
 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

Page 1 of 27

 WINTER– 17 EXAMINATION
 Subject Name: Software Engineering Model Answer Subject Code:

Important Instructions to examiners:
1) The answers should be examined by key words and not as word-to-word as given in the model answer

scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the

understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more Importance (Not

applicable for subject English and Communication Skills.
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The

figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent
figure drawn.

5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values
may vary and there may be some difference in the candidate’s answers and model answer.

6) In case of some questions credit may be given by judgement on part of examiner of relevant answer
based on candidate’s understanding.

7) For programming language papers, credit may be given to any other program based on equivalent
concept.

Q.
No
.

Sub
Q.
N.

Answer Marking
Scheme

1. Answer any FIVE of the following: Marks 20

 a) Explain changing nature of software. 4M

 Ans: {**Note: Any Relevant answer shall be consider.**}

Changing Nature of Software: - Whenever one starts with the software implementation

changes can occur any time. The software can be change due to any reason. But while

implementing software one should be ready for such changes as if changes occur there

shall not be drastic change in the system. The development team should manage to

implement/mould the implemented system so that the changes can be reflected and the

user requirements meet. When change occur the team look for the current status of the

system and from there onwards they starts implementing a system with new requirements

of a user or changes which is to be implemented in a system.

OR

Today’s Software takes on a dual role. It is a product, and at the same time, the vehicle

for delivering a product. As a product, it delivers the computing potential embodied by

computer hardware or more broadly, by a network of computers that are accessible by

local hardware. Whether it resides within a mobile phone or operates inside a mainframe

computer, software is information transformer— producing, managing, acquiring,

modifying, displaying, or transmitting information that can be as simple as a single bit or

as complex as a multimedia presentation derived from data acquired from dozens of

independent sources. As the vehicle used to deliver the product, software acts as the basis

for the control of the computer (operating systems), the communication of information

(networks), and the creation and control of other programs (software tools and

environments). Software delivers the most important product of our time—information.

It transforms personal data (e.g., an individual’s financial transactions) so that the data

(Explanation

:4 marks)

17513

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

Page 2 of 27

can be more useful in a local context; it manages business information to enhance

competitiveness.

It provides a gateway to worldwide information networks (e.g., the Internet), and

provides the means for acquiring information in all of its forms.

The role of computer software has undergone significant change over the last half-

century. Dramatic improvements in hardware performance, profound changes in

computing architectures, vast increases in memory and storage capacity, and a wide

variety of exotic input and output options, have all precipitated more sophisticated and

complex computer-based systems. Sophistication and complexity can produce dazzling

results when a system succeeds, but they can also pose huge problems for those who

build complex systems.

 b) What are communication principles? Explain their meaning. 4M

 Ans: Principle 1. Listen. Try to focus on the speaker’s words, rather than formulating your

response to those words. Ask for clarification if something is unclear, but avoid constant

interruptions. Never become contentious in your words or actions (e.g., rolling your eyes

or shaking your head) as a person is talking.

Principle 2. Prepare before you communicate. Spend the time to understand the

problem before you meet with others. If necessary, do some research to understand

business domain. If you have responsibility for conducting a meeting, prepare an agenda

in advance of the meeting.

Principle 3. Someone should facilitate the activity. Every communication meeting

should have a leader (a facilitator) to keep the conversation moving in a productive

direction, to mediate any conflict that does occur, and to ensure that other principles are

followed.

Principle 4. Face-to-face communication is best.

Face to face communication is always makes sense. It usually works better when some

other representation of the relevant information is present. For example, a participant

may create a drawing document that serves as a focus for discussion.

Principle 5. Take notes and document decisions. Things have a way of falling into the

cracks. Someone participating in the communication should serve as a “recorder” and

write down all important points and decisions.

Principle 6. Strive for collaboration.

Collaboration occurs when the collective knowledge of members of the team is used to

describe product or system functions or features. Each small collaboration serves to build

trust among team members and creates a common goal for the team.

Principle 7. Stay focused; modularize your discussion.

The more people involved in any communication, the more likely that discussion will

bounce from one topic to the next. The facilitator should keep the conversations modular;

leaving one topic only after it has been resolved

Principle 8. If something is unclear, draw a picture: Verbal communication goes only

so far. A sketch or drawing can often provide clarity when words fail to do the job.

Principle 9. (a) Once you agree to something, move on. (b) If you can’t agree to

something, move on. (c) If a feature or function is unclear and cannot be clarified at

the moment, move on. Communication, like any software engineering activity, takes

time. Rather than iterating endlessly, the people who participate should recognize that

many topics require discussion and that “moving on” is sometimes the best way to

achieve communication agility.

Principle 10. Negotiation is not a contest or a game. It works best when both parties

win. There are many instances in which you and other stakeholders must negotiate

(Any 4

Principles: 1

mark each)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

Page 3 of 27

functions and features, priorities, and delivery dates. If the team has collaborated well, all

parties have a common goal. Still, negotiation will demand compromise from all parties.

 c) List four objectives of testing. 4M

 Ans: List of 4 objectives of testing

1. Testing is a process of executing a program with the intent of finding an error.

2. A good test case is one that has a high probability of finding an as-yet undiscovered

error.

3. A successful test is one that uncovers an as-yet-undiscovered error

4. All tests should be traceable to customer requirements.

5. A good test has a high probability of finding an error.

6. A good test is not redundant.

7. A good test should be ―best of breed.

8. A good test should be neither too simple nor too complex.

OR

1. Finding programming defects.

2. Gaining confidence in and providing information about the level of quality.

3. To make sure that the end result meets the business and user requirements.

4. To ensure that it satisfies SRS that is System Requirement Specifications.

(Any 4

objectives:1

mark each)

 d) Explain briefly unit testing. 4M

 Ans: {**Note: Any Relevant answer shall be consider.**}

(a) Unit Testing is a level of the software testing process where individual

units/components of a software/system are tested.

(b) The purpose is to validate that each unit of the software performs as designed

(c) A unit is the smallest testable part of software.

(d) It usually has one or a few inputs and usually a single output.

(e) In procedural programming a unit may be an individual program, function, procedure,

etc.

(f) In object-oriented programming, the smallest unit is a method, which may belong to a

base/super class, abstract class or derived/child class.

