
 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

 SUMMER– 18 EXAMINATION
 Subject Name: System Programming Model Answer Subject Code:

 Page 1 of 25

17517

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer

scheme.

2) The model answer and the answer written by candidate may vary but the examiner may try to assess the

understanding level of the candidate.

3) The language errors such as grammatical, spelling errors should not be given more Importance (Not

applicable for subject English and Communication Skills.

4) While assessing figures, examiner may give credit for principal components indicated in the figure. The

figures drawn by candidate and model answer may vary. The examiner may give credit for any

equivalent figure drawn.

5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values

may vary and there may be some difference in the candidate‟s answers and model answer.

6) In case of some questions credit may be given by judgement on part of examiner of relevant answer

based on candidate‟s understanding.

7) For programming language papers, credit may be given to any other program based on equivalent

concept.

Q.

No.

Sub

Q.

N.

Answers Marking

Scheme

1. a) Attempt any three: 12 Marks

 1) Define:

a) Allocation

b) Relocation

c) Linking

d) Loading.

4M

 Ans: a) Allocation: Allocate the space in the memory where the object programs can be

loaded for execution.

b) Relocation: Adjust the address sensitive instructions to the allocated space.

c) Linking: Resolving external symbol reference

d) Loading: Placing the object program in the memory in to the allocated space.

(Each

Definition: 1

mark)

 2) Explain the foundation of system programing. 4M

 Ans:

 System programs e.g. Compilers, loaders, macro processor, operating systems

(Diagram: 2

marks,

Description: 2

marks)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

 SUMMER– 18 EXAMINATION
 Subject Name: System Programming Model Answer Subject Code:

 Page 2 of 25

17517
were developed to make computer better adapted to the needs of their users.

 Compiler is system program that accept people life languages and translate them

into machine language.

 Loaders are system programs that prepare machine language programs for

execution.

 Macro processors allow programmers to use abbreviations.

 Operating system and file system allows flexible to bring and retrieval of

information.

 The productivity of each computer is heavily dependent upon the effectiveness,

efficiency and sophistication of the system programs.

 3) Compare the binary and linear search. 4M

 Ans: Binary Search Linear Search

A binary search cut down search to

half as soon as its finds middle of a

sorted list.

A linear search scans one item at a

time, without jumping to any item

Input data needs to be sorted in

Binary Search

Input data can be unsorted in linear

Search

Binary search performs ordering

comparisons

Linear search performs equality

comparisons

Time Complexity is O(log 2 N) Time Complexity is O(N)

Cannot be directly implemented on

linked list.

Can be implemented on Array and

Linked list.

Algorithm type is Divide and

conquer in nature.

Algorithm type is iterative in nature.

Algorithm can conclude after only

log2N comparisons.

N comparisons are required in worst

case.

(Any 4 points

of

comparison: 1

mark each)

 4) Explain syntax phase of compiler with database and example. 4M

 Ans: The function of the syntax phase is to recognize the major constructs of the language

and to call the appropriate action routines that will generate the intermediate form to

matrix for the constructs.

Databases involved in syntax analysis are as follows:

Uniform Symbol Table (“UST”): It is created by the lexical analysis phase and

containing the source program in the form of uniform symbols. It is used by the

syntax and interpretation phases as the source of input to the stack. Each symbol

from the UST enters the stack only once.

Stack: the stack is the collection of uniform symbols that is currently being worked

on by the stack analysis and interpretation phase. The stack is organized on a Last In

First Out (LIFO) basis. The term “Top of Stack” refers to the most recent entry and

“Bottom of Stack” to the oldest entry.

Reductions: The syntax rules of the source language are contained in the reduction

table. The syntax analysis phase is an interpreter driven by the reductions.

(Description

of Syntax

phase: 2

marks,

Database : 2

marks)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

 SUMMER– 18 EXAMINATION
 Subject Name: System Programming Model Answer Subject Code:

 Page 3 of 25

17517
Example: / /***/ <idn> PROCEDURE/bgn_proc/S1 ****/4

<any><any><any>/ERROR/S2S1*/2

These three reductions will be the first three of the set defined for the example. The

interpretation is as follows:

1. Start by putting the first three uniform symbols from the UST onto the stack.

2. Test to see if top three elements are <idn>:PROCEDURE.

3. If they are, call the begin procedure (bgn_proc) action routine, delete the label and

get the next four uniform symbols from the UST onto the stack and go to

reduction

4. If not, call action routine ERROR, remove the third uniform symbol from the

stack get one more from the UST, and go to reduction 2.

The reduction state that all programs must start with a „<label>:PROCEDURE‟.

The syntax phase deletes the label and the „:‟, gets four more tokens and

interprets reduction 4, which will start parsing of the body of the procedure.

If the first statement is not a <label>: PROCEDURE until a match is found or until

all the symbols in the UST have been tried.

 b) Attempt any one : 6 Marks

 1) List components of system software and explain any two of them. 6M

 Ans: 1. Assembler

2. Macros

3. Compiler

4. Loader

5. Linker

Assembler: -Assembler is a language translator that takes as input assembly

language program (ALP) and generates its machine language equivalent along with

information required by the loader.

ALP -> Assembler -> Machine language equivalent + Information required by the

loader.

