

WINTER-17 EXAMINATION

Subject Name: Design of Steel StructuresModel AnswerSubject Code:17505

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q.	Sub	Answer	Marking
No.	Q. N.		Scheme
Q.1	(A)a)	State any four advantages of steel as a construction material.	
	Ans	 Steel being a ductile material does not fail suddenly it gives visible evidence of impending failure It has high ratio of strength to weight making it to use for the construction of long 	Any four 01 mark
		span bridges, tall buildings etc.	for each.
		Steel can be transported, fabricated and erected at site thus saves time of construction and saves expenses also.	
		 Steel as construction material has good earthquake resistor capacity due to its ductility and elastic plasticity. 	
		The steel structures can be disassembled and reused wherever required. It can be recycled easily.	
		6. Steel has high scrap value amongst all building materials.	
		7. Steel is a gas resistant.	
Q.1	(A)b)	Define: .I) Importance factor II) Zone factor	
		III) Response reduction factor IV) Fundamental natural period	
	Ans	 Importance factor (I): The importance factor is a factor used to obtain the design seismic force depending upon the functional use of the structure. 	01 mark
		II) Zone factor (z): The zone factor is a factor used to obtain the design spectrum depending on the perceived seismic hazard in the zone in which the structure is located.	for each
		 III) Response reduction factor (R): The response reduction factor is the factor by which the actual base shear force should be reduced, to obtain the design force. IV) Fundamental natural period: The fundamental natural period is the first (longest) 	
		modal time period of vibration of the structure.	
Q.1	(A)c)	List the values of partial safety factor for material strength in case of resistance by yield,	
		buckling, ultimate stress and bolt connection.	
	Ans	Partial safety factor for material.	

		Sr. No.	Description	Partial safety factor	01 mark
		1.	Resistance by yielding.	1.10	for each
		2.	Resistance to buckling.	1.10	
		3.	Resistance by ultimate stress.	1.25	
		4.	Bolted connection.	1.25 (Shop and field fabrication)	
Q.1	(A)d)	Explain shear la	ag.		
	Ans	Shear lag: Whil one leg by bolt subjected to m becomes unifo other is called a The tearing st	e transferring the tensile force from a or welds, the connected leg of section ore stress than the outstanding leg a rm over the section away from the co as shear lag.	nd finally the stress distribution onnection. Thus, one part leg behind the d through one leg is affected by shear	01 mark
		Where $\beta = 1.4$	$(x f_u) / Y_{m1})] + [\beta x (Ago x fy / Y_{mo})]$ - 0.076 (w/t) (f _y /f _u) (b _s /L _c) width as shown in fig.		01 mark
			$g = \frac{1}{b_s = w + g - t}$ Fig: Shear lag widt	$b_s = w$	02 marks
Q.1	(B)a)	Determine bolt	value 16mm diameter bolt of 4.6 gra	ade to connect two angles 90 x 60 x 06	
		mm back to ba	ck on opposite side of gusset plate of	8 mm thick. Also determine no. of bolts	
		required for the	e joint when it carries direct factored	load of 110 KN. Draw neat sketch of	
		designed conne	ection.		
	Ans	The angles a	re connected on both sides of gusset	plate, hence the bolts will be in double	
		shear and bear	against 8 mm thick (least of 8 and 2	6mm) gusset plate for 4.6 grade bolts,	
		f _{ub} = 400 mPa.	For 16 mm diameter bolt, A _{nb} = 0.78 x	κ (π/4) x 162 = 156.83 mm².	
		$d_{o} = d + 2 = 16$	+ 2 = 18mm		
		$Y_{mb} = Y_{m1} = par$	tial factor of safety for bolt and angle	s = 1.25	01 mark
		Double shear s	trength of bolts		
		$V_{dsb} = (2V_{nsb})$	$(Y_{mb}) = 2 (f_{ub}/\sqrt{3}) (n_n x A_{nb} + n_s x A_{sb})$	/ 1.25	
		= 2 x (400	$(\sqrt{3})(1 \times 156.83 + 0) / 1.25) = 57948$	N = 57.95 kN	01 mark
			th of thinner plate		
			$T_{mb} = 2.5 \times (K_b \times d \times t \times f_{ub}) / Y_{mb}$		
			= 3 x 16 = 48mm say 50 mm and e =	2d = 2 x 16 = 32 mm say 40 mm.	
		•	s may assume slightly different pitch	•	
		change accord	ingly.)		
		K_{b} is least of [(e	e/3d _o): (p/3d _o) – 0.25: (f _{ub} /f _u): 1.0]		
		i.e. [(40 / 3)x18	8 = 0.74: (50 / 3x18) - 0.25 = 0.67: 400) / 410 = 0.975: 1.0]	
l					L