Advantages

(a) Unit testing increases confidence in changing/maintaining code.

(b) If good unit tests are written and if they are run every time any code is changed, the

likelihood of any defects due to the change being promptly caught is very high.

(c) If unit testing is not in place, the most one can do is hope for the best and wait till the

test results at higher levels of testing are out.

(d) If codes are already made less interdependent to make unit testing possible, the

unintended impact of changes to any code is less.

Codes are more reusable. In order to make unit testing possible, codes need to be

modular. This means that codes are easier to reuse.

(f) The cost of fixing a defect detected during unit testing is lesser in comparison to that

of defects detected at higher levels.

(g) Compare the cost (time, effort, destruction, humiliation) of a defect detected during

acceptance testing or say when the software is live.

(h) Debugging is easy. When a test fails, only the latest changes need to be debugged.

With testing at higher levels, changes made over the span of several days/weeks/months

need to be debugged.

(Diagram:1

mark,Explan

ation:3

marks)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

Page 4 of 27

OR

 e) What is alpha-beta testing? 4M

 Ans: Alpha Testing: -The alpha test is conducted at the developer's site by a customer. The

software is used in a natural setting with the developer "looking over the shoulder" of the

user and recording errors and usage problems. Alpha tests are conducted in a controlled

environment.

Beta Testing: - The beta test is conducted at one or more customer sites by the end-user

of the software. Unlike alpha testing, the developer is generally not present. Therefore,

the beta test is a "live" application of the software in an environment that cannot be

controlled by the developer. The customer records all problems (real or imagined) that

are encountered during beta testing and reports these to the developer at regular intervals.

As a result of problems reported during beta tests, software engineers make modifications

and then prepare for release of the software product to the entire customer base.

(Alpha

testing:2

marks, Beta

testing:2

marks)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

Page 5 of 27

 f) Describe six sigma for software engineering. 4M

 Ans: {**Note: Any Relevant answer shall be consider**.}

Six Sigma is the most widely used strategy for statistical quality assurance in industry

today. Originally popularized by Motorola in the 1980s, the Six Sigma strategy ―is a

rigorous and disciplined methodology that uses data and statistical analysis to measure

and improve a company‘s operational performance by identifying and eliminating

defects‘ in manufacturing and service-related processes. The term Six Sigma is derived

from six standard deviations—instances (defects) per million occurrences—implying an

extremely high quality standard. The Six Sigma methodology defines three core steps:

 Define customer requirements and deliverables and project goals via well-defined

methods of customer communication.

 Measure the existing process and its output to determine current quality performance

(collect defect metrics).

 Analyze defect metrics and determine the vital few causes.

If an existing software process is in place, but improvement is required, Six Sigma

suggests two additional steps:

 Improve the process by eliminating the root causes of defects.

 Control the process to ensure that future work does not reintroduce the causes of

defects.

These core and additional steps are sometimes referred to as the DMAIC (define,

measure, analyze, improve, and control) method. If an organization is developing a

software process (rather than improving an existing process), the core steps are

augmented as follows:

 Define customer requirements and deliverables and project goals via well-defined

methods of customer communication.

 Measure the existing process and its output to determine current quality performance

(collect defect metrics).

 Analyze defect metrics and determine the vital few causes.

 Design the process to (1) avoid the root causes of defects and (2) to meet customer

requirements.

 Verify that the process model will, in fact, avoid defects and meet customer

requirements.

This variation is sometimes called the DMADV (define, measure, analyze, design, and

verify) method.

(Explanation

:4 marks)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

Page 6 of 27

 g) Explain analysis modeling. 4M

 Ans: {**Note: Any Relevant answer shall be consider.**}

The analysis model and requirements specification provide a means for assessing quality

once the software is built. Requirements analysis results in the specification of software‘s

operational characteristics.

The analysis model is a bridge between the system description and the design model.

Objectives Analysis model must achieve three primary objectives: Describe Customer

needs Establish a basis for software design Define a set of requirements that can be

validated once the software is built.

Analysis Rules of Thumb

 The model should focus on requirements that are visible within the problem or

business domain. The level of abstraction should be relatively high.

 Each element of the analysis model should add to overall understanding of software

requirements and provide insight into the information, function, and behavior

domains of the system.

 Delay consideration of infrastructure and other non-functional models until design.

 For example, a database may be required, but the classes necessary to implement

it, the functions required to access it, and the behavior that will be exhibited as it

is used should be considered only after problem domain analysis has been

completed.

 Minimize coupling throughout the system.

 The level of interconnectedness between classes and functions should be reduced

to a minimum.

 Be certain that the analysis model provides value to all stakeholders.

 Each constituent has its own use for the model.

 Keep the model as simple as it can be.

 Ex: Don't add additional diagrams when they provide no new information.

 Only modeling elements that have values should be implemented.

(Explanation

:4 marks)

2. Answer any FOUR of the following: Marks 16

 a) Explain the waterfall model. 4M

 Ans:

The waterfall model is a traditional method, sometimes called the classic life cycle. This

is one of the initial models. As the figure implies stages are cascaded and shall be

developed one after the other. It suggests a systematic, sequential approach to software

development that begins with customer specification of requirements and progresses

through, communication, planning, modeling construction and deployment.

In other words one stage should be completed before the other begins. Hence, when all

the requirements are elicited by the customer, analyzed for completeness and

consistency, documented as per requirements, the development and design activities

commence. One of the main needs of this model is the user‘s explicit prescription of

(Diagram:1

mark,

Explanation:

3 marks)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

Page 7 of 27

complete requirements at the start of development. For developers it is useful to layout

what they need to do at the initial stages. Its simplicity makes it easy to explain to

customers who may not be aware of software development process. It makes explicit

with intermediate products to begin at every stage of development. One of the biggest

limitation is it does not reflect the way code is really developed. Problem is well

understood but software is developed with great deal of iteration. Often this is a solution

to a problem which was not solved earlier and hence software developers shall have

extensive experience to develop such application; as neither the user nor the developers

are aware of the key factors affecting the desired outcome and the time needed. Hence at

times the software development process may remain uncontrolled. Today software work

is fast paced and subject to a never-ending stream of changes in features, functions and

information content. Waterfall model is inappropriate for such work. This model is useful

in situation where the requirements are fixed and work proceeds to completion in a linear

manner.

 b) Explain modeling practice in software engineering with principles. 4M

 Ans: We create models to gain a better understanding of the actual entity to be built.

