MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

WINTER-17 EXAMINATION

Subject Name: Design of Steel Structures
Model Answer
Subject Code: 17505
Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

$\begin{aligned} & \mathrm{Q} . \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { Sub } \\ & \text { Q. N. } \end{aligned}$	Answer	Marking Scheme
Q. 1	(A)a) Ans	State any four advantages of steel as a construction material. 1. Steel being a ductile material does not fail suddenly it gives visible evidence of impending failure 2. It has high ratio of strength to weight making it to use for the construction of long span bridges, tall buildings etc. 3. Steel can be transported, fabricated and erected at site thus saves time of construction and saves expenses also. 4. Steel as construction material has good earthquake resistor capacity due to its ductility and elastic plasticity. 5. The steel structures can be disassembled and reused wherever required. It can be recycled easily. 6. Steel has high scrap value amongst all building materials. 7. Steel is a gas resistant.	Any four 01 mark for each
Q. 1	(A)b) Ans	Define: .I) Importance factor II) Zone factor III) Response reduction factor IV) Fundamental natural period I) Importance factor (I): The importance factor is a factor used to obtain the design seismic force depending upon the functional use of the structure. II) Zone factor (z): The zone factor is a factor used to obtain the design spectrum depending on the perceived seismic hazard in the zone in which the structure is located. III) Response reduction factor (R): The response reduction factor is the factor by which the actual base shear force should be reduced, to obtain the design force. IV) Fundamental natural period: The fundamental natural period is the first (longest) modal time period of vibration of the structure.	01 mark for each
Q. 1	(A)c) Ans	List the values of partial safety factor for material strength in case of resistance by yield, buckling, ultimate stress and bolt connection. Partial safety factor for material.	

(ISO/IEC - 27001-2013 Certified)

		hence $K_{b}=0.67$ $V_{\mathrm{dpb}}=2.5 \times 0.67 \times 16 \times 8 \times 400 / 1.25=68608 \mathrm{~N} .=68.61 \mathrm{kN} .$ Bolt value, $\mathrm{Bv}=$ least of $\mathrm{V}_{\mathrm{dsb}} \& \mathrm{~V}_{\mathrm{dpb}}=57.95 \mathrm{kN}$. No. of bolts required $=P_{u} / B_{v}=110 / 57.95=1.89$ say 2 .	01 mark 01 mark 01 mark 01 mark
Q. 1	(B)b) Ans	For a tension member as shown fig. 1. Determine block shear strength. $\mathrm{fy}=250 \mathrm{MPa}$, $\mathrm{fu}=410 \mathrm{MPa}$. Fig. 1 [Q. 1 (B) b] $\begin{aligned} & A_{v g}=2(100 \times 10)=2000 \mathrm{~mm}^{2} \\ & A_{v n}=2000 \mathrm{~mm}^{2} \\ & A_{t g}=200 \times 10=2000 \mathrm{~mm}^{2} \\ & A_{t n}=2000 \mathrm{~mm}^{2} \end{aligned}$ Block shear strength ($\tau_{d b}$) $\text { Hence } \tau_{\mathrm{db}}=\text { Least of } \tau_{\mathrm{db} 1} \text { and } \tau_{\mathrm{db} 2}$ $=795413 \mathrm{~N}=795.41 \mathrm{kN} .$	01 mark 02 marks 02 marks 01 mark
Q. 2	a)	Design suitable fillet welded connection for ISA $80 \times 50 \times 08 \mathrm{~mm}$ with its longer leg connected to gusset plate of thickness 8 mm . The angle is subjected to factored load of 300 $\mathrm{KN} . \mathrm{Cxx}=27.3 \mathrm{~mm}$. Assume weld applied to all three edges and shop weld. i. $\mathrm{Pu}=300 \mathrm{kN}$. ii. Size of weld minimum size $=3 \mathrm{~mm}$, Maximum size $=(3 / 4) \mathrm{t}=(3 / 4) \times 8=6 \mathrm{~mm}$. So assume 6 mm size fillet weld (shop) \qquad iii. Design stress of shop weld $f_{w d}=f_{u} /\left(\sqrt{3} \times Y_{m w}\right)=410 /(\sqrt{3} \times 1.25)=189.4 \mathrm{~N} / \mathrm{mm}^{2}$ \qquad iv. Design strength per mm length of weld $\begin{aligned} \mathrm{p}_{\mathrm{q}} & =\mathrm{f}_{\mathrm{wd}} \times \mathrm{t}_{\mathrm{t}}=189.4 \times 0.7 \times 6 \\ & =795.48 \mathrm{~N} / \mathrm{mm} \end{aligned}$ v. Effective length of weld required $\mathrm{L}=\mathrm{P}_{\mathrm{u}} / \mathrm{P}_{\mathrm{q}}=300 \times 10^{3} / 795.48=377.13 \text { say } 380 \mathrm{~mm} .$ \qquad	01 mark 01 mark 01 mark 01 mark