	<u> </u>	hence К _b = 0.67	
		$V_{dpb} = 2.5 \times 0.67 \times 16 \times 8 \times 400 / 1.25 = 68608 \text{ N.} = 68.61 \text{ kN.}$	01 mark
		Bolt value, $Bv = least of V_{dsb} \& V_{dpb} = 57.95 \text{ kN}.$	01 mark
		No. of bolts required = $P_u / B_v = 110 / 57.95 = 1.89$ say 2	01 mark
			01 mark
		Bolts of 16 mm dia. Pu Pu Double angles -40+50+40+ ISA So ×60×6 mm	01 mark
Q.1	(B)b)	For a tension member as shown fig. 1. Determine block shear strength. fy = 250 MPa,	
		fu = 410 MPa.	
	Ans	$A_{vg} = 2(100 \times 10) = 2000 \text{ mm}^2$	
	_	$A_{vn} = 2000 \text{ mm}^2$	01 mark
		$A_{tg} = 200 \times 10 = 2000 \text{ mm}^2$	
		$A_{tn} = 2000 \text{ mm}^2$	
		Block shear strength (τ_{db})	
		$(\tau_{db1}) = [(A_{vg} \times f_{y}) / (\sqrt{3} \times Y_{mo})] + [(0.9 \times A_{tn} \times f_{u}) / Y_{m1}]$	
		$= [(2000 \times 250) / (\sqrt{3} \times 1.10)] + [(0.9 \times 2000 \times 410) / 1.25]$	
		= 852832 N	02 marks
		$(\tau_{db2}) = [(A_{tg} x f_y) / (Y_{mo})] + [(0.9 x A_{vn} x f_u) / (\sqrt{3} x Y_{m1}]]$	
		_	
		$= [(2000 \times 250) / (1.10)] + [(0.9 \times 2000 \times 410) / (\sqrt{3} \times 1.25)]$	
		= 795413 N	02 marks
		Hence τ_{db} = Least of τ_{db1} and τ_{db2}	
		= 795413 N = 795.41 kN	01 mark
Q.2	a)	Design suitable fillet welded connection for ISA 80 x 50 x 08mm with its longer leg	
Q.2	a)	connected to gusset plate of thickness 8 mm. The angle is subjected to factored load of 300	
		KN. Cxx = 27.3 mm. Assume weld applied to all three edges and shop weld.	
	Ans	i. $Pu = 300 \text{ kN}$.	
		ii. Size of weld minimum size = 3 mm, Maximum size = $(3/4)t = (3/4)x8 = 6$ mm.	
		So assume 6 mm size fillet weld (shop)	01 mark
		iii. Design stress of shop weld	
		$f_{wd} = f_u / (\sqrt{3} \times Y_{mw}) = 410/(\sqrt{3} \times 1.25) = 189.4 \text{ N/mm}^2$	01 mark
		iv. Design strength per mm length of weld	
		$p_{g} = f_{wd} \times t_{t} = 189.4 \times 0.7 \times 6$	
		= 795.48 N/mm	01 mark
		v. Effective length of weld required	
		$L = P_u/p_q = 300 \times 10^3 / 795.48 = 377.13 \text{ say } 380 \text{ mm.}$	01 mark

