contact get open. Therefore supply of OFF delay timer goes OFF but its DN bit gets open after 10 sec so motor M_2 remains ON for 10 sec even though motor M_1 is OFF.	
3.	Attempt any four:	16
a)	Find the transfer function of the network given in figure: R L $V_{i}(t)$ R L C $V_{0}(t)$	04

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified) WINTER - 14 EXAMINATION

Model Answer

$E_i = iR + L\frac{di}{dt} + \frac{1}{C}\int idt$ input = E _i ; output = E _o	(1)	Applyi
Laplace transform of $\int f(t) dt = \frac{F(s)}{s}$,	Neglecting initial conditions	ng KVL for
and Laplace transform of $\frac{df(t)}{dt} = sF(s)$	Neglecting initial conditions	input
Take Laplace transform,		& output
$\therefore \qquad E_i(s) = I(s) \left[R + sL + \frac{1}{sC} \right]$		01 M,
$\frac{I(s)}{E_i(s)} = \frac{1}{\left[R + sL + \frac{1}{sC}\right]}$	(2)	Laplac e
Now $E_o = \frac{1}{C} \int i dt$	(3)	Transf orm
\therefore $E_o(s) = \frac{1}{sC}I(s)$		both
\therefore I(s) = sCE _o (s)	· (4)	equati on
Substituting value of I(s) in equation (2),	543. Zille	01M
$\therefore \qquad \frac{sCE_o(s)}{E_i(s)} = \frac{1}{\left[R + sL + \frac{1}{sC}\right]}$		Each
$\frac{E_o(s)}{E_i(s)} = \frac{1}{sC\left[R+sL+\frac{1}{sC}\right]} = \frac{1}{RsC+s^2 LC}$	2+1	
So we can represent the system as in the Fig. 3.6.		Transf er
$E_i(s) \longrightarrow \frac{1}{s^2 LC + sRC + 1}$	← E _o (s)	functio n 01M)
	in each block in brief:	0

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 14 EXAMINATION Model Answer

	Input field devices (Process devices) Programming device Programming device Process device Process devices Process Devices Process Devices Process Devices Process Devices Process Devices Process Devices Process Devices Process Devices Process Devices Process Devices	Block diagra m 02M	
	 <u>Processor:</u> - This is microprocessor that controls and supervises the entire process. It is the controller of a PLC. <u>Memory:</u> - It contains the program of logic, sequencing and other input & output operation. System program is stored in ROM and application program is stored in RAM. <u>Programming Device:</u> - The basic elements of programming device are keyboard, visual display, and microprocessor and communication cable. The most common programming devices are:-Handle held programming terminal Personal Computer Input Module: - It serves link between input field devices and PLC's CPU. <u>Out Module</u>: - It serves as the link between PLC's CPU and hardware output field devices <u>Power supply</u>: - It converts AC line voltages to DC voltage Note: any relevant block diagram and explanation can be considered 	Explan ation 02M	
c)	Define transfer function. Derive the expression of T.F of closed		04
<u> </u>	loop system		
Ans:	<u>Transfer function:</u> It is defined as the ratio of Laplace transform of	Definiti	
	output of the system to the Laplace transform of input, under the	on 01M	
	assumptions that all initial conditions are to be zero. $T(s) = \frac{Laplace \ transform \ of \ output}{Laplace \ transform \ of \ output} = \frac{C(s)}{Laplace \ transform \ of \ output}$		
	$T(s) = \frac{Laplace transform of output}{Laplace transform of input} = \frac{G(s)}{R(s)}$		