		- Width of angle leg parallel to sheeting $\geq \mathrm{L} / 60$ In the above, situation B.M. about $z-z$ axis should be taken as $W_{z}(L)^{2} / 10$. Where W_{z} is udl in the direction normal to sheeting L is the spacing of truss, One leg >L/45 and another leg >L/60 IS 800-1984 (second revision) code provision For roof slopes not exceeding 30° based in a min. live load $750 \mathrm{~N} / \mathrm{m}^{2}$ Maximum B.M. $=W_{2}(\mathrm{~L})^{2} / 10$.	
Q. 3	d) Ans	List the factors to be considered in calculation of wind load. Write equations to calculate wind load on roof truss as per IS 875-1987. Factors to be considered in calculation of wind load: 1.Location of structure for basic wind speed (V_{b}) 2.Risk coefficient factor $\left(\mathrm{K}_{1}\right)$, Terrain height and structure size factor $\left(\mathrm{K}_{2}\right)$ and Topography factor $\left(K_{3}\right)$ for design wind speed $\left(\mathrm{V}_{2}\right)$ 3. Building height to width ratio(h / w), roof angle (α) and wind angle (θ) for external wind pressure coefficient(C_{pe}) 4. Percentage of opening in wall (permeability of air) for internal wind pressure coefficient (C_{pi}) - Equation to calculate wind load on roof truss as per IS-875-1987: 1. Design wind speed $\left(V_{2}\right)=k_{1} k_{2} k_{3} V_{b}$ i. Risk Coefficient-(\mathbf{k}_{1}) ii. Terrain ,Height And Structure Size Factor, $\mathbf{k}_{\mathbf{2}}$ iii. Topography Factor. $\mathbf{k}_{\mathbf{3}}$ iv. basic wind speed $-\mathrm{V}_{\mathrm{b}}$ 2. wind pressure $\left(\mathrm{P}_{\mathrm{z}}\right)=0.6\left(\mathrm{~V}_{\mathrm{z}}\right)^{2}---\left(\mathrm{N} / \mathrm{m}^{2}\right)$ 3. wind load on roof $F=\left(C_{p e}-C_{p i}\right) A p_{z}$ C_{pe}-Coefficient of external wind pressure C_{pi} - Coefficient of internal wind pressure A - surface area of structural element in $\left(\mathrm{m}^{2}\right)$ p_{z} - design wind pressure ($\mathrm{N} / \mathrm{m}^{2}$)	01 Mark 03Marks

		(a) Single Lacing (b) Double Lacing (c) Battens Function: The function of lacing and battening is to hold the various parts of a column straight, parallel at a correct distance apart and to equalize the stress distribution between its various parts.	03 marks 01 mark
Q. 4	(A)c) Ans	Explain "Limits of width to thickness ratio to prevent buckling for a single angle strut. The limiting width to thickness ratio for a semi-compact class is 15.7 C. Check whether ISA $90 \times 90 \times 06$ nun is semi-compact class or not $\mathrm{f}_{\mathrm{y}}=250 \mathrm{MPa}$. Limits of width to thickness ration to prevent buckling for a single angle strut Plate elements of c / s may buckle locally due to compressive stresses. The buckling can be avoided before the limit state is achieved by limiting the width to thickness ratio of each element of c / s subjected to compression due to axial force, moment or shear. For: ISA 90x90x6 mm thick $b / t_{f}=90 / 6=15$ between 10.5ε and 15.7ε where $\varepsilon=\left(f_{y} / 250\right)^{1 / 2}$ (hence it belongs to class-3 semi compact section)	03 marks 01 mark
Q. 4	(A)d) Ans	What is local buckling in case of compression member? What is its effect? What is to be done to prevent it? - Local buckling in case of compression members: the individual elements of column i.e. flange or web may buckle locally forming wrinkles. This type of buckling causing column failure is called local buckling. - Effect:-Local buckling reduces overall load carrying capacity of the member - Prevention:-Adopt higher thickness of element that is by controlling width to thickness ratio as per IS -CODE requirement.	02 marks 01 mark 01 mark