			1
		vi. Let x_1 and x_2 be the lengths of longitudinal weld at upper and lower edges and third	
		edge will be 80 mm long.	
		$x_1 + x_2 + 80 = 380$	
		$x_1 + x_2 = 300 \text{ mm}$	01 mark
		vii. Taking moment about the bottom weld	
		795.48 x x ₁ x 80 + 795.48 x 80 x 40 = $300 \times 10^3 \times 27.3$	
		Hence $x_1 = 88.69 \text{ mm}$ say 90 mm	02 marks
		$x_2 = 300 - 90 = 210$ mm.	
		Viii. ISA 8 0mm × 50 mm × 8 mm 27.3 mm Gusset plate	01 mark
Q.2	b)	A built up column consist of 2ISMC - 225, placed face to face at 120 mm. The distance is between their centres. The length of column is 6.0 m and both ends are hinged. Find design strength of column.	
		For single ISMC – 225 A=3301 mm ² , $I_{yy} = 1.872 \times 10^6 \text{mm}^4$,	
		I_{xx} : = 26.946 x 10 ⁶ mm ⁴ , Cxx: = 23.1 mm. (Refer table no. 1 for f_{cd})	
	Ans		
		x y z_3 $z_$	01 mark
		Area of composite section, $A_g = 2 \times 3301 = 6602 \text{ mm}^2$	
		Based on $r_{xx} = r_x = \sqrt{(Ixx / A)} = \sqrt{(26.946 \times 10^6 / 3301)}$	
		= 90.34 mm	01 mark
		$I_{yy} = 2[I_y + Ah^2]$ = 2[1.872 x 10 ⁶ + 3301 x (120/2) ²] = 27511200 mm ⁴	
		$r_{yy} = \sqrt{(I_{yy} / A)} = \sqrt{(27511200 / 6602)}$ = 64.55 mm	01 mark
		Hence $r_{min} = 64.55 \text{ mm}$	01 mark
		For given end condition, kL = 1.0L	
		SR = kL / r _{min} = 1.0 x 6000 / 64.55 = 92.95	01 mark
		For built up section, buckling class is C for which-	
		SR fcd	
		90 121	01 mark
		100 107	
	1		1

	<u> </u>	f = f [/f = f] / (CD = CD)	
		$f_{cd} = f_{cd1} - [(f_{cd1} - f_{cd2}) / (SR_2 - SR_1)] \times (SR - SR_1)$ = 121 [(121 - 107) / (100 - 90)] × (92.95 - 90)	
		= 121 - [(121 - 107) / (100 - 90)] x (92.95 - 90) = 116.87 mPa	01
			01 mark
		Design compressive strength	
		$P_d = f_{cd} \times A_g$	
		= 116.87 x 6602	
		= 771575 N = 771.57 kN	01 mark
Q.2	c)	An ISMB 400 @ 604.3 N/m is used as simply supported beam of span 5.0 M. The	
		compression flange of the beam is laterally supported throughout the span. Determine	
		design flexural strength of member. Also calculate working udl on the beam per meter span.	
		Check the member for deflection.	
		Take $Z_p = 1176.18 \times 10^3 \text{mm}^3$, $Y_{mo} = 1.1$, $\beta_b = 1.0$, $f_y = 250 \text{ mPa}$.	
	Ans	Given L = 5 m = 5000 mm	
		$Z_{xx} = Z_p/s = 1176.18 \times 10^3 / 1.14 = 1031.74 \times 10^3 \text{ mm}^3$	01 mark
		$I_{xx} = Z_{xx} x y_{max} = 1031.74 x 10^3 x 400/2 = 206.35 x 10^6 mm^4$	01 mark
		Assuming udl = 'w' kN/m.	
		i. To calculate design flexural strength, M _d	
		$M_d = (\beta_b \times Z_p \times f_y) / Y_{mo} = (1 \times 1176.18 \times 10^3 \times 250) / 1.10$	
		= 267.27 x 10 ⁶ N-mm = 267.27 kN-m	01 mark
		ii. $M_u = w_u \times L^2/8 = w_u \times 5^2/8 = 3.125 w_u kN/m$	01 mark
		iii. Equating M_d and M_u	
		$267.27 = 3.125 w_{\mu}$	
		w _u = 85.53 kN/m	01 mark
		$w = w_{u}/Y_{f} = 85.53/1.5 = 57.02 \text{ kN/m}.$	01 mark
		iv. Check for deflection	
		$\delta_{\text{allowable}} = L/300 = 5000/300 = 16.67 \text{ mm.}$	01 mark
		$\delta_{max} = (5 \times w \times L^4) / (384 \times EI)$	
		$= (5 \times 57.02 \times 5000^{4})/(384 \times 2 \times 10^{5} \times 206.35 \times 10^{6})$	
		= 11.24 mm.	
		As $\delta_{max} < \delta_{allowable}$, deflection check is O.K	01 mark
Q.3	a)	Explain any two types of failure of bolted joints with neat sketches.	
	Ans	Two types of failure of bolted joints:-	
	_	1. Shear failure of bolt: shear tress are generated when the plates slip due to applied	
		forces. The maximum factored shear force in the bolt may exceed the nominal shear	
		capacity of the bolt. The shear failure of the bolt takes place at the bolt shear plane	
		(interface).the bolt may fail in single or double shear.	
			Any Two
			02 marks
			for each
		Single Shear Double Shear	
		Shearing at bolt shank	
		2. Bearing failure of bolt: -the bolt is crushed around half circumferences. The plate may be	
		strong in bearing and the heaviest stressed plate may press the bolt shank. The bearing	
	•	· · · · · · · · · · · · · · · · · · ·	•