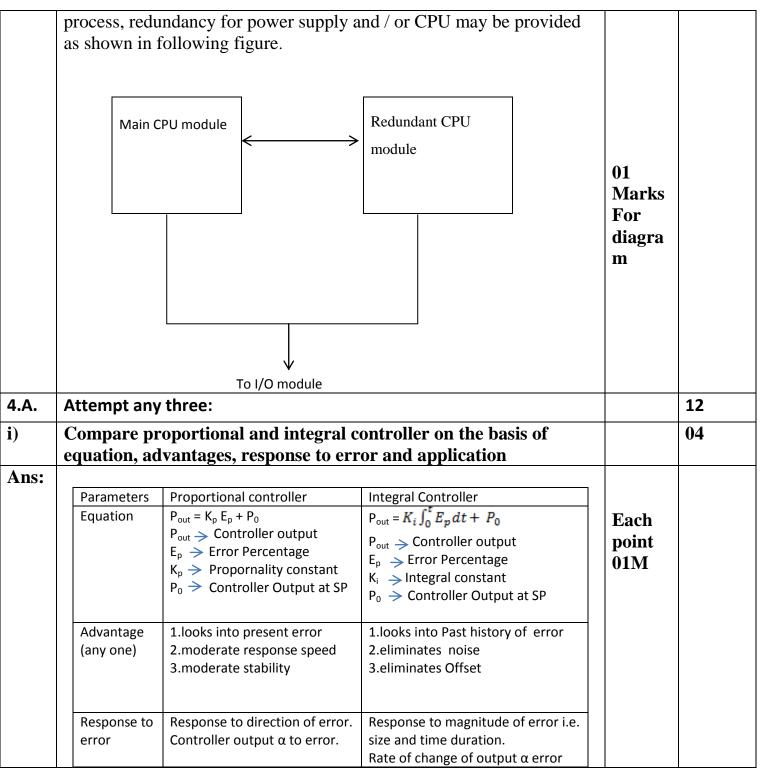
MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

USO/IEC - 27001 - 2005 Certified WINTER – 14 EXAMINATION

Model Answer

Subject Code: 17536

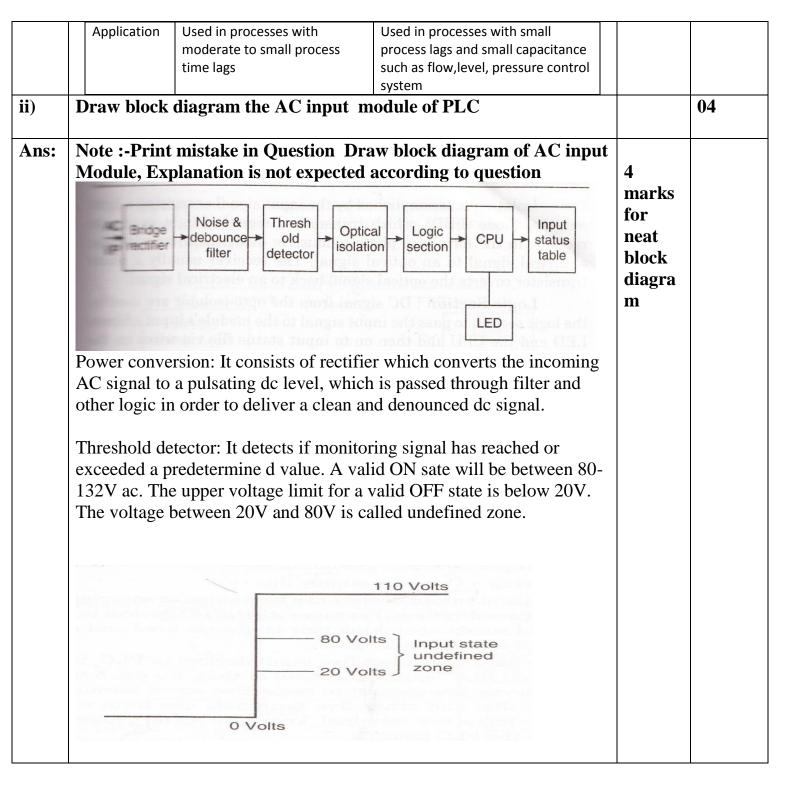
Derivat Consider a simple closed loop system using negative feedback as shown ion of R(s) C(s) E(s) G(s) T.F 03M B(s) H(s) Fig. 7.6 where E(s) = Error signal,and B(s) = Feedback signal Now, E(s) = R(s) - B(s)But B(s) = C(s)H(s)E(s) = R(s) m B(s)B(s) = C(s)H(s)... (2) C(s) = E(s)G(s)... (3) B(s) = C(s)H(s) and substituting in equation (1) E(s) = R(s) m C(s)H(s) $E(s) = \frac{C(s)}{G(s)}$ $\frac{C(s)}{G(s)}$ = R(s) m C(s)H(s) C(s) = R(s) G(s) m C(s) G(s)H(s) $C(s) [1 \pm G(s)H(s)] = R(s) G(s)$ C(s)G(s)R(s) $1 \pm G(s)H(s)$ = + sign for negative feedback and use - sign for positive feedback. This can be represented as in the Fig. 4.6 G(s) R(s) C(s) $1 \pm G(s)H(s)$ Closed Loop T.F. For system, characteristic equation is $s^4+22s^3+10s^2+s+k=0$, find k d) 04