Macro: A macro is a rule or pattern that specifies how a certain input sequence

(often a sequence of characters) should be mapped to a replacement output sequence

(also often a sequence of characters) according to a defined procedure. The mappings

process that instantiates (transforms) a macro use into a specific sequence is known

as macro expansion. A facility for writing macros may be provided as part of a

software application or as a part of a programming language. In the former case,

macros are used to make tasks using the application less repetitive. In the latter case,

they are a tool that allows a programmer to enable code reuse or even to design

domain-specific languages.

MACRO

MACRO_NAME

…

(List of

components of

System

software: 2

marks;

Description of

any two: 2

marks each)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

 SUMMER– 18 EXAMINATION
 Subject Name: System Programming Model Answer Subject Code:

 Page 4 of 25

17517
…

MEND

Compiler: A compiler is a computer program (or set of programs) that transforms

source code written in a programming language (the source language) into another

computer language (the target language, often having a binary form known as object

code).The most common reason for converting a source code is to create an

executable program. E.g. Javac , TurboC, CC (used in Unix/Linux).

Loader: Loader is a system program which places program into the memory and

prepares for execution. Loading a program involves reading the contents of the

executable file containing the program instructions into memory, and then carrying

out other required preparatory tasks to prepare the executable for running. Once

loading is complete, the operating system starts the program by passing control to the

loaded program code e.g. Boot Strap loader.

Linker: A linker which is also called binder or link editor is a program that

combines object modules together to form a program that can be executed. Modules

are parts of a program.

 2) Explain working of macro-processor. 6M

 Ans: The assembly language programmer often finds it necessary to repeat some blocks

of code many times in the course of a program. The block may consist of code to

save or exchange sets of registers, for example, or code to set up linkages or

perform a series of arithmetic operations. In this situation the programmer will find

a macro instruction facility useful. Macro instructions (often called macros) are

single-line abbreviations for groups of instructions. In employing a macro, the

programmer essentially defines a single "instruction" to represent a block of code.

For every occurrence of this one-line macro instruction in his program, the macro

processing assembler will substitute the entire block.

By defining the appropriate macro instructions, an assembly language programmer

can tailor own higher level facility in a convenient manner, at no cost in control

over the structure of his program. Programmer can achieve the conciseness and ease

in coding of high level languages without losing the basic advantage of assembly

language programming. Integral macro operations simplify debugging and program

modification and they facilitate standardization. Many computer manufacturers use

macro instructions to automate the writing of "tailored" operating systems in a

process called systems generation.

Macro instructions are usually considered an extension of the basic assembler

language, and the macro processor is viewed as an extension of the basic assembler

algorithm. As a form of programming language, however, macro instruction

languages differ significantly from assembly languages and compiled algebraic

languages. Important analogs are to be found in some high level languages and text

editing systems.

(Working of

macro

processor: 4

marks,

Syntax/Examp

le: 2 marks)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

 SUMMER– 18 EXAMINATION
 Subject Name: System Programming Model Answer Subject Code:

 Page 5 of 25

17517

2. Attempt any two : 16 Marks

 1) Draw flow-chart for Pass-I assembler. 8M

 Ans:

(Correct

flowchart: 8

marks)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

 SUMMER– 18 EXAMINATION
 Subject Name: System Programming Model Answer Subject Code:

 Page 6 of 25

17517
 2) Explain following sort:

a) Inter-change sort.

b) Address calculation sort.

8M

 Ans: Interchange Sort: There are a number of ways of doing sort, some simple and some

complicated. This simple sort takes adjacent pairs of items in the table and puts them

in order (interchanges them) as required. Such a sorting algorithm is not very

efficient, but it is simple. Take an example to see how it works. Consider the table of

12 numbers shown in example; each column represents one pass over the numbers

interchanging any two adjacent numbers that are out of order. This particular table is

completely sorted in only seven passes over the data. In the worst case, N-1 (here,

11) passes would be necessary. The inter-change sort is thus able to exploit whatever

natural order there may be in the table. Moreover, on each pass through the data at

least one item is added to the bottom of the list in perfect order (in this case the 31

first, then 27, then 26, etc.).

Hence, the sort could be made more efficient by

1) Shortening the portion of the sorted list on each pass; and

2) Checking for early completion. Such an optimized sort should require roughly

N*(N-1)/2 comparisons and thus should take a time roughly proportional to N2.

Example: -

Address Calculation Sort:

This can be one of the fastest types of sorts if enough storage space is available. The

sorting is done by transforming the key into an address in the table that “represents”

the key.

For example if the key were four characters long, one method of calculating the

appropriate table address would be to divide the key by the table length in items,

multiply by the length is a power of 2, then the division reduces to a shift. This sort

would take only N* (time to calculate address) if it were known that no two keys

would be assigned the same address. However, in general this is not the case and

several keys will be reduced to the same address.

Therefore, before putting an item at the calculated address it is necessary to first

check whether that location is already occupied. If so, the item is compared with the

one that is already there, and a linear search in the correct direction is performed to

(Interchange

sort: 4 marks,

Address

calculation:

sort 4 marks)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

 SUMMER– 18 EXAMINATION
 Subject Name: System Programming Model Answer Subject Code:

 Page 7 of 25

17517
find the correct place for the new item.