		• Width of angle leg parallel to sheeting $\geq L/60$	
		In the above, situation B.M. about z-z axis should be taken as $W_z(L)^2/10$.	
		Where W_z is udl in the direction normal to sheeting	
		L is the spacing of truss,	
		One leg >L/45 and another leg >L/60	
		IS 800-1984 (second revision) code provision	
		For roof slopes not exceeding 30 ⁰ based in a min. live load 750 N/m²	
		Maximum B.M. = $W_z(L)^2/10$.	
Q.3	d)	List the factors to be considered in calculation of wind load. Write equations to calculate	
		wind load on roof truss as per IS 875-1987.	
	Ans	Factors to be considered in calculation of wind load:	
		1. Location of structure for basic wind speed (V_b)	01 Mark
		2.Risk coefficient factor(K_1), Terrain height and structure size factor(K_2) and Topography	
		factor(K_3) for design wind speed (V_z)	
		3. Building height to width ratio(h/w), roof angle(α) and wind angle(θ) for external wind	
		pressure coefficient(C _{pe})	
		4. Percentage of opening in wall (permeability of air) for internal wind pressure	
		coefficient(C _{pi})	
		 Equation to calculate wind load on roof truss as per IS-875-1987: 	
		1. Design wind speed (Vz)=k1 k2 k3 Vb	
		i. Risk Coefficient-(k 1)	
		ii. Terrain ,Height And Structure Size Factor, k ₂	
		iii. Topography Factor. k ₃	
		iv. basic wind speed -V _b	03Marks
		2. wind pressure $(P_z)=0.6 (V_z)^2 (N/m^2)$	
		3. wind load on roof	
		$F = (C_{pe} - C_{pi})Ap_z$	
		C _{pe} - Coefficient of external wind pressure	
		C _{pi} - Coefficient of internal wind pressure	
		A - surface area of structural element in (m^2)	
		p_z - design wind pressure (N/m ²)	
	1		11

Q.3	e)	Draw a neat labe covering as A.C.		ngle purlin with	principle rafter	at panel poir	nt having roof	
	Ans			PURLIN CLEAT ANGLE	J-BOLT PRINCIPAL RAFTER	- -		04 marks
Q.4	(A)a)	State with sketcl end conditions a		ength for a com	pression membe	er as per IS 8	00/2007 having	
		i) Translation res ii) Translation ar				nd.		
	Ans	At one	e end	At secc	nd end	Effective length	sketch	
		Translation	Rotation	Translation	Rotation			
		Restrained	Restrained	Restrained	Free	0.8L		02 marks
		Restrained	Restrained	Restrained	Restrained	0.65L		02 marks
Q.4	(A)b) Ans	Draw neat sketc Sketch o	h of lacing and l f lacing and bat		tate function of	same.		