Model Answer

Ans:	Note:- Student should get marks for finding the range of "K" OR for finding marginal value of" K" Applying Routh's criterion	2 Marks For Routh array	
	Solution : $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 Marks For finding value of K	
e)	So range of K is 0 < K < 0.45227		04
Ans:	During any critical application of PLC, it is very important that PLC should work reliably and continuous control of process even though there is failure of power supply or processor due to any reason. To achieve this, there must be stand by processor and power supply with the other PLC. This feature of PLC is called redundancy. Redundancy means extra system components added or kept stand by to avoid the change of total system failure. For critical	03 Marks for explan ation	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified) WINTER – 14 EXAMINATION

Model Answer


(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 14 EXAMINATION

Subject Code: 17536

Model Answer

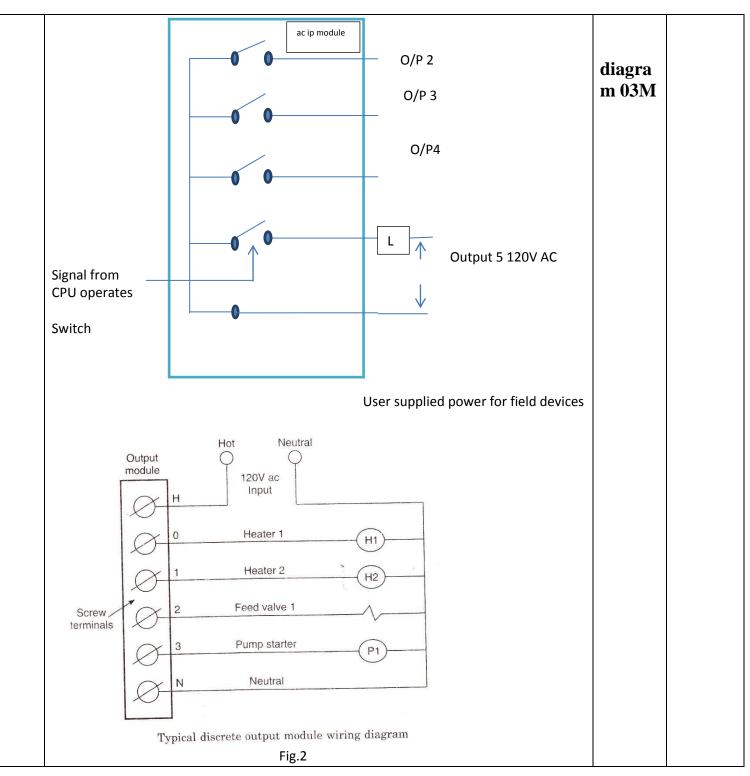
MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified) WINTER – 14 EXAMINATION <u>Model Answer</u>