• Principle 1. The primary goal of the software team is to build software, not

create models.
Agility means getting software to the customer in the fastest possible time.

Models that make this happen are worth creating, but models that slow the

process down or provide little new insight should be avoided.

• Principle 2. Travel light—don’t create more models than you need.
Every model that is created must be kept up-to-date as changes occur. More

importantly, every new model takes time that might otherwise be spent on

construction (coding and testing). Therefore, create only those models that make

it easier and faster to construct the software.

• Principle 3. Strive to produce the simplest model that will describe the

problem or the software.

• Don’t overbuild the software by keeping models simple, the resultant software

will also be simple. The result is software that is easier to integrate, easier to test,

and easier to maintain (to change). In addition, simple models are easier for

members of the software team to understand and critique, resulting in an ongoing

form of feedback that optimizes the end result.

• Principle 4. Build models in a way that makes them amenable to change.

Assume that your models will change, but in making this assumption don’t get

sloppy. For example, since requirements will change, there is a tendency to give

requirements models short. Why? Because you know that they’ll change anyway.

The problem with this attitude is that without a reasonably complete requirements

model, you’ll create a design (design model) that will invariably miss important

functions and features.

• Principle 5. Be able to state an explicit purpose for each model that is

created.

• Every time you create a model, ask yourself why you’re doing so. If you can’t

provide solid justification for the existence of the model, don’t spend time on it.

• Principle 6. Adapt the models you develop to the system at hand.
 It may be necessary to adapt model notation or rules to the application; for

example, a video game application might require a different modeling technique

than real-time, embedded software that controls an automobile engine.

(Any 4

principles:1

mark each)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

Page 8 of 27

• Principle 7. Try to build useful models, but forget about building perfect

models.
 When building requirements and design models, a software engineer reaches a

point of diminishing returns. That is, the effort required to make the mod el

absolutely complete and internally consistent is not worth the benefits of these

properties. Am I suggesting that modeling should be sloppy or low quality? The

answer is “no.” But modeling should be conducted with an eye to the next

software engineering steps. Iterating endlessly to make a model “perfect” does not

serve the need for agility.

• Principle 8. Don’t become dogmatic about the syntax of the model.
 If it communicates content successfully, representation is secondary.

Although everyone on a software team should try to use consistent notation

during modeling, the most important characteristic of the model is to

communicate information that enables the next software engineering task. If a

model does this successfully, incorrect syntax can be forgiven.

• Principle 9. If your instincts tell you a model isn’t right even though it seems

okay on paper, you probably have reason to be concerned. If you are an

experienced software engineer, trust your instincts. Software work teaches many

lessons—some of them on a subconscious level. If something tells you that a

design model is doomed to fail (even though you can’t prove it explicitly), you

have reason to spend additional time examining the model or developing a

different one.

• Principle 10. Get feedback as soon as you can.
• Every model should be reviewed by members of the software team. The intent of

these reviews is to provide feedback that can be used to correct modeling

mistakes, change misinterpretations, and add features or functions that were

inadvertently omitted.

 c) What do you mean by good test? 4M

 Ans: Testing is a process of executing a program with the intent of finding an error.

 A good test case is one that has a high probability of finding an as yet

undiscovered error. A good test has a high probability of finding an error.

 A good test is not redundant.

 A good test should be “best of breed”.

 A good test should be neither too simple nor too complex.

 A good testing strategy also assesses other quality characteristics such as

portability, maintainability, and usability

 Each test should be executed separately; combining a series of tests could cause

side effects and mask certain errors.

(Explanation

:4 marks)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

Page 9 of 27

 d) Describe integration testing approach. 4M

 Ans: Integration testing is a systematic technique for constructing the software architecture

while at the same time conducting tests to uncover errors associated with interfacing. The

objective is to take unit-tested components and build a program structure that has been

dictated by design. There are two approaches used in Integration Testing as follows:

Top-down integration. Top-down integration testing is an incremental approach to

construction of the software architecture. Modules are integrated by moving downward

through the control hierarchy, beginning with the main control module. Modules

subordinate (and ultimately subordinate) to the main control module are incorporated into

the structure in either a depth-first or breadth-first manner.

Bottom-up integration. Bottom-up integration testing, as its name implies, begins

construction and testing with atomic modules (i.e., components at the lowest levels in the

program structure). Because components are integrated from the bottom up, the

functionality provided by components subordinate to a given level is always available

and the need for stubs is eliminated.

(Integration

testing:2

marks, Top

Down/Botto

m Up:2

marks)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

Page 10 of 27

 e) Explain Mccalls quality factor. 4M

 Ans:

• Correctness. The extent to which a program satisfies its specification and fulfills

the customer’s mission objectives.

• Reliability. The extent to which a program can be expected to perform its

intended function with required precision.

• Efficiency. The amount of computing resources and code required by a program

to perform its function.

• Integrity. Extent to which access to software or data by unauthorized persons can

be controlled.

• Usability. Effort required to learn, operate, prepare input for, and interpret output

(Diagram 1

mark;

Description

of Factors: 3

marks)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

Page 11 of 27

of a program

• Maintainability. Effort required to locate and fix an error in a program.

• Flexibility. Effort required to modify an operational program.

• Testability. Effort required to test a program to ensure that it performs its

intended function.

• Portability. Effort required to transfer the program from one hardware and/or

software system environment to another.

• Reusability. Extent to which a program [or parts of a program] can be reused in

other applications—related to the packaging and scope of the functions that the

program performs.

• Interoperability. Effort required to couple one system to another.

 f) What is an object oriented analysis? 4M

 Ans: {**Note: Diagram is optional**.}

Object-oriented Analysis focuses on the definition of classes and the manner in which

they collaborate with one another to effect customer requirements.

Elements of the Analysis Model

The intent is to define all classes, relationship, behavior associated with them, that are to

the problem to be solved. To achieve this following task should occur.

Task 1. Basic user requirements must be communicated between user and developer.

Task 2. Classes must be identified (i.e. attributes, methods defined)

Task 3. A class hierarchy is defined

Task 4. Object- object relationships (object connection) should be represented.