If there will be „n‟ empty space in which to put the item in order. Otherwise, it will

be necessary to move some previous entries to make room.

Example:

 3) Draw block diagram of phases of compiler. 8M

 Ans:

(Block

diagram of

phases of

compiler: 8

marks)

3. Attempt any four: 16 Marks

 1) What is system software? List three types of system program. 4M

 Ans: System Software: System software is a type of computer program that is designed

to run a computer‟s hardware and application programs. If we think of the computer

system as a layered model, the system software is the interface between the

hardware and user applications.

(2 marks for

definition, 2

marks for

types)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

 SUMMER– 18 EXAMINATION
 Subject Name: System Programming Model Answer Subject Code:

 Page 8 of 25

17517
Types of System programs (software):

i. Assemblers: The program known as assembler is written to automate the

translation of assembly language to machine language.

ii. Compilers: These are system programs that accept people like languages and

translate them into machine language.

iii. Loaders: These are system programs that prepare machine language program

for execution.

iv. Macro processors: allow programmers to use abbreviation.

v. Operating system: it is a system program that interfaces hardware and

application software

vi. Parser: It is system software that constructs the parsing tree to identify

syntactical errors in given statement.

vii. The BIOS (basic input/output system): gets the computer system started after

you turn it on and manages the data flow between the operating system and

attached devices such as the hard disk, video adapter, keyboard, mouse,

and printer.

 2) How to improve the assembler design? 4M

 Ans: Look for Modularity

 After designing algorithms for pass 1 and 2, we can review these algorithms to

improve our design, by looking for functionalities that can be isolated.

 Modules/functions can be multi-use or unique.

 Lets look at our algorithms for passes 1 & 2 and see if we can find a logical

separation and put them in the following format.

 Where name is the name assigned to the function like MOTGET, EVAL, PRINT,

POTGET etc.

 Accordingly we can list some logical modules that may be isolated in passes 1 &

2.

 These functions are more or less indicated in the flow chart for the algorithms in

both passes.

 The tables next summarize functions we may consider for modularity, isolating

from the rest of the algorithm so that the module will be autonomous in its

processing.

 Pass 1 Functions that may be considered for isolation

No Module Description

1 READ1 Read the next instruction from source code

2 POTGET1 Search the pass 1 pseudo-op table (POT)

3 MOTGET1 Search MOT for a match with the current

instruction

4 STSTO Store label and associated value in ST

5 LTSTO Store literals in LT. Do not store same literal

https://searchstorage.techtarget.com/definition/hard-disk
https://whatis.techtarget.com/definition/video-adapter
https://whatis.techtarget.com/definition/keyboard
https://searchexchange.techtarget.com/definition/mouse
https://whatis.techtarget.com/definition/printer

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

 SUMMER– 18 EXAMINATION
 Subject Name: System Programming Model Answer Subject Code:

 Page 9 of 25

17517
twice.

6 WRITE1 Write a copy of the assembly source for use by

pass 2

7 DLENGTH Scan operand of DS, DC to determine storage

required

8 EVAL Evaluate arithmetic expression consisting of

constants and symbols (eg. 6, ALPHA, 4*BETA

….)

9 STGET Search ST for entry corresponding to specific

symbol (used by STSTO and EVAL)

10 LITASS Assign storage locations to each literal in the LT

(may use DLENGTH)

 Pass 2 functions that may be considered for isolation

No Module Description

1 READ2 Read the next instruction from copy of

source code

2 POTGET2 Search the pass 2 pseudo-op table (POT)

3 MOTGET2 Search MOT for a match with the current

instruction

4 EVAL Evaluate arithmetic expression consisting

of constants and symbols (eg. 6, ALPHA,

4*BETA ….)

5 PUNCH Convert generated instruction to

appropriate format

6 PRINT Convert generated code and location to

character format

7 DLENGTH Scan operand of DS, DC to determine

storage required

8 DCGEN Process the fields of DC to generate the

object code (uses EVAL and PUNCH)

9 BTSTO Enter data into appropriate entry in BT

10 BTDROP Enter „unavailable‟ indicator into

appropriate entry in BT

11 BTGET Convert effective address into base and

displacement by searching BT for available

base registers

12 LTGEN Generate code for literals (use DCGEN)

 Each of these functions should go through the entire design process (problem

statement, data base, algorithm and modularity).

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

 SUMMER– 18 EXAMINATION
 Subject Name: System Programming Model Answer Subject Code:

 Page 10 of 25

17517
 These functions can be implemented as:

o External subroutines

o Internal subroutines and

o Sections in pass 1 or pass 2 programs

 In any case dividing a bigger problem into its parts (modularity) making solving

the problem easier.

 Easier to handle small coordinated routines than a big single program which

contains all these routines.

 3) State four function of compiler. 4M

 Ans: {{** NOTE: any relevant answer can be considered**}}

1. A compiler accepts a program written in a high level language as input and

produces its machine language equivalent as output.

2. Scan source programs and identify Tokens.

3. Analyze syntactic and semantic errors.

4. Generate optimized code for source program.

5. Assign storage for variables and literals, etc

6. Generate assembly language program.

(4 marks for 4

functions)

 4) Write function of ESD, RLD, TXT and END. 4M

 Ans: 1. ESD card:

 The ESD card contains the information necessary to build the external symbol.