iii)	 Isolation: It is made up of an optical isolator which separate high voltage from CPU's low voltage control logic. Logic section: It passes the input signal to the module's input address LED and the CPU. Describe the role of PLC in automation. 		04
Ans:	 In an automated system, PLC is commonly regarded as the heart of control system. With a control application program stored within the memory of PLC in execution, PLC constantly monitors the state of the system. PLC provides easy and economical solution for many automation tasks such as logic/sequence control, PID control & computing, coordination and communication, operator control and monitoring. Any manufacturing application, which involves repetitive or discreet operation for that application PLC, can be used. Intelligence of an automated system is greatly depending on the ability of a PLC to read in the signal from various types of automatic sensing and manual input devices. An automatic system is also depending on the ability of the PLC to control various output field devices like motor, solenoid valve etc. 	4 Mark for any four releva nt points	
d)	Derive the derivation of steady state error in terms of open loop transfer function G(s).H(s). Find e _{ss} for a step input		04

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified) WINTER – 14 EXAMINATION

Model Answer

Ans:			
	$\begin{array}{c} R(s) \\ \hline \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	02 Marks for derivati on of	
	$\begin{split} \overline{E(s) = R(s) - B(s)} \\ But B(s) = C(s) * H(s) \\ E(s) = R(s) - C(s) H(s) \\ And C(s) = E(s) * G(s) \\ E(s) = R(s) - E(s) G(s) H(s) \\ E(s) = R(s) - E(s) G(s) H(s) = R(s) \\ E(s) = R(s) / 1 + G(s) for non unity feedback \\ E(s) = R(s) / 1 + G(s) for unity feedback \\ Steady State error, ess = Lim e(t) \\ t \rightarrow \infty \\ By using final value theorem of Laplace transform, ess = Lim S*E(s) \\ S \rightarrow 0 \\ Substituting E(S) from the expression derived, \\ ess = Lim SR(s) / 1 + G(s)H(s) where G(s)H(s) is the open loop transfer function. \\ S \rightarrow 0 \\ ess for step input: - 02marks \\ for step input: - 02marks \\ for step input, R(s) = 1/S, therefore ess = Lim S*1 / S(1+G(s)*H(s)) \\ S \rightarrow 0 \\ ess = 1 / Lim (1+G(s)*H(s)) = 1 / 1 + Lim G(s)*H(s) \\ S \rightarrow 0 \\ \hline \end{split}$	on of steady state error. 02 Marks for Ess for step	
	where Lim G(s)* H(s) is the position error constant Kp S $\rightarrow 0$ Therefore ess = 1/1+Kp	input	
4.B.	Attempt any one:		06
i)	Describe the wiring details of AC output module of PLC.		06
Ans:	beschie ene withing actuals of the output module of the.		



(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

Model Answer

WINTER – 14 EXAMINATION

	The above figure 1 & fig 2 show the basic field wiring for digital 120V AC output module. The Wiring diagrams show how wires of output devices are connected to screw terminals of PLC modules. As per the wiring diagram, User has to connect the wires of input and output devices to PLC or Module. It can be thought of as a simple switch power can be provided to control the output device. During normal operation, processor sends the output state that was determined by logic diagram of output module. The module then switches the power to the field devices. A fuse is normally provided in that the output circuit of the module to prevent excessive current from damaging the wiring to the field devices.	Explan ation 03M)	
b)	Draw labeled block diagram process controlled system and explain. Define w.r.t controller 1.offset error 2. proportional band		06
Ans:	P $Control element$ u $r \rightarrow Controller$ $Process$ c d	Block diagra m 01M	

<u>Process</u> : It is often called as the plant. Process can consist of a complex assembly of phenomena that relate to some manufacturing sequence		
<u>Measurement</u> : It refers to the conversion of variable into some corresponding analog of the variable such as pneumatic pressure, to voltage or current. A sensor is device that performs the initial measurement and energy conversion variable into analogous digital.	Explan ation 03M,	
<u>Error detector</u> : It detects error before any control action can be taken by the controller		
<u>Controller</u> : This path of the control system controls the measured value w.r.t set point		
<u>Control element</u> : The final control element controls the measured value according to the output of controller.		
<u>Definition of Offset Error</u> : It is a permanent residual error in proportional controller which is inherent in nature; it is due to one to one correspondence existing between the controller output and error.	Definit ion 02M each	
<u>Definition of Proportional Band</u> : It is defined as percentage of error which results in 100% change in controller output.		
OR		
PB is percentage of full scale change in controller input required to change the controller output from 0% to 100%, corresponding to full operating range of final control element.		