		Checking the design : $\begin{aligned} \text { (a)strength against yielding } & =\mathrm{A}_{\mathrm{g}} \mathrm{f}_{\mathrm{y}} / \mathrm{y}_{\mathrm{m} 0} \\ & =1588 \times 250 / 1.1 \\ & =360909.09 \mathrm{~N}>300000 \mathrm{~N} \end{aligned}$ (b) strength of plate in rupture : Area of connected leg Area of connected leg $\begin{aligned} & A_{n c}=(125-22-4) \times 8=792 \mathrm{~mm}^{2} \quad A_{g o}=(75-4) \times 8=568 \mathrm{~mm}^{2} \\ & \beta=1.4-0.076 \times(\mathrm{w} / \mathrm{t}) \times(\mathrm{fy} / \mathrm{fu}) \times\left(\mathrm{b}_{s} / \mathrm{L}_{\mathrm{c}}\right) \\ & \beta=1.4-0.076 \times(75 / 8) \times(250 / 410) \times(112 / 360) \\ & \beta=1.264 \\ & \mathrm{~T}_{\mathrm{dn}}=\left(0.9 \mathrm{fu} \mathrm{~A}_{\mathrm{nc}} / \mathrm{y}_{\mathrm{m} 1}\right)+\left(\beta \mathrm{A}_{\mathrm{go}} \mathrm{fy} / \mathrm{y}_{\mathrm{m} 1}\right) \\ & \mathrm{T}_{\mathrm{dn}}=(0.9 \times 410 \times 792 / 1.25)+(1.264 \times 568 \times 250 / 1.1) \\ & \mathrm{T}_{\mathrm{dn}}=233798.4+163279=397077.4 \mathrm{~N}>300000 \mathrm{~N} \quad-------(\text { OK }) \end{aligned}$ (c) strength against block shear failure $\begin{aligned} & \mathrm{A}_{\mathrm{vg}}=(40+60 \times 6) \times 8=3200 \mathrm{~mm}^{2} \\ & \mathrm{~A}_{\mathrm{vn}}=(40+60 \times 6-6.5 \times 22) \times 8=2056 \mathrm{~mm}^{2} \\ & \mathrm{~A}_{\mathrm{tg}}=(125-45) \times 8=640 \mathrm{~mm}^{2} \\ & \begin{aligned} \mathrm{A}_{\mathrm{tn}} & =(125-45-0.5 \times 22) \times 8=552 \mathrm{~mm}^{2} \\ \text { Smallest of two } & =\left(\mathrm{A}_{\mathrm{vg}} \mathrm{fy} / 1.732 \mathrm{y}_{\mathrm{mo}}\right)+\left(0.9 \times \mathrm{A}_{\mathrm{tn}} \times \mathrm{fu} / \mathrm{y}_{\mathrm{m} 1}\right) \\ & =(\mathbf{3 2 0 0} \times 250 / 1.732 \times 1.1)+(0.9 \times 552 \times 410 / 1.25) \\ & =(419903.422)+(162950)=582853.4 \mathrm{~N} \end{aligned} \end{aligned}$ Smallest of two $=\left(A_{\operatorname{tg}} \times f y / y_{m o}\right)+\left(0.9 \times A_{v n} \times f u / 1.732 X_{y_{m 1}}\right)$ Smallest of two $=(640 \times 250 / 1.1)+(0.9 \times 2056 \times 410 / 1.732 \times 1.25)$ $=145454+350422=495876 \mathrm{~N}$ Hence strength of two angles against block failure $=495876 \mathrm{~N}>300000 \mathrm{~N}$	01 mark 01 mark 02 marks
Q. 5	a)	A hall of size $12 \mathrm{~m} \times 20 \mathrm{~m}$ is provided with Howe type roof trusses at $4 \mathrm{mc} / \mathrm{c}$. Calculate panel point load in case of DL and LL for following data- i) unit wt. of roof covering $=165 \mathrm{~N} / \mathrm{m}^{2} \quad$ ii) self-wt. of purlin $=100 \mathrm{~N} / \mathrm{m}^{2}$ iii) wt. of bracing $=60 \mathrm{~N} / \mathrm{m}^{2}$ iv) rise to span ratio $=1 / 5$ v) total no. of panels $=08$ Given: i) Unit wt. of roof covering $=165 \mathrm{~N} / \mathrm{m}^{2}$ ii) Self-wt. of purlin $=100 \mathrm{~N} / \mathrm{m}^{2}$ iii) Wt. of bracing $=60 \mathrm{~N} / \mathrm{m}^{2}$ iv) Rise to span ratio $=1 / 5$ v) Total no. of panels $=08$ vi) Span = 12 m . a. Calculation of Dead load: i. Self-weight of truss $=[(L / 3)+5] \times 10$ $=[(12 / 3)+5] \times 10=90 \mathrm{~N} / \mathrm{m}^{2}$ ii. Unit weight of roof covering $=165 \mathrm{~N} / \mathrm{m}^{2}$ iii. Self-weight of purlin $=100 \mathrm{~N} / \mathrm{m}^{2}$ iv. Weight of bracing $=60 \mathrm{~N} / \mathrm{m}^{2}$ Hence Total Dead load per $\mathrm{m}^{2}=90+165+100+60=415 \mathrm{~N} / \mathrm{m}^{2}$ \qquad Dead load per intermediate panel point $=$ Dead load per $\mathrm{m}^{2} \mathrm{x}$ plan area of roof per panel	01 mark