The external symbols are symbols that can be referred beyond the subroutine

level. The normal labels in the source program are used only by the assembler.

2. RLD card: contain the following information

 The location and length of each address constant that needs to be changed for

relocation or linking.

 The external symbol by which the address constant should be modified.

 The operation to be performed.

3. TXT card:

 The TXT card contains the blocks of data and the relative address at which data

is to be placed. Once the loader has decided where to load the program, it adds

the Program Load Address (PLA) to relative address. The data on the TXT card

may be instruction, non-related data or initial values of address constants.

4. END card :

 The END card specifies the end of the object deck.

(Function of

each card : 1

mark)

 5) Explain concept of top-down parser. 4M

 Ans: Top-down Parser

 When the parser starts constructing the parse tree from the start symbol and then

tries to transform the start symbol to the input, it is called top-down parsing.

(Description:

4 marks)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

 SUMMER– 18 EXAMINATION
 Subject Name: System Programming Model Answer Subject Code:

 Page 11 of 25

17517
The types of top-down parsing are depicted below:

 Recursive Descent Parsing
o Recursive descent is a top-down parsing technique that constructs the parse tree

from the top and the input is read from left to right.

o It uses procedures for every terminal and non-terminal entity.

o This parsing technique recursively parses the input to make a parse tree, which

may or may not require back-tracking. But the grammar associated with it (if not

left factored) cannot avoid back-tracking.

o A form of recursive-descent parsing that does not require any back-tracking is

known as predictive parsing. This parsing technique is regarded recursive as it

uses context-free grammar which is recursive in nature.

 Back-tracking
o Top- down parsers start from the root node (start symbol) and match the input

string against the production rules to replace them (if matched).

o The following example of CFG:

S →rXd|rZd

X →oa|ea

Z →ai

o For an input string: read, a top-down parser, will behave like this: It will

start with S from the production rules and will match its yield to the left-most

letter of the input, i.e. „r‟. The very production of S (S → rXd) matches with it.

So the top-down parser advances to the next input letter (i.e. „e‟). The parser tries

to expand non-terminal „X‟ and checks its production from the left (X → oa). It

does not match with the next input symbol. So the top-down parser backtracks to

obtain the next production rule of X, (X → ea). Now the parser matches all the

input letters in an ordered manner. The string is accepted.

 Predictive Parser
o Predictive parser is a recursive descent parser, which has the capability to predict

which production is to be used to replace the input string.

o The predictive parser does not suffer from backtracking.

o To accomplish its tasks; the predictive parser uses a look-ahead pointer, which

points to the next input symbols.

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

 SUMMER– 18 EXAMINATION
 Subject Name: System Programming Model Answer Subject Code:

 Page 12 of 25

17517
o To make the parser back-tracking free, the predictive parser puts some

constraints on the grammar and accepts only a class of grammar known as LL(k)

grammar. Predictive parsing uses a stack and a parsing table to parse the input

and generate a parse tree. Both the stack and the input contains an end symbol $

to denote that the stack is empty and the input is consumed. The parser refers to

the parsing table to take any decision on the input and stack element

combination.

 LL Parser
o An LL Parser accepts LL grammar.

o LL grammar is a subset of context-free grammar but with some restrictions to get

the simplified version, in order to achieve easy implementation.

o LL grammar can be implemented by means of both algorithms namely,

recursive-descent or table-driven.

o LL parser is denoted as LL(k).

 The first L in LL(k) is parsing the input from left to right, the second L in LL(k)

stands for left-most derivation and k itself represents the number of look ahead.

Generally k = 1, so LL(k) may also be written as LL(1).

4. a) Attempt any three : 12 Marks

 1) State and explain need of GEST and LESA. 4M

 Ans: Global External Symbol Table (GEST)

 It is used to store external symbols defined by means of Segment Definition

(SD), or Local Definition (LD) entry on an External Symbol Dictionary(ESD)

card.

 When these symbols are encountered in pass 1, they are assigned an absolute

core address.

 This address is stored, along with the symbol, in the GEST.

 The GEST has same general use and characteristics as assembler‟s symbol table.

Global External Symbol Table format

Local External Symbol Array (LESA):

 It is necessary to establish a correspondence between ID number on an RLD card

and the absolute core address value.

 The ESD card contains ID numbers and symbols they corresponds to, while the

information relating these symbols to absolute core address values may be found

in the GEST.

(GEST: 2

marks, LESA:

2 marks)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

 SUMMER– 18 EXAMINATION
 Subject Name: System Programming Model Answer Subject Code:

 Page 13 of 25

17517
 In pass 2 of the loader the GEST and ESD information for each individual object

deck is merged to produce the Local External Symbol Array (LESA) that

directly relates ID numbers and values.

 Unlike the case of GEST, it is not necessary to search the LESA; given an ID

number the corresponding value is written as LESA(ID) And can be immediately

obtained.

Local External Symbol Array table format

 2) Explain storage allocation concept in compiler. 4M

 Ans:  The storage allocation phase first scans through the identifier table, assigning

locations to the storage allocation phase first scans through the identifier table,

assigning locations to each entry with a storage class of static.

 It uses a location counter, initialized at zero, to keep track of how much storage it

has assigned.