Task 5. Object behavior must be modeled.

Task 6.Task-1 to Task-5 is reapplied iteratively till model is complete.

(Explanation

:4 marks)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

Page 12 of 27

3. Answer any FOUR of the following: Marks 16

 a) Difference between prescriptive and agile process model, 4M

 Ans:

Prescriptive Process Model Agile Process Model

Product Oriented process. Process and

technology are crucial

People oriented process. Favors people

over technology

A traditional approach for software

product development

It is an recent approach for Project

Management

Traditional and modern approaches

using generic process framework

activities with medium to large cycle-

time

Cycle-time reduction is most important

Focus is on tasks, tools such as

estimating, scheduling, tracking and

control

Model focuses on modularity, iterative,

time bound, parsimony, adaptive,

incremental convergent, collaborative

approach

Models include Waterfall, Incremental,

Prototype, RAD and spiral

Agile process model uses the concept of

Extreme Programming

(Any 4 points

of

differentiatio

n shall be

considered: 1

mark for

each point)

 b) Describe any two core principles of software engineering. 4M

 Ans: The First Principle: The Reason It All Exists

A software system exists for one reason: To provide value to its users. All decisions

should be made with this in mind. Before specifying a system requirement, before noting

a piece of system functionality, before determining the hardware platforms or

development processes, ask yourself questions such as: "Does this add real VALUE to

the system?" If the answer is "no", don't do it. All other principles support this one.

The Second Principle: KISS (Keep It Simple, Stupid!)

There are many factors to consider in any design effort. All design should be as simple

as possible, but no simpler. This facilitates having a more easily understood, and easily

maintained system.

The Third Principle: Maintain the Vision

A clear vision is essential to the success of a software project. Without one, a project

almost unfailingly ends up being "of two [or more] minds" about itself.

Compromising the architectural vision of a software system weakens and will eventually

break even the most well designed systems. Having an empowered Architect who can

hold the vision and enforce compliance helps ensure a very successful software project.

The Fourth Principle: What You Produce, Others Will Consume.

Seldom is an industrial-strength software system constructed and used in a vacuum. In

some way or other, someone else will use, maintain, document, or otherwise depend on

being able to understand your system. So, always specify, design, and implement

knowing someone else will have to understand what you are doing. The audience for any

product of software development is potentially large. Specify with an eye to the users.

(Any 2

Principles

with

description:

2 marks

each)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

Page 13 of 27

Design, keeping the implementers in mind. Code with concern for those that must

maintain and extend the system. Someone may have to debug the code you write, and

that makes them a user of your code. Making their job easier adds value to the system.

The Fifth Principle: Be Open to the Future

A system with a long lifetime has more value. In today's computing environments,

where specifications change on a moment's notice and hardware platforms are obsolete

when just a few months old, software lifetimes are typically measured in months instead

of years. However, true "industrial-strength" software systems must endure far longer.

To do this successfully, these systems must be ready to adapt to these and other changes.

Systems that do this successfully are those that have been designed this way from the

start. Never design yourself into a corner. Always ask "what if ", and prepare for all

possible answers by creating systems that solve the general problem, not just the specific

one. This could very possibly lead to the reuse of an entire system.

The Sixth Principle: Plan Ahead for Reuse

Reuse saves time and effort. Achieving a high level of reuse is arguably the hardest goal

to accomplish in developing a software system. The reuse of code and designs has been

proclaimed as a major benefit of using object-oriented technologies. However, the return

on this investment is not automatic. To leverage the reuse possibilities that OO

programming provides requires forethought and planning. There are many techniques to

realize reuse at every level of the system development process. Those at the detailed

design and code level are well known and documented. New literature is addressing the

reuse of design in the form of software patterns. However, this is just part of the battle.

Communicating opportunities for reuse to others in the organization is paramount. How

can you reuse something that you don't know exists? Planning ahead for reuse reduces

the cost and increases the value of both the reusable components and the systems into

which they are incorporated.

Seventh Principle: Think!

This last Principle is probably the most overlooked. Placing clear, complete thought

before action almost always produces better results. When you think about something,

you are more likely to do it right. You also gain knowledge about how to do it right

again. If you do think about something and still do it wrong, it becomes valuable

experience. A side effect of thinking is learning to recognize when you don t know

something, at which point you can research the answer. When clear thought has gone into

a system, value comes out. Applying the first six Principles requires intense thought, for

which the potential rewards are enormous.

 c) What is test plan? 4M

 Ans: Test plan: A document describing the scope, approach, resources and schedule of

intended test activities. It identifies amongst others test items, the features to be tested,

the testing tasks, who will do each task, degree of tester independence, the test

environment, the test design techniques and entry and exit criteria to be used, and the

rationale for their choice, and any risks requiring contingency planning. It is a record of

the test planning process master test plan: A test plan that typically addresses multiple

test levels. phase test plan: A test plan that typically addresses one test phase

OR

(Any

relevant

Description:

4 marks)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

Page 14 of 27

A test plan outlines the classes of tests to be conducted, and a test procedure defines

specific test cases that are designed to ensure that all functional requirements are

satisfied, all behavioral characteristics are achieved, all content is accurate and properly

presented, all performance requirements are attained, documentation is correct, and

usability and other requirements are met (e.g., transportability, compatibility, error

recovery, maintainability). In some cases, the test plan is integrated with the project plan.

In others, the test plan is a separate document.

 d) Describe regression testing. 4M

 Ans: Each time a new module is added as part of integration testing, the software changes.

New data flow paths are established, new I/O may occur, and new control logic is

invoked. These changes may cause problems with functions that previously worked

flawlessly. In the context of an integration test strategy, regression testing is the re-

execution of some subset of tests that have already been conducted to ensure that changes

have not propagated unintended side effects.

In a broader context, successful tests (of any kind) result in the discovery of errors, and

errors must be corrected. Whenever software is corrected, some aspect of the software

configuration (the program, its documentation, or the data that support it) is changed.

Regression testing helps to ensure that changes (due to testing or for other reasons) do

not introduce unintended behavior or additional errors.

The regression test suite (the subset of tests to be executed) contains three different

classes of test cases:

 A representative sample of tests that will exercise all software functions.