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified) WINTER – 14 EXAMINATION

Model Answer

5.	Attempt any two:		16
a)	(i) Describe sinking and sourcing concept in D.C input modules of PLC.		04
Ans:	- C C Switch C Power supply +	Diagra m- 2 mark,	04
	Fig 1 – Sourcing DC input Module with a sinking switch		
	+ Switch		
	 Fig 2 – Sinking DC input module with a Sourcing switch 1. Sinking and Sourcing are terms used to describe current flow through a field device in relation to the power supply and the associated input, output point. 2. Solid state input devices with NPN transistors are called "Sinking input device" while input devices with PNP transistor are called "Sourcing input devices". 	Explan ation-2 mark)	

	 sinking & sourcing input & output circuit is current flows from positive to negative. 4. Basic principle retain to sinking & sourcing circuits. > NPN transistors are open collector current sinking devices which interface to a sourcing input module. > PNP transistors are open collector, current sources, which interface to a sinking input module. 5. In fig. no1 current flows from positive terminal of 24 volt DC supply to input module then through switch to negative terminal of supply, hence module acts as sinking device for DC supply but sourcing device for switch. 6. In fig.2 current flows from positive terminal of 24 volt DC supply to switch then input module to negative terminal of supply, as far as input module is concern it act as sinking device for DC supply. 		
ii.)	Draw the block diagram of AC discrete input module of PLC.		04
Ans:	AC Bridge Noise & Thresh Optical Logic CPU Input Iter detector isolation section CPU table LED LED LED LED LED Fig – Block diagram of AC discrete input module of PLC ED LED	Neat Block Diagra m- 4mark	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER – 14 EXAMINATION

Model Answer

b.) Ans:	(I) Draw system.	the effect of d	amping on u	ne response of second order	1 mark	
Ans:	Ration	$\begin{array}{c c} nge & Type & of \\ \zeta & close & loop \\ poles \end{array}$	Nature of response	System classification (Note: response diagram can also be considered)	for Each cases	
	1 ζ =	1	Oscillations with constant frequency &litude	Undamped	of ζ)	
	2 0 <	 < Complex conjugates with negative real part 	Damped oscillations	Underdamped		
	3 ζ =	= 1 Real, Equal and Negative	Critical & pure exponential	Critically Damped		
	4 1< ζ.	< ∞ Real, < ∞ Unequal & Negative	Purely exponential slow & sluggish	Overdamped		
)		ne the time response ing time Ts & pe		tion delay time Td, rise time Mp.		04
ns:	50 %	6 of the final valu	-	uired for the response to reach tempt it is given by	(1 mark for	
	T_d	$=\frac{1+0.7\zeta}{w_n}$			each definiti	

c)	 (2) Rise time Tr= It is the time required for the response to rise from 10% to 90% of the final value for overdamped systems & 0 to 100% of the final value for under damped systems. It is given by T_r = π-θ/wd Where θ must be in radian (3) Settling Time Ts = This is defined as the time required for the response to decrease & stay within specified % of its final value . T_s = 4/(ζwn) (4) Peak overshoot Mp = it is the largest error between reference input & output during the transient period. 	on. Note – Formu lae are not compu lsory	04
Ans:	(1) Find even & odd coefficient from characteristics equation F (s) = $s^4 + 2s^3 + 8s^2 + 4s + 3 = 0$ (2) Makes Routh's array S4 1 8 3 S3 2 4 0 S2 6 3 0 S1 3 S0 3 Conclusion – As in the first column of Routh's array there isNO sign change means all the poles of characteristics equations are lie in LHS of S plane hence system is stable	Making Routh's array -6 marks, conclusi on -2 mark	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 14 EXAMINATION Model Answer