 Whenever it finds a static variable in the scan, the storage allocation phase does

the following four steps:

1. Updates the location counter with any necessary boundary alignment.

2. Assigns the current value of the location counter to the address field of the

variable.

3. Calculate the length of the storage needed by the variable (by examining its

attributes).

4. Updates the location counter by adding this length to it. Once it has assigned

relative address to all identifiers requiring STATIC storage locations, this phase

creates a matrix entry:

5. This allows code generation to generate the proper amount of storage. For each

variable that requires initialization, the storage allocation phase generates a

matrix entry:

6. This tells code generation to put into the proper storage location the initial values

that the action routines saved in the identifier table. A similar scan of the

identifier table is made for automatic storage and controlled storage. The scan

enters relative location for each entry. An “automatic” entry and a “controlled”

(Description:

4 marks)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

 SUMMER– 18 EXAMINATION
 Subject Name: System Programming Model Answer Subject Code:

 Page 14 of 25

17517
entry are also made in the matrix. Code generation use the relative location entry

to generate the address part of instructions. No storage is generated at compile

time for automatic or controlled. However, the matrix entry automatic does cause

code to be generated that allocates this storage at execution time, i.e., when the

generated code is executed, it allocates automatic storage.

7. The literal table is similarly scanned and location are assigned to each literal, and

a matrix entry is made. Code generation generates storage for all literals in the

static area and initializes the storage with the values of the literals. Temporary

storage is handled differently since each source statement may reuse the

temporary storage (intermediate matrix result area) of the previous source

statement. A computation is made of the temporary storage that is required for

each source statement. The statement required the greatest amount of temporary

storage determines the amount that will be required for the entire program. A

matrix entry is made of the form this enables the code generation phase to

generate code to create the proper amount of storage.

8. Temporary storage is automatic since it is only referenced by the source program

and only needed while the source program is active.

The purpose of this phase is to:
1. Assign storage to all variables referenced in the source program.

2. Assign storage to all temporary locations that are necessary for intermediate

result, e.g the results of matrix lines. These storage references were reserved by

the interpretation phase and did not appear in the source code.

3. Assign storage to literals.

4. Ensure that the storage is allocated and appropriate locations are initialized

(Literals and any variables with the initial attribute)

 3) Describe lexical phase of compiler. 4M

 Ans:  The first phase of compiler is lexical analysis. It works as a text scanner. This

phase scans the source code as a stream of characters and converts it into

meaningful lexemes. Lexical analyzer represents these lexemes in the form of

tokens as:

<token-name, attribute-value>

Algorithm of Lexical Analysis phase of compiler is as follows

o The first tasks of the lexical analysis algorithm are to the input character string

into token.

o The second is to make the appropriate entries in the tables.

o A token is a substring of the input string that represents a basic element of the

language. It may contain only simple characters and may not include another

token. To the rest of the compiler, the token is the smallest unit of currency.

Only lexical analysis and the output processor of the assembly phase concern

themselves with such elements as characters. Uniform symbols are the terminal

(Description:

4 marks)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

 SUMMER– 18 EXAMINATION
 Subject Name: System Programming Model Answer Subject Code:

 Page 15 of 25

17517
symbols for syntax analysis.

 Lexical analysis recognizes three types of token:

o Terminal symbols,

o possible identifiers, and

o Literals.

 It checks all tokens by first comparing them with the entries in the terminal

table. Once a match is found, the token is classified as a terminal symbol and

lexical analysis creates a uniform symbol of type “TRM” and inserts it in the

uniform symbol table. If a token is not a terminal symbol, lexical analysis

proceeds to classify it as a possible identifier or literal. Those tokens that

satisfy the lexical rules for forming identifiers are classified as “possible

identifiers”.

Databases used in lexical analysis are:

i. Source program: original form of program; appears to the compiler as a sting

of character

ii. Terminal table: a permanent data base that has an entry for each terminal

symbol. Each entry consists of the terminal symbol, an indication of its

classification, and its precedence.

iii. Literal table: created by lexical analysis to describe all literals used in the

source program. There is one entry for each literal, consisting of a value, a

number of attributes, an address denoting the location of the literal at execution

time, and other information.

iv. Identifier table: created by lexical analysis to describe all identifiers used in

the source program. There is one entry for each identifier. Lexical analysis

creates the entry and places the name of identifier into that entry. The pointer

points to the name in the table of names. Later phases will fill in the data

attributes and address of each identifier.

v. Uniform Symbol table: created by lexical analysis to represent the program as

a string of tokens rather than of individual characters. Each uniform symbol

contains the identification of the table of which a token is a member.

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

 SUMMER– 18 EXAMINATION
 Subject Name: System Programming Model Answer Subject Code:

 Page 16 of 25

17517
 4) Explain concept of bottom-up parser. 4M

 Ans:  Bottom-up parsing starts from the leaf nodes of a tree and works in upward

direction till it reaches the root node.

 Here, we start from a sentence and then apply production rules in reverse

manner in order to reach the start symbol.

 The image given below depicts the bottom-up parsers available.

 Shift-Reduce Parsing

o Shift-reduce parsing use two unique steps for bottom-up parsing. These steps

are known as shift-step and reduce-step.