 Additional tests that focus on software functions that are likely to be affected by the

change.

 Tests that focus on the software components that have been changed.

(Description:

4 marks)

 e) Explain modality with the help of example. 4M

 Ans: 1) A modality of relationship is zero if occurrence of relationship is optional and

modality of relationship is 1 if occurrence of relationship is mandatory (i.e.

compulsory).

2) The modality specifies the minimum number of relationship.

3) Shows maximum 1 to minimum or compulsory 1.

4) E.g. exactly one (maximum 1 and minimum 1) room is occupied by zero or many

(maximum many and minimum 0) employees.

5) Student and Teacher relationship has modality 1 as their relationship is mandatory;

whereas Student and Sports can have modality 0 as few students may not enroll for

sports.

(Description:

3 marks;

Example: 1

mark)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

Page 15 of 27

 f) What is SPM? Why is it needed? 4M

 Ans: {**Note: Any Relevant answer shall be consider.**}

The Software Project Management includes basic function such as scoping, planning,

estimating, scheduling, organizing, directing, coordinating, controlling and closing. The

effective Software Project Management focuses on the four P‘s via People, Product,

Process and Project.

Project management software caters to the following primary functions:

1. Project planning: To define a project schedule, a project manager (PM) may use the

software to map project tasks and visually describe task interactions.

2. Task management: Allows for the creation and assignment of tasks, deadlines and

status reports.

3. Document sharing and collaboration: Productivity is increased via a central

document repository accessed by project stakeholders.

4. Calendar and contact sharing: Project timelines include scheduled meetings,

activity dates and contacts that should automatically update across all PM and

stakeholder calendars.

5. Bug and error management: Project management software facilitates bug and error

reporting, viewing, notifying and updating for stakeholders.

6. Time tracking: Software must have the ability to track time for all tasks maintain

records for third-party consultants.

(Description:

4 marks)

4. Answer any FOUR of the following: Marks 16

 a) Explain the concept of software requirement specification. 4M

 Ans: {**Note: Any Relevant answer shall be consider.**}

A software requirements specification (SRS) is a complete description of the behavior

of the system to be developed. It includes a set of use cases describe all of the

interactions that the users will have with the software. In addition to use cases, the SRS

contains functional requirements and nonfunctional requirements. Functional

requirements define the internal workings of the software: that is, the calculations,

technical details, data manipulation and processing, and other specific functionality that

shows how the use cases are to be satisfied. Non-functional requirements impose

constraints on the design or implementation (such as performance requirements, quality

standards, or design constraints).

The purpose of SRS document is providing a detailed overview of software product, its

parameters and goals. SRS document describes the project's target audience and its user

interface, hardware and software requirements. It defines how client, team and audience

see the product and its functionality.

The importance of standard template for SRS documents:

Establish the basis for agreement between the customers and the suppliers on what the

software product is to do. The complete description of the functions to be performed by

the software specified in the SRS will assist the potential users to determine if the

software specified meets their needs or how the software must be modified to meet their

(Description:

4 marks)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

Page 16 of 27

needs. Reduce the development effort. The preparation of the SRS forces the various

concerned groups in the customer's organization to consider rigorously all of the

requirements before design begins and reduces later redesign, recoding, and retesting.

Careful review of the requirements in the SRS can reveal omissions,

misunderstandings, and inconsistencies early i/p the development cycle when these

problems are easier to correct.

Provide a basis for estimating costs and schedules. The description of the product to be

developed as given in the SRS is a realistic basis for estimating project costs and can be

used to obtain approval for bids or price estimates.

Provide a baseline for validation and verification. Organizations can develop their

validation and Verification plans much more productively from a good SRS. As a part

of the development contract, the SRS provides a baseline against which compliance can

be measured.

Facilitate transfer. The SRS makes it easier to transfer the software product to new

users or new machines. Customers thus find it easier to transfer the software to other

parts of their organization, and suppliers find it easier to transfer it to new customers.

Serve as a basis for enhancement. Because the-SRS discusses the product but not the

project that developed it, the SRS serves as a basis for later enhancement of the finished

product. The SRS may need to be altered, but it does provide a foundation for

continued production evaluation.

 b) Explain characteristics of software testing. 4M

 Ans: 1. To perform effective testing, a software team should conduct effective Formal

Technical Reviews (FTRs) using which many errors are eliminated before testing

2. Testing begins at the component level and works “outward” toward the integration of

the entire computer-based system.

3. Different testing techniques are appropriate for different software engineering

approaches and at different points in time.

4. Testing is conducted by the developer of the software and (for large projects) an

independent test group.

5. Testing and debugging are different activities, but debugging must be accommodated

in any testing strategy

OR

1. Testability. “Software testability is simply how easily [a computer program] can be

tested.”

2. Operability. “The better it works, the more efficiently it can be tested.” If a system

is designed and implemented with quality in mind, relatively few bugs will block the

execution of tests, allowing testing to progress without fits and starts.

3. Observability. “What you see is what you test.” Inputs provided as part of testing

produce distinct outputs. System states and variables are visible or queriable during

execution. Incorrect output is easily identified. Internal errors are automatically

detected and reported. Source code is accessible.

4. Controllability. “The better we can control the software, the more the testing can be

automated and optimized.” All possible outputs can be generated through some

(Any 4

Characteristi

cs :1 mark

each)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

Page 17 of 27

combination of input, and I/O formats are consistent and structured. All code is

executable through some combination of input. Software and hardware states and

variables can be controlled directly by the test engineer. Tests can be conveniently

specified, automated, and reproduced.

5. Decomposability. “By controlling the scope of testing, we can more quickly isolate

problems and perform smarter retesting.” The software system is built from

independent modules that can be tested independently.

6. Simplicity. “The less there is to test, the more quickly we can test it.” The program

should exhibit functional simplicity (e.g., the feature set is the minimum necessary

to meet requirements); structural simplicity (e.g., architecture is modularized to limit

the propagation of faults), and code simplicity (e.g., a coding standard is adopted for

ease of inspection and maintenance).

7. Stability. “The fewer the changes, the fewer the disruptions to testing.” Changes to

the software are infrequent, controlled when they do occur, and do not invalidate

existing tests. The software recovers well from failures.