		point Dead load per intermediate panel point $=415 \times 4 \times(12 / 8)=2490 \mathrm{~N}$. \qquad Dead load per end panel point $=2490 / 2=1245 \mathrm{~N}$. \qquad b. Calculation of Live load: $\begin{aligned} \text { Angle of truss }(\theta) & =\tan ^{-1}[2.5 /(12 / 2)]=21.80^{0} \\ \text { Live load on purlin } & =750-[(\theta-10) \times 20] \\ & =750-[(21.8-10) \times 20] \\ & =514 \mathrm{~N} / \mathrm{m}^{2}>400 \mathrm{~N} / \mathrm{m}^{2} \text { Hence OK } \end{aligned}$ \qquad Live load on truss $=(2 / 3) \times 514=342.67 \mathrm{~N} / \mathrm{m}^{2}$ \qquad Live load per intermediate panel point $=$ Live load per $\mathrm{m}^{2} \times$ plan area of roof per panel point Live load per intermediate panel point $=342.67 \times 4 \times(12 / 8)=2056 \mathrm{~N}$ \qquad Live load per end panel point $=2056 / 2=1028 \mathrm{~N}$	01 mark 01 marks 01 marks 01 mark 01 mark 01 mark
Q. 5	b)	A industrial building has trusses for 14 m span. Trusses are spaced at $3.5 \mathrm{~m} \mathrm{c} / \mathrm{c}$ and rise of truss is 3.50 m . Calculate panel point load in case of live load and wind load using following data- i) Coefficient of external wind pressure $\left(C_{p e}\right)=-0.7$ ii) Coefficient of internal wind pressure ($\left.C_{\text {pi }}\right)= \pm 0.2$ iii) Design wind pressure $=1200 \mathrm{~N} / \mathrm{m}^{2}$ iv) No. of panels $=08$ Given data: Span $=14 \mathrm{~m}$. Rise $=3.5 \mathrm{~m}$ Coefficient of external wind pressure $\left(C_{p e}\right)=-0.7$ Coefficient of internal wind pressure $\left(\mathrm{C}_{\mathrm{pi}}\right)= \pm 0.2$ Design wind pressure $(p)=1200 \mathrm{~N} / \mathrm{m}^{2}$ No. of panels $=08$ a) Wind load: i. Design wind pressure $\begin{aligned} p_{d} & =\left(C_{p e}-C_{p i}\right) \times p \\ & =(-0.7-0.2) \times 1200 \\ & =-1080 \mathrm{~N} / \mathrm{m}^{2} \end{aligned}$ ii. Angle of truss $(\theta)=\tan ^{-1}[3.5 /(14 / 2)]=26.56^{\circ}$ iii. Inclined length of panel $=(14 / 8) / \cos 26.56^{\circ}=1.956$ iv. Wind load per intermediate panel point $=$ Design wind pressure $\left(p_{d}\right) x$ inclined panel length x spacing $\begin{aligned} & =-1080 \times 1.956 \times 3.5 \\ & =-7393.7 \mathrm{~N} \end{aligned}$ v. Wind load per end panel point $=-7393.7 / 23696.85 \mathrm{~N}$ b) Live load: Live load on purlin $=750-[(\theta-10) \times 20]$ $\begin{aligned} & =750-[(26.56-10) \times 20] \\ & =418.8 \mathrm{~N} / \mathrm{m}^{2}>400 \mathrm{~N} / \mathrm{m}^{2} \quad \text { Hence OK } \end{aligned}$ Live load on truss $=(2 / 3) \times 418.8=279.2 \mathrm{~N} / \mathrm{m}^{2}$ Live load per intermediate panel point $=$ Live load per $\mathrm{m}^{2} \mathrm{x}$ plan area of roof per panel point Live load per intermediate panel point $=279.2 \times 3.5 \times(14 / 8)=1710 \mathrm{~N}$ \qquad Live load per end panel point $=1710 / 2=855 \mathrm{~N}$	01 mark 01 mark 01 mark 01 mark 01 mark 01 mark 01 mark 01 mark