 LR Parser

o The LR parser is a non-recursive, shift-reduce, bottom-up parser. It uses a wide

class of context-free grammar which makes it the most efficient syntax analysis

technique. LR parsers are also known as LRk parsers, where L stands for left-

to-right scanning of the input stream; R stands for the construction of right-

most derivation in reverse, and k denotes the number of look ahead symbols to

make decisions.

o There are three widely used algorithms available for constructing an LR

parser:

• SLR1 – Simple LR Parser

• LR1 – LR Parser

• LALR1 – Look-Ahead LR Parser

(Description:

4 marks)

 b) Attempt any one: 6 Marks

 1) Define macro and explain conditional macro expansion. 6M

 Ans: Macro

 A macro is a rule or pattern that specifies how a certain input sequence (often a

sequence of characters) should be mapped to a replacement output sequence

(also often a sequence of characters) according to a defined procedure.

 The mappings process that instantiates (transforms) a macro use into a specific

sequence is known as macro expansion.

(Macro

definition :2

marks,

conditional

Macro

expansion: 4

marks)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

 SUMMER– 18 EXAMINATION
 Subject Name: System Programming Model Answer Subject Code:

 Page 17 of 25

17517
 A facility for writing macros may be provided as part of a software application

or as a part of a programming language. In the former case, macros are used to

make tasks using the application less repetitive.

 In the latter case, they are a tool that allows a programmer to enable code reuse

or even to design domain-specific languages.

MACRO

MACRO_NAME

…

…

…

MEND

Conditional macro expansion.

 Two important macro-processor pseudo-ops AIF and AGO permit conditional

reordering of the sequence of macro expansion. This allows conditional selection

of the machine instructions that appear in expansions of Macro call. Consider

the following program.

Loop 1 A1, DATA1

 A2, DATA2

 A3, DATA3

.

.

Loop 2 A1, DATA3

A2, DATA2

.

.

Loop 3 A1, DATA1

.

.

DATA1 DC F„5‟

DATA2 DC F‟10‟

DATA3 DC F‟15‟

 In the below example, the operands, labels and the number of instructions

generated change in each sequence. The program can written as follows:-

.

.

.

MACRO

&ARG0 VARY &COUNT, &ARG1, &ARG2, &ARG3

&ARG0 A1, &ARG1

AIF (&COUNT EQ 1).FINI

 A2, &ARG2

AIF (&COUNT EQ 2).FINI

 A3,&ARG3

.FINI MEND EXPANDED SOURCE

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

 SUMMER– 18 EXAMINATION
 Subject Name: System Programming Model Answer Subject Code:

 Page 18 of 25

17517
. .

. .

. .

LOOP1 VARY 3, DATA1, DATA2, DATA3 LOOP1 A1,DATA1

. A 2,DATA2

. A 3,DATA3

. .

LOOP2 VARY 2,DATA3,DATA2 LOOP2 A 1,DATA3

. A 2,DATA2

. .

. .

LOOP3 VARY 1,DATA1 LOOP3 A 1,DATA1

.

.

.

DATA1 DC F‟5‟

DATA2 DC F‟10‟

 DATA3 DC F‟15‟

 Labels starting with a period (.) such as .FINI are macro labels and do not appear

in the output of the macro processor.

 The statement AIF (& COUNT EQ1) .FINI direct the macro processor to skip to

the statement. Labeled .FINI if the parameter corresponding to & COUNT is a1;

otherwise the macro processor is to continue with the statement following the

AIF pseudo-ops. AIF is conditional branch pseudo ops it performs an arithmetic

test and branches only if the tested condition is true.

 AGO is an unconditional branch pseudo-ops or „Go to‟ statement. It specifies

label appearing on some other statement. AIF & AGO controls the sequence in

which the macro processor expands the statements in macro instructions.

 2) Compare advantages and disadvantages of top-up and bottom-up parser. 6M

 Ans: Top-down Parser:

Advantages:-

1. It is easy to implement

2. It never wastes time on sub trees that cannot have an S at the root. Bottom up

parsing does this.

Disadvantages:-

1. It is not efficient parsing method as compare to bottom up parse

2. It cannot handle left recursion

3. It is not applicable to large scale of grammar.

4. Wastes time on trees that don‟t match the input (compare the first word of the

input with the leftmost branch of the tree). Bottom-up parsing doesn‟t do this.

Bottom-up parser

Advantages:-

1. It is efficient parsing method.

2. Left recursion framer is handled by bottom up parser.

3. It is applicable to large scale of grammar.

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

 SUMMER– 18 EXAMINATION
 Subject Name: System Programming Model Answer Subject Code:

 Page 19 of 25

17517
Disadvantages:-

1. It wastes time on sub trees that cannot have an S at the root.

2. Bottom-up parse postpones decisions about which production rule to apply until

it has more data than was available to top-down.

5. Attempt any two: 16 Marks

 1) Explain following term in detail :

a) Compile and go loader

b) Absolute loader.

8M

 Ans: Compile and go loader

One method of performing the loader functions is to have the assembler run in one

part of memory and places the assembled machine instructions and data, as they

are assembled, directly into their assigned memory locations.

As a usual practice one method of performing the loader functions is to have to

assemble run in one part of memory and place the assembled machine instructions

and data they are assembled, directly into their assigned memory locations.