8. Understandability. “The more information we have, the smarter we will test.” The

architectural design and the dependencies between internal, external, and shared

components are well understood. Technical documentation is instantly accessible,

well organized, specific and detailed, and accurate. Changes to the design are

communicated to testers

 c) State eight benefit of ISO standards 4M

 Ans: 1. Well defined and documented procedures improve the consistency of output

2. Quality is constantly measured

3. Procedures ensure corrective action is taken whenever defects occur

4. Defect rates decrease

5. Defects are caught earlier and are corrected at a lower cost

6. Defining procedures identifies current practices that are obsolete or inefficient

7. Documented procedures are easier for new employees to follow

8. Organizations retain or increase market share, increasing sales or revenues

9. Improved product reliability

10. Better process control and flow

11. Better documentation of processes

12. Greater employee quality awareness

13. Reductions in product scrap, rewords and rejections.

OR

1. For customers, the worldwide compatibility of technology

2. For governments, International Standards provide the technological and scientific

bases underpinning health, safety and environmental legislation.

3. For trade officials negotiating the emergence of regional and global markets,

Internationals Standards create ―a level playing field‖ for all competitors on

those markets.

4. For developing countries, International Standards that represent an international

consensus on the state of the art constitute an important source of technological

know-how

5. For consumers, conformity of products and services to international Standards

(Any 8

benefits: ½

mark each

benefit)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

Page 18 of 27

provides assurance about their quality, safety and reliability.

6. For everyone, International Standards can contribute to the quality of life in

general by ensuring that the transport, machinery and tools we use are safe.

7. For the planet it inhabits, International Standards on air, water and soil quality,

and on emission of gasses and radiation, can contribute to efforts to preserve the

environment.

 d) Explain DFD with example. 4M

 Ans: Data Flow Diagram (DFD) is a graphical representation of how data is actually flowing

within system. It gives clear idea about which module requires what data as an input

and what will be the output of that module. Generally DFD has several levels; higher

the level better understanding about the system can achieve. First level of DFD is

known as Context level or Level 0 which gives overall working of System. Level 1

gives modularize representation of system containing primary modules of system. From

Level 2 onwards a designer starts revisiting each and every module to go in depth

analysis of system which contains smaller functions to be performed by every module.

Example:

Considering the Safe Home product, a level 0 DFD for the system is shown in Figure.

The primary external entities (boxes) produce information for use by the system and

consume information generated by the system. The labeled arrows represent data

objects or data object type hierarchies. For example, user commands and data

encompass all configuration commands, all activation/deactivation commands, all

miscellaneous interactions, and all data that are entered to qualify or expand a

command.

(Description

:2 marks;

Example: 2

marks)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

Page 19 of 27

 e) Explain the concept of Gantt chart. 4M

 Ans: {**Note: Diagram is Optional.**}

When creating a software project schedule, software team begins with a set of tasks (the

work breakdown structure). If automated tools are used, the work breakdown is input as a

task network or task outline. Effort, duration, and start date are then input for each task.

In addition, tasks may be assigned to specific individuals.

As a consequence of this input, a Gantt chart, also called a time-line chart, is generated.

A Gantt chart can be developed for the entire project. Alternatively, separate charts can

be developed for each project function or for each individual working on the project.

Figure below illustrates the format of a Gantt chart. It depicts a part of a software project

schedule that emphasizes the concept scoping task for a word-processing (WP) software

product. All project tasks are listed in the left-hand column. The horizontal bars indicate

the duration of each task. When multiple bars occur at the same time on the calendar, task

concurrency is implied. The diamonds indicate milestones.

(Any

relevant

description:

4 marks)

 f) Explain CPM. How is it different from pert? 4M

 Ans: Critical Path Method (CPM): CPM is a technique that is used in projects that have

predictable activities and tasks such as in construction projects. It allows project planners

to decide which aspect of the project to reduce or increase when a trade-off is needed.

It is a deterministic tool and provides an estimate on the cost and the amount of time to

spend in order to complete the project. It allows planners to control both the time and

cost of the project.

(Description

of CPM :2

marks;

Differentiatio

n :2 marks)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

Page 20 of 27

CPM differs from PERT as follow:

The Program Evaluation and Review Technique (PERT) is a project management

technique or tool which is suitable for projects that have unpredictable activities while

the Critical Path Method (CPM) is a project management tool which is suitable for

projects that have predictable activities.

CPM uses a single estimate for the time that a project can be completed while PERT uses

three estimates for the time that it can be completed.

CPM is a deterministic project management tool while PERT is a probabilistic project

management tool.

CPM allows project management planners to determine which aspect of the project to

sacrifice when a trade-off is needed in order to complete the project while PERT does

not.

5. Answer any TWO of the following: Marks 16

 a) What is software? What are its characteristics? 8M

 Ans: {**Note: Diagram is Optional.**}

Software is

(1) Instructions (computer programs) that when executed provide desired function and

performance,

(2) Data structures that enable the programs to adequately manipulate

information, and

(3) Documents that describe the operation and use of the programs

Software is written to handle an Input – Process – Output system to achieve

predetermined goals. Software is logical rather than a physical system

element.

SOFTWARE CHARACTERISTICS:

 a) Software is developed or engineered; it is not manufactured in the classical

sense.

 Although some similarities exist between software development and hardware

manufacture, the two activities are fundamentally different.

 In both activities, high quality is achieved through good design, but the

manufacturing phase for hardware can introduce quality problems that are

nonexistent (or easily corrected) for software.

 Both activities are dependent on people, but the relationship between people

applied and work accomplished is entirely different.

 Software costs are concentrated in engineering. This means that software projects

cannot be managed as if they were manufacturing projects.

b) Software costs are concentrated in engineering. This means that software

projects cannot be managed as if they were manufacturing projects.

 Software is not susceptible to the environmental maladies that cause hardware

to wear out.

(Definition of

Software: 2

marks; Each

Characteristi

c : 2 marks)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

Page 21 of 27

 In theory, therefore, the failure rate curve for software should take the form of

the “idealized curve” shown in the figure.

 Undiscovered defects will cause high failure rates early in the life of a

program. However, these are corrected (ideally, without introducing other

errors) and the curve flattens as shown.