6	Attempt any FOUR of the following:		16
a.)	Describe ON- OFF control action. State its any one advantage &		
	disadvantage of each		
Ans:	(1) This is one of the most common & simplest mode of controller (2) It has to control two positions of control element, either on or off hence this mode is called as ON OFF controller, it is the cheapest controller & often used if its limitations are well within the tolerance. (3) This controller mode has two possible output states namely 0 % & 100%. Mathematically this can be expressed as $P(t) = 0\%$ (OFF) for $e_p < 0$ 100% (ON) for $e_p > 0$ Where p (t) – Controlled output e_p - Error based on % of span (4) Hence if the error rises above a certain critical value, the output changes from 0% to 100%. If the error decreases below certain critical value, the output falls from 100% to 0%. Advantage of ON-OFF controller- 1. It is most simple in construction. 2. It is most economical & cheapest. Disadvantage of ON-OFF controller- 1. It is not very suitable for complex systems. 2. It has a slow response.	Explan ation 2- mark, for each Adv - 1 mark & Disadv - 1 mark)	04
b.)	State Routh's stability criteria and discuss different cases to find stability of a system.		
Ans:	 Statement- The necessary & sufficient condition for system to be stable is "All the terms in the first column of array must have same sign. There should not be any sign change in the first column of Routh's array". If there are any sign changes existing then, (1) System is unstable (2) The no of sign changes equal the no of roots lying in the right half of the S- plane. 	statem ent -1 mark,	

<u>Model Answer</u>

		1	1
	Special case 1	case	
	1) Statement – First element of any of the rows of Routh's array is	one -	
	zero & the same remaining rows contains at least one non zero	$1\frac{1}{2}$,	
	element.	2'	
	2) Effect-The terms in the next row become infinite and Routh's		
	test fails.		
	3) Solution for this said difficulty-Substitute a small positive		
	number ' ϵ 'in place of a zero occured as a first element in a row		
	and complete the array with this number ' ϵ '. Then examine the		
	sign change by taking $\lim_{\epsilon \to 0}$.		
	sign enalize by taking $tim_{\epsilon \to 0}$.		
	Special cose 2	case	
	Special case 2	two -	
	1) Statement-All the elements of a row in a Routh's array are	$1\frac{1}{2}$	
	Zero.	2	
	2) Effect-The terms of the next row cannot be determined	mark	
	&Routh's test fails.		
	3) Solution for this said difficulty-		
	(i) Form an equation by using the coefficients of a row which		
	is just above the row of zeros. Such an equation is		
	called as auxillary equation denoted as $A(s)$.		
	(ii) Take the derivative of an auxiliary equation with respect		
	to 's'		
	(iii) D oplage row of zeros by the coefficients of $dA(s)/ds$		
	(iii) Replace row of zeros by the coefficients of $dA(s)/ds$.		
	(iv) Complete the array in terms of these new coefficients &by		
	observing the first column of Routh's array state the stability of the		
	system		
	Note: Marks can be given for relevant explanation too		0.4
c)	Explain the TON instruction of PLC.	D 1	04
Ans:	Description	Descri	
	1) This instruction counts time interval when conditions preceding it in	ption-	
	the rung are true. Produces an output when accumulator reaches the	2,	
	preset value.		
	2) Use TON instruction to turn an output on or off after the timer has		