When the assembly is completed the assembler causes transfer to the instruction of

the program. This is a simple solution, involving no extra procedures. It is used by

the WATFOR FORTRAN compiler and several other language processors.

Such a loading scheme is commonly called “compile-and-go” or “assembler – and

–go”. It is relatively easy to implement. The assembler simply places the code into

core, and the “loader” consists of one instruction that transfers to the starting

instruction of the newly assembled program.

Absolute loader

The simplest type of loader scheme, which fits the general model, is called an

absolute loader. In this scheme the assembler outputs the machine language

(Compile and

go loader: 4

marks;

Absolute

loader 4

marks)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

 SUMMER– 18 EXAMINATION
 Subject Name: System Programming Model Answer Subject Code:

 Page 20 of 25

17517
translation of the source program in almost the same form as in the "assemble-

arid-go" scheme, except that the data is punched on cards (object deck) instead of

being placed directly in memory. The loader in turn simply accepts the machine

language text and places it into core at the location pre-scribed by the assembler.

This scheme makes more cores available to the user since the assembler is not in

memory at load time.

Absolute loaders are simple to implement but they do have several disadvantages.

First, the programmer must specify to the assembler the address in core where the

program is to be loaded. Furthermore, if there are multiple sub-routines, the

programmer must remember the address of each and use that absolute address

explicitly in his other subroutines to perform subroutine linkage.

 2) Explain simple machine independent optimization algorithm with an example. 8M

 Ans: Following are four commonly used algorithms(techniques) for machine independent

optimization:-

1) Elimination of common sub expression

2) Compile time compute.

3) Boolean expression optimization.

4) Move invariant computations outside of loops.

1) Elimination of common sub expression: -The elimination of duplicate matrix

entries can result in a more can use and efficient object program. The common

sub-expression must be identical and must be in the same statement.

i. The elimination algorithm is as follows:-

ii. Place the matrix in a form so that common sub-expression can be recognized.

iii. Recognize two sub-expressions as being equivalent.

iv. Eliminate one of them.

v. After the rest of the matrix to reflect the elimination of this entry.

(Each

method: 2

marks)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

 SUMMER– 18 EXAMINATION
 Subject Name: System Programming Model Answer Subject Code:

 Page 21 of 25

17517

2) Compile time compute: - Doing computation involving constants at compile

time save both space and execution time for the object program.

The algorithm for this optimization is as follows:-

i. Scan the matrix.

ii. Look for operators, both of whose operands were literals.

iii. When it found such an operation it would evaluate it, create new literal, delete

old line

iv. Replace all references to it with the uniform symbol for the new literal.

v. Continue scanning the matrix for more possible computation.

For e.g.- A = 2 * 276 / 92 * B

The compile time computation would be

Matrix Before optimization Matrix After optimization

3) Boolean expression optimization: - We may use the properties of boolean

expression to shorten their computation.

e.g. In a statement If a OR b Or c,

Then …… when a, b & c are expression rather than generate code that will

always test each expression a, b, c. We generate code so that if a computed as

true, then b OR c is not computed, and similarly for b.

4) Move invariant computation outside of loops: - If computation within a loop

depends on a variable that does not change within that loop, then computation

may be moved outside the loop.

This requires a reordering of a part of the matrix. There are 3 general problems

that need to be solved in an algorithm.

1. Recognition of invariant computation.

2. Discovering where to move the invariant computation.

3. Moving the invariant computation.

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

 SUMMER– 18 EXAMINATION
 Subject Name: System Programming Model Answer Subject Code:

 Page 22 of 25

17517
 3) Apply radix sort for following example:

227, 125, 02, 940, 1207,748, 1520.

8M

 Ans: Pass 1:

Step 1: - Equalize numbers to 4 digits.

0227, 0125, 0002, 0940, 1207. 0748, 1520.

Step 2: - Put Numbers in associated place. Consider LSB, i.e. unit position.

 0 1 2 3 4 5 6 7 8 9

0227 0227

0125 0125

0002 0002

0940 0940

1207 1207

0748 0748

1520 1520

Step 3: - Retrieve the data as per its appearance.

0940, 1520, 0002, 0125, 0227, 1207, 0748

Pass 2:

Step 4: - Put Numbers in associated place. Consider 10
th

 position.

 0 1 2 3 4 5 6 7 8 9

0940 0940

1520 1520

0002 0002

0125 0125

0227 0227

1207 1207

0748 0748

Step 5: - Retrieve the data in reverse sequences.

0002,1207 1520, 0125, 0227, 0940, 0748

Pass 3:

Step 6: - Put Numbers in associated place. Consider 100
th

 position.

 0 1 2 3 4 5 6 7 8 9

0002 0002

1207 1207

1520 1520

0125 0125

0227 0227

0940 0940

0748 0748

Step 7: - Retrieve the data in reverse sequences.

0002, 0125, 1207, 0227, 1520, 0748, 0940

(Correct pass:

2 marks each)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

 SUMMER– 18 EXAMINATION
 Subject Name: System Programming Model Answer Subject Code:

 Page 23 of 25

17517
Pass 4:

Step 8: - Put Numbers in associated place. Consider 1000
th

 position.