Q. 5	c)	A column ISMB - 300 carries an axial load of 1.5 MN . Design a slab base and concrete pedestal for the column. Take SBC of soil as 200 kPa and M 20 grade of concrete is used for concrete pedestal. For ISMB-300 consider $b_{f}=140 \mathrm{~mm}, \mathrm{t}_{\mathrm{f}}=13.1 \mathrm{~mm}$. Take $\mathrm{f}_{\mathrm{y}}=250 \mathrm{MPa}$, $y_{m 1}=1.1$. Given: ISMB 300, $P=1500 \mathrm{kN}$, $\mathrm{SBC}=200 \mathrm{kPa}, \quad \mathrm{M} 20-\mathrm{fck}=20 \mathrm{~N} / \mathrm{mm}^{2}$ $\mathrm{f}_{\mathrm{y}}=250 \mathrm{mPa}, \quad \mathrm{~b}_{\mathrm{f}}=140 \mathrm{~mm}, \quad \mathrm{t}_{\mathrm{f}}=13.1 \mathrm{~mm}$ $\mathrm{P}_{\mathrm{u}}=1500 \times 1.5=2250 \mathrm{kN} .$ Bearing area of base plate $(A)=P_{u} /\left(0.6 f_{c k}\right)$ $=\left(2250 \times 10^{3}\right) /(0.6 \times 20)=187500 \mathrm{~mm}^{2}$ Size of plate for equal projections a and b $\begin{aligned} & \begin{array}{r} L_{p}=[(D-B) / 2]+\sqrt{[(D-B) / 2]^{2}+A} \\ \quad=[(300-140) / 2]+\sqrt{[(300-140) / 2]^{2}+187500} \\ L_{p}=520.34 \mathrm{~mm} \quad \text { say } L_{p}=530 \mathrm{~mm} \\ B_{p}=A / L_{p}=187500 / 530=353.77 \text { say } 360 \mathrm{~mm} \\ \text { Larger projection } a=\left(L_{p}-D\right) / 2 \\ \\ =(530-300) / 2=115 \mathrm{~mm} \\ \text { Smaller projection } b=\left(B_{p}-B\right) / 2 \\ \\ =(360-140) / 2=110 \mathrm{~mm} \end{array} \end{aligned}$ Ultimate pressure from below on the base plate- $W=P_{u} /\left(L_{p} \times B_{p}\right)=2250 \times 10^{3} /(530 \times 360)=11.79 \mathrm{~N} / \mathrm{mm}^{2}$ Thickness of base plate $\begin{aligned} \mathrm{t}_{\mathrm{s}} & =\sqrt{\left[2.5 \times \mathrm{w} \times\left(\mathrm{a}^{2}-0.3 \mathrm{~b}^{2}\right) \times \mathrm{Y}_{\mathrm{mo}} / \mathrm{f}_{\mathrm{y}}\right] \quad>\mathrm{t}_{\mathrm{f}}} \\ & =\sqrt{\left[2.5 \times 11.79 \times\left(115^{2}-0.3 \times 110^{2}\right) \times 1.1 / 250\right]} \\ & =35.27 \mathrm{~mm} \text { say } 40 \mathrm{~mm}>13.1 \mathrm{~mm}\left(\mathrm{t}_{\mathrm{f}}\right) \end{aligned}$ Size of concrete block- $\left.A_{f}=\left(P_{u} \times Y_{m o}\right) / S B C \times Y_{f}\right)=(2250 \times 1.1) /(200 \times 1.5)=8.25 \mathrm{~m}^{2}$ For equal projection- $\begin{aligned} \mathrm{L}_{\mathrm{f}} & =\left[\left(\mathrm{L}_{p}-\mathrm{B}_{\mathrm{p}}\right) / 2\right]+\sqrt{\left[\left(L_{p}-B_{p}\right) / 2\right]^{2}+} A_{f} \\ & =[(0.53-0.36) / 2]+\sqrt{[(0.53-0.36) / 2]^{2}+8.25} \\ \mathrm{~L}_{\mathrm{f}} & =2.95 \mathrm{~m} \text { say } L_{f}=3 \mathrm{~m} \\ \mathrm{~B}_{\mathrm{f}} & =\mathrm{A}_{\mathrm{f}} / \mathrm{L}_{\mathrm{f}}=8.25 / 3=2.75 \mathrm{~m} \end{aligned}$ Provide M20 concrete pedestal of size $3 \mathrm{~m} \times 2.75 \mathrm{~m}$ Actual projection- $\begin{aligned} & =\left(L_{f}-L_{p}\right) / 2=(3000-530) / 2=1235 \mathrm{~mm} \text { and } \\ & =\left(B_{f}-B_{p}\right) / 2=(2750-360) / 2=1195 \mathrm{~mm} \end{aligned}$ Considering 45° angle of dispersion, $D f=1235 \mathrm{~mm}$.	01 mark 01 mark 01 mark 02 marks 01 mark 01 mark