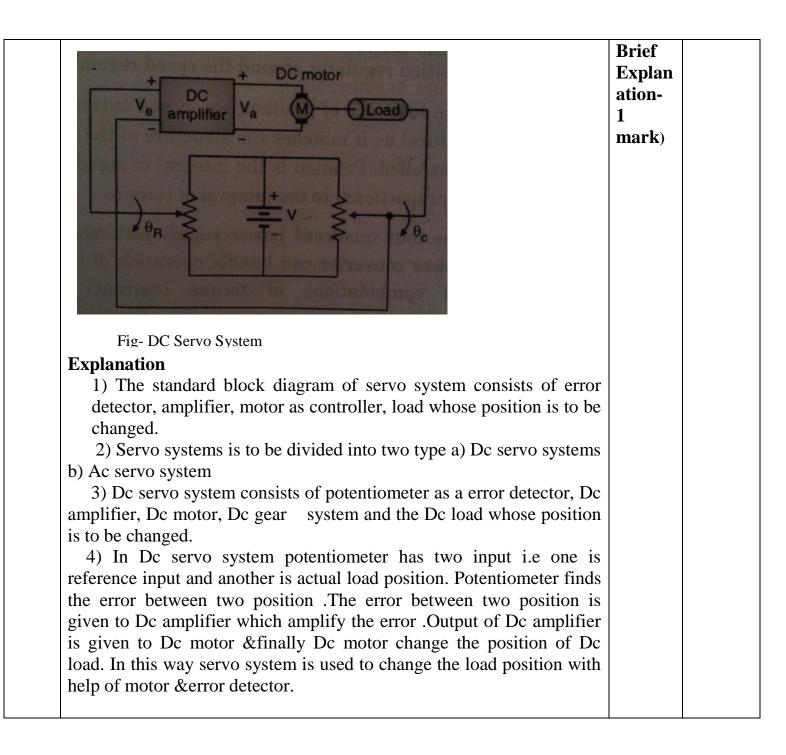
MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified) WINTER – 14 EXAMINATION <u>Model Answer</u>

	time base i 3) The accu	ntervals whe umulated val of whether th	e interval. The TON instruction begins in the rung conditions become true. ue is reset when the rung condition goes the timer has timed out.		Instruc tion param eter-1,	
		15	14 13 12 11 10 9 8 7 6 5 4 3 2 1 0	1611		
	word 0	TT\EN	TT\EN DN	16 bit		
	word 1	preset value		16 bit		
	word 2	Accumulato r value		16 hit	status	
			- Timer TON is 3 word element.	16 bit	bit	
		-			explati	
		explanation			on -1	
			-DN is set when the accumulated va	-		
	become fal		preset value.It is reset when rung	g condition		
			14) EN is set when much condition	ana traja Tt :-		
	ii) Timer enable bit (bit 14)-EN is set when rung condition are true. It is reset when rung condition become false.					
		U				
			15)-TT is set when rung conditions			
			is less than the preset value.it is res	et when the		
1)			e or when the done bit is set	•		0.4
d)			ontroller. state its equation and gi	ve its two		04
	advantage	S .				
Ans:	v.e-Mi		Inverter Ro Ro Merentiation		Diagra m-2 mark,	
	PID co	ntroller equat	ion-			

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

Subject Code: 17536


WINTER – 14 EXAMINATION Model Answer

	 P(t) = k_pe(t) + k_pk_i ∫₀^t e(t)dt + k_pk_d de(t)/dt + p(0) Advantages of PID controller It reduces the overshoot which often occurs when integral control action is added to proportional control action. It counteracts the lag characteristics introduced by the integral control action. It approaches the tendencies towards oscillations. It eliminates the offset introduced by proportional control action. 	equati on-1, advant ages any two-1)	
d)	Define Servo System. Draw its standard block diagram and explain.		04
Ans:	Definition Servo system is one type of feedback control system in which control variable is the mechanical load position &its time derivatives like velocity and acceleration. Block Diagram –	Definit ion- 1 mark,	
	Reference position Difference in angular positions of shaft position (feed back)	any one block diagra	
	Fig – Standard Block Diagram of Servo System	diagra m - 2 mark,	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified) WINTER – 14 EXAMINATION

Model Answer