 0 1 2 3 4 5 6 7 8 9

0002 0002

0125 0125

1207 1207

0227 0227

1520 1520

0748 0748

0940 0940

Step 9: - Retrieve the data in reverse sequences.

0002, 0125, 0227, 0748, 0940, 1207, 1520

6. Attempt any four: 16 Marks

 1) State and explain four basic task of Macro processor. 4M

 Ans: 1. Recognize Macro Definitions: A Macro instruction processor must recognize

macro definitions identified by the MACRO and MEND pseudo ops. This task

can be complicate when macro definitions appear within macros. When

MACROs and MENDs are nested the macro processor must recognize the

nesting and correctly match the last or outer MEND with the first MACRO. All

of the intervening text, including nested MACROs and MENDs defines a

single macro instruction.

2. Save the Macro Definitions: The processor must store the macro instruction

definitions, which it will need for expanding macro calls.

3. Recognize macro calls: The processor must recognize macro calls that appear

as operations mnemonics. This suggests that macro names be handled as a type

op-code.

4. Expand Macro calls and substitute arguments: The processor must

substitute for dummy or macro definitions arguments the corresponding

arguments from a macro call; the resulting symbolic text is then substitute for

the macro call. This text of course, may contain additional macro definitions or

calls.

(Description

of each task:1

mark)

 2) Explain data structure of Pass-I assembler. 4M

 Ans: Data Structures used in assembler pass 1

1. Input source program: Program written in high level language.

2. A Location Counter (LC), used to keep track of each instruction‟s location.

3. A table, the Machine-operation Table (MOT), that indicates the symbolic

mnemonic, for each instruction and its length (two, four, or six bytes)

4. A table, the Pseudo-Operation Table (POT) that indicates the symbolic

mnemonic and action to be taken for each pseudo-op in pass 1.

5. A table, the Symbol Table (ST) that is used to store each label and its

corresponding value.

(All data

structures: 4

marks)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

 SUMMER– 18 EXAMINATION
 Subject Name: System Programming Model Answer Subject Code:

 Page 24 of 25

17517
6. A table, the literal table (LT) that is used to store each literal encountered and its

corresponding assignment location.

A copy of the input to be used by pass: 2.

 3) What are the advantages and disadvantages of BSS loader? 4M

 Ans: Advantage of BSS loader:

1. Allows the programmer multiple procedure segments and multiple data

segments and of giving him complete freedom in referencing data or

instructions contained in other segments.

2. This provides flexible intersegment referencing and accessing ability, while at

the same time allowing independent translations of programs.

Disadvantage of BSS loader

1. The transfer vector linkage is only useful for transfer and is not well suited for

loading or storing external data (data located in another procedure segment).

2. The transfer vector increases the size of the object program in memory.

3. Finally BSS Loader processes procedure segments but docs not facilitate access

to data segments that can be shared. This last shortcoming is overcome in many

BSS loaders by allowing one common data segment often called COMMON.

(2 Advantages

: 2 marks; 2

Disadvantages

2 marks)

 4) Explain intermediate code generation in compiler. 4M

 Ans: The purpose of the intermediate code generation phase is to produce the appropriate

code (assembly or machine language. The intermediate code generation phase has

the matrix as input. It uses the code productions (macro definitions) which define the

operators that may appear in the matrix to produce code. It also references the

identifier tables and literal tables in order to generate proper address and code

conversions. More flexible definitions are required that will allow us to generate the

more efficient code contained.

Once the syntax analysis and semantic analysis, most compilers generate low-level,

machine code, known as an intermediate code. This code is generated in intermediate

code generator phase.

This code has two essential properties:

o It should be easy to produce.

o It should be easy to translate to machine code.

The basic purpose of generating this code is ease of translation to machine code and

hence it resembles assembly language code greatly.

(Description

of inter-

mediate code

generation: 4

marks)

 5) Explain overlay structure used in dynamic loading scheme. 4M

 Ans: The subroutines of a program are needed at different times. For e.g. Pass 1 and

pass 2 of an assembler are call other subroutine it is possible to produce an overlay

structure that identifiers mutually exclusive subroutines. In order for the overlay

structure to work it is necessary for the module loader to the various procedures as

they are needed. The portion of the loader that actually intercepts the “calls” and

(Description:

3 marks,

Diagram: 1

mark)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

 SUMMER– 18 EXAMINATION
 Subject Name: System Programming Model Answer Subject Code:

 Page 25 of 25

17517
loads the necessary procedure is collect the overlay supervision or simply the

upper.

Above program consisting of five subprogram (A, B, C, D & E) that require look

bytes of core. The arrow indicate that subprogram A only calls B, D and E;

subprogram B only calls C and E; subprogram D only calls E; and subprogram C and

E do not call any other routine procedures B and D are never in use at the same time;

neither are C and E. If are load only those procedures that are actually to be used at

any particular time, the amount of core needed is equal to the longest path of the

overlay structure. This happens to be 70k. Overlay reduces the memory requirement

of a program. It also makes it possible to execute program where size exceeds the

amount of memory which cane ne allocated to them. For the execution of overlay

structured program, the root is loaded in memory and given control for the execution.

Other overlays are loaded as and when headed. Loading of an overlay overwrite a

previously loaded overlay with the same load origin.