Q. 6		State four classification of c / s of beam based on moment-rotation behavior as per IS- 800/2007 Classification of c/s of beam based on moment - rotation behavior as per IS 800-2007 1. Class 1 - Plastic 2. Class 2 -Compact 3. Class 3 -Semi compact 4. Class $4-$ Slender	01 mark for each
Q. 6	c) Ans	An ISMB - 250 is used for simply supported span of 4 m to carry a factored load of $30 \mathrm{KN} / \mathrm{m}$. Check the section for shear only. Take $\mathrm{f}_{\mathrm{y}}=250 \mathrm{mPa}, \mathrm{t}_{\mathrm{w}}=6.4 \mathrm{~mm}$. Given data- ISMB 250, Span $\left(l_{e}\right)=4.0 \mathrm{~m}$, Factored load $\left(w_{d}\right)=30 \mathrm{kN} / \mathrm{m}, \mathrm{f}_{\mathrm{y}}=250 \mathrm{mPa}, \mathrm{t}_{\mathrm{w}}=6.4 \mathrm{~mm}$ Factored shear force $\left(V_{d}\right)=w_{d} \times l_{e} / 2$ $\begin{aligned} & =30 \times 4 / 2 \\ & =60 \mathrm{kN} \end{aligned}$ Check for shear- $\begin{aligned} V_{d r} & =\left(f_{y} \times t_{w} \times h\right) /\left(Y_{m o} \times \sqrt{3}\right) \\ & =(250 \times 6.4 \times 250) /(1.1 \times \sqrt{3}) \\ & =209.94 \mathrm{kN}>60 \mathrm{kN}\left(\mathrm{~V}_{\mathrm{d}}\right) \text { hence shear check is satisfied. } \end{aligned}$	01 mark 01 mark 01 mark 01 mark
Q. 6	d) Ans	Draw plan of gusseted base showing all components.	02 marks for fig 02 marks for labeling
Q. 6		Write steps to calculate the thickness of base plate used in slab base. Why anchor bolts are used in slab base. Steps to calculate thickness of base plate used in slab base. $\mathrm{t}_{\mathrm{s}}=\sqrt{\left[2.5 \times \mathrm{w} \times\left(\mathrm{a}^{2}-0.3 \mathrm{~b}^{2}\right) \times \mathrm{Y}_{\mathrm{mo}} / \mathrm{f}_{\mathrm{y}}\right]}$ Where- $\mathrm{W}=$ Ultimate pressure from below on slab base $=\mathrm{P}_{\mathrm{u}} /\left(\mathrm{L}_{\mathrm{p}} \times \mathrm{B}_{\mathrm{p}}\right)$ $\mathrm{P}_{\mathrm{u}}=$ Factored load. $L_{p}=$ Length of base plate. $\mathrm{B}_{\mathrm{p}}=$ Width of base plate. a = Larger projection. $b=$ Smaller projection. $Y_{\text {mo }}=$ Partial safety factor $=1.1$ $\mathrm{f}_{\mathrm{y}}=$ Yield stress $\left(250 \mathrm{~N} / \mathrm{mm}^{2}\right)$	01 mark 01 mark

		Function of anchor bolts: To connect the base plate to concrete block so that stability, stiffness and strength of foundation is achieved.	02 marks