 The idealized curve is a gross oversimplification of actual failure models for

software. However, the implication is clear—software doesn't wear out. But it

does deteriorate! This seeming contradiction can best be explained by

considering the “actual curve” shown in Figure.

 During its life, software will undergo change (maintenance). As changes are

made, it is likely that some new defects will be introduced, causing the failure
rate curve to spike as shown in Figure.

 Before the curve can return to the original steady-state failure rate, another

change is requested, causing the curve to spike again. Slowly, the minimum

failure rate level begins to rise—the software is deteriorating due to change.

 c) Although the industry is moving toward component- based assembly,

most software continues to be custom built.

 The reusable components have been created so that the engineer can

concentrate on the truly innovative elements of a design, that is, the parts of the

design that represent something new.

 In the software world, it is something that has only begun to be achieved on a

broad scale. A software component should be designed and implemented so

that it can be reused in many different programs.

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

Page 22 of 27

 b) What are major task of requirement engineering? 8M

 Ans: Requirements engineering tasks

1. Inception: - Inception means beginning. It is usually said that requirement

engineering is a―communication intensive activity. The customer and developer meet

and they the overall scope and nature of the problem statements. By having proper

inception phase the developer will have clear idea about the system and as a result of

that better understanding of a system can be achieved. Once the system is clear to the

developer they can implement a system with better efficiency.

2. Elicitation: - Elicitation task will help the customer to define the actual requirement

of a system. To know the objectives of the system or the project to be developed is a

critical job. This phase will help people to determine the goal of a system and clear

idea about the system can be achieved.

3. Elaboration: - The information obtained from the customer during inception and

elicitation is expanded and refined during elaboration. This requirement engineering

activity focuses on developing a refined technical model of software functions,

features and constraints.

4. Negotiation: - This phase will involve the negotiation between what user actual

expects from the system and what is actual feasible for the developer to build. Often it

is seen that user always expect lot of things from the system for lesser cost. But based

on the other aspect and feasibility of a system the customer and developer can

negotiate on the few key aspect of the system and then they can proceed towards the

implementation of a system

5. Specification: - A specification can be a re-written document, a set of graphical

models, a formal mathematical model, a collection of usage scenario, a prototype, or

any combinations of these.

 The specification is the final work product produced by the requirement engineers. It

serves as the foundation for subsequent software engineering activities. It describes

the function and performance of a computer based system and the constraints that

will govern its development.

6. Validation: - The work products produced as a consequence of requirements

engineering are assessed for quality during a validation step. Requirements validation

examines the specification to ensure that all software requirements have been stated

unambiguously; that inconsistencies, omissions and errors have been detected and

corrected, and that the work products conform to the standards established for the

process, the project, and the product.

7. Requirements management: - Requirement management begins with identification.

Each requirement is assigned a unique identifier. Once requirement have been

identified, traceability tables are developed.

(All 7 tasks

expected

with 1-2

liner

description

of each; 2

marks for

only list of

all)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

Page 23 of 27

 c) Explain the term debugging. Explain different debugging. 8M

 Ans: {**Note: - Considering different Debugging Strategies.**}

Debugging occurs as a consequence of successful testing. That is, when a test case

uncovers an error, debugging is the process that results in the removal of the error.

Although debugging can and should be an orderly process, it is still very much an art.

There are three Different Debugging Strategies available as follows: -

(1) Brute Force,

(2) Backtracking, and

(3) Cause Elimination.

1. Brute Force: This category of debugging is probably the most common and least

efficient method for isolating the cause of a software error. Brute force debugging

methods are applied when all else fails. Using a "let the computer find the error"

philosophy, memory dumps are taken, run-time traces are invoked, and the program

is loaded with WRITE statements. In the morass of information that is produced a

clue is found that can lead us to the cause of an error. Although the mass of

information produced may ultimately lead to success, it more frequently leads to

wasted effort and time. Thought must be expended first.

2. Backtracking: It is a fairly common debugging strategy that can be used successfully

in small programs. Beginning at the site where a symptom has been uncovered, the

source code is traced backward (manually) until the site of the cause is found.

Unfortunately, as the number of source lines increases, the number of potential

backward paths may become unmanageably large.

3. Cause Elimination: It is manifested by induction or deduction and introduces the

concept of binary partitioning. Data related to the error occurrence are organized to

isolate potential causes. A "cause hypothesis" is devised and the aforementioned data

are used to prove or disprove the hypothesis. Alternatively, a list of all possible

causes is developed and tests are conducted to eliminate each. If initial tests indicate

that a particular cause hypothesis shows promise, data are refined in an attempt to

isolate the bug.

(Debugging

explanation:

2 marks ;3

strategies :2

marks each)

6. Answer any FOUR of the following: Marks 16

 a) Explain Deployment principles. 4M

 Ans:
 Deployment principle:

1. Principle 1: Manage customer’s expectations.

It always happens that customer wants more than he has started earlier as his

requirements. It may be the case that customer gets disappointed, even after getting all

his requirements satisfied. Hence at time of delivery developer must have skills to

manage customer‘s expectations.

2. Principle 2: Assembly and test complete delivery package.

It is not the case that the deliverable package is ‗only software‘. The customer must

get all supporting and essential help from developer‘s side.

(Any 4

deployment

principles

with

explanation

:1 mark

each)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

Page 24 of 27

3. Principle 3: Record-keeping mechanism must be established for customer

support.

Customer support is important factor in deployment phase. If proper support is not

provided, customer will not be satisfied. Hence support should be well planned and

with record-keeping mechanism.

4. Principle 4: Provide essential instructions, documentations and manual.

Many times, developer thinks ―when project is successful deliverable part is

only working program‖. But realty is that working program is just part of software

product. Actual project delivery includes all documentations, help files and guidance

for handling the software by user.

5. Principle 5: Don’t deliver any defective or buggy software to the customer.

In incremental type of software, software organizations may deliver some defective

software to the customer by giving assurance that the defects will be removed in next

increment.

 b) Differentiate between validation and verification. 4M

 Ans: Validation Verification

Validation is a dynamic

mechanism of validating and testing

the actual product.

Verification is a static practice of

verifying documents, design, code and

program. It always involves executing the code. It does not involve executing the code.

It is computer based execution of
program.

It is human based checking of

documents and files.

Validation uses methods like black

box (functional) testing, gray box

testing, and white box (structural)

testing etc.

Verification uses methods like

inspections, reviews, walkthroughs,

and Desk-checking etc.

Validation is to check whether

software meets the customer

expectations and requirements.

Verification is to check whether the

software conforms to specifications.

It can catch errors that verification

cannot catch. It is High Level

Exercise.

It can catch errors that validation

cannot catch. It is low level exercise.

Target is actual product-a unit, a

module, a bent of integrated modules,

and effective final product.

Target is requirements specification,

application and software architecture,

high level, complete design, and

database design etc. Validation is carried out with the

involvement of testing team.

Verification is done by QA team to

ensure that the software is as per the

specifications in the SRS document.

It generally follows after verification. It generally comes before Validation

(Any 4

differences :1

mark each)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

Page 25 of 27

 c) Explain about software quality assurance. 4M

 Ans: Software quality assurance (SQA) is a process that ensures that developed software meets

and complies with defined or standardized quality specifications. SQA is an ongoing

process within the software development life cycle (SDLC) that routinely checks the

developed software to ensure it meets desired quality measures. SQA helps ensure the

development of high-quality software. SQA practices are implemented in most types of

software development, regardless of the underlying software development model being

used. In a broader sense, SQA incorporates and implements software testing

methodologies to test software. Rather than checking for quality after completion, SQA

processes test for quality in each phase of development until the software is complete.

With SQA, the software development process moves into the next phase only once the

current/previous phase complies with the required quality standards.

SQA generally works on one or more industry standards that help in building software

quality guidelines and implementation strategies. These standards include the ISO 9000

and capability maturity model integration (CMMI).

Software quality assurance is composed of a variety of tasks associated with two different

constituencies - the software engineers who do technical work and an SQA group that has

responsibility for quality assurance planning, oversight, record keeping, analysis, and

reporting. Software engineers address quality (and perform quality assurance and quality

control activities) by applying solid technical methods and measures, conducting formal

technical reviews, and performing well-planned software testing.

(Explanation

of SQA : 4

marks)

 d) Describe behavioral model. 4M

 Ans: {**Note: Any Relevant answer shall be consider.}

Behavioral models are used to describe the overall behavior of a system.

The behavioral model indicates how software will respond to external events or stimuli.

To create the model, you should perform the following steps:

1. Evaluate all use cases to fully understand the sequence of interaction within the

system.

2. Identify events that drive the interaction sequence and understand how these events

relate to specific objects.

3. Create a sequence for each use case.

4. Build a state diagram for the system.

5. Review the behavioral model to verify accuracy and consistency

Two types of behavioral model are:

 Data processing models that show how data is processed as it moves through the system

 State machine models that show the systems response to events

 These models show different perspectives, so both of them are required to describe the

system’s behavior

Data Processing Model

Data flow diagrams (DFDs) may be used to model the system’s data processing. These

show the processing steps as data flows through a system. DFDs are an intrinsic part of

many analysis methods. It is Simple and intuitive notation that customers can understand.

It show end-to-end processing of data. DFDs model the system from a functional

perspective. It is helpful to develop an overall understanding of the system

State machine Model

These model the behavior of the system in response to external and internal events. They

show the system’s responses to stimuli so are often used for modeling real modeling real-

time systems. State machine models show system states as nodes and events as arcs

(Description

:4 marks)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

Page 26 of 27

between these nodes. When an event occurs, the system moves from one state to another.

State charts, An integral part of the UML are used to represent state machine models

 e) What is project scheduling? 4M

 Ans: Software project scheduling is an activity that distributes estimated effort across the

planned project duration by allocating the effort to specific software engineering tasks.

During early stages of project planning a macroscopic schedule is developed. This type

of schedule identifies all major process framework activities and the product functions to

which they are applied. As the project proceeds each entry on the macroscopic schedule

is refined into a detailed schedule. Here specific software tasks are identified and

scheduled.

 Scheduling of software engineering projects can be viewed from two different

perspectives .In the first, an end-date for release of a computer based system has already

been established. The second view assumes that rough chronological bounds have been

discussed and end-date is set by the software engineering organization

Basic principles software project scheduling:

Compartmentalization: The project must be compartmentalized into a number of

manageable activities and tasks. To accomplish compartmentalization, both the product

and the process are decomposed.

Interdependency: The interdependency of each compartmentalized activity or task must

be determined. Some tasks must occur in sequence while others can occur in parallel.

Some activities cannot commence until the work product produced by another is

available. Other activities can occur independently.

Time allocation: Each task to be scheduled must be allocated some number of work

units (e.g., person-days of effort). In addition, each task must be assigned a start date and

a completion date that are a function of the interdependencies and whether work will be

conducted on a full-time or part-time basis.

Effort validation: Every project has a defined number of staff members. As time

allocation occurs, the project manager must ensure that no more than the allocated

number of people has been scheduled at any given time.

Defined responsibilities: Every task that is scheduled should be assigned to a specific

team member. Defined outcomes: Every task that is scheduled should have a defined

outcome.

Defined milestones: Every task or group of tasks should be associated with a project

milestone. Program evaluation and review technique (PERT) and critical path method

(CPM) are two project scheduling Methods that can be applied to software development.

(Explanation

: 4 marks;

Principles

optional)

 f) Explain SCM. 4M

 Ans:
Software configuration management (SCM), also called change management, is a set of

activities designed to manage change by identifying the work products that are likely to

change, establishing relationships among them, defining mechanisms for managing

different versions of these work products, controlling the changes imposed, and

auditing and reporting on the changes made.

SCM is an umbrella activity that is applied throughout the software process. SCM is a

set of tracking and control activities that are initiated when SE project begin and

(Explanation

: 4 marks)

 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

 (ISO/IEC - 27001 - 2013 Certified)

Page 27 of 27

terminate only when the software is taken out of operation. SCM helps to improve

software quality and on time delivery. SCM defines the project strategy for change

management. When formal SCM is invoked, the change control process produces

software change requests, reports and engineering change orders. SCM helps to track,

analyze and control every work product.

Need of SCM

 To Identify all items that define the software configuration

 To Manage changes to one or more configuration items

 To Facilitate construction of different versions of a software application

 To Ensure that software quality is maintained as configuration evolves.