-			ı
		(a) Single Lacing (b) Double Lacing (c) Batterns	03 marks
		Function: The function of lacing and battening is to hold the various parts of a column straight, parallel at a correct distance apart and to equalize the stress distribution between its various parts.	01 mark
Q.4	(A)c) Ans	Explain "Limits of width to thickness ratio to prevent buckling for a single angle strut. The limiting width to thickness ratio for a semi-compact class is 15.7 C. Check whether ISA 90x90x06 nun is semi-compact class or not f _y = 250 MPa. Limits of width to thickness ration to prevent buckling for a single angle strut	
	7113	Plate elements of c/s may buckle locally due to compressive stresses. The buckling can be avoided before the limit state is achieved by limiting the width to thickness ratio of each element of c/s subjected to compression due to axial force, moment or shear.	03 marks
		Component ratio ratio	
		Single angle, or double Angles with the b/t	
		components d/t	
		For: ISA 90x90x6 mm thick $h/t_{r}=00/6-15$ between 10 F c and 15 7 c where $c = (f_{r}/(250))^{\frac{1}{2}}$	01 mark
		b/t _f =90/6=15 between 10.5 ε and 15.7 ε where $ε = (f_y/250)^{22}$ (hence it belongs to class-3 semi compact section)	
Q.4	(A)d)	What is local buckling in case of compression member? What is its effect? What is to be	
	(**)~,	done to prevent it?	
	Ans	• Local buckling in case of compression members: the individual elements of column	
		i.e. flange or web may buckle locally forming wrinkles. This type of buckling causing	02 marks
		column failure is called local buckling.	
		 Effect:-Local buckling reduces overall load carrying capacity of the member 	01 mark
		• Prevention :-Adopt higher thickness of element that is by controlling width to	01 mark
		thickness ratio as per IS –CODE requirement.	

Q.4	(B)a) Ans	 Explain gross section yielding and net section rupture in case of design strength of tension member. Also write two measures taken to prevent rupture. Gross Section Yielding:- When a tension members is subjected to tensile forces although the net cross sectional yield first, the deformation within the length of connection will be smaller than the deformation in the remainder of tension member. It is because the net section exist within a small length of the member. And the total elongation is the product of the length of the member and the strain. Most of the length of the member will have an unreduced cross section , some attainment of yield stress on the gross area will result in larger total elongation. Here larger deformation is Limit state not the yield . To prevent excessive deformation initiated by yielding the load on the gross section must be small enough so that the stress on the gross section is less than the yield stress. That is 	02 marks
		$\frac{T}{Ag} < fy$ T = Ag fy	
		Design strength = Ag fy /ym0	
		Ym0 = partial safety factor = 1.1	
		Net Section Rupture	
		Frequently plates under tension have bolt holes. The tensile stress in a plate at the cross section of a hole is not uniformly distributed in the Tension Member: Behavior of Tension Members elastic range, but exhibits stress concentration adjacent To the whole. The ratio of the maximum elastic stress adjacent to the hole to the average stress on the net cross section is referred to as the Stress Concentration Factor. This factor is in the range of 2 to 3, depending upon the ratio of the diameter of The hole to the width of the plate normal to the direction of stress.	02 marks
		(a) Elastic (b) Elasto- (c) Plastic (d) Ultimate	
		To provent the failure of tension member by not costion surfaces T(A) V f	
		To prevent the failure of tension member by net section rupture T <a<sub>n X f_u $T_{dn}=T/\gamma_{m1}$ Design strength = T_{dn}= 0.9 A_n fu /y_{m1} A_n -net effective area of member f_u - ultimate stress of material</a<sub>	

 Y_{m1-} partial safety factor for failure at ultimate stress =1.2

		b- width of plate			
		t – thickness of plate			
		d- diam. of hole			
		g- gauge length			
		p _s - staggered pitch length between bolt	hole		
		n- no.of bolt hole.			
		Preventive Measure:-			
			amount of edge c	listance is provided as per IS-800-	
		2007.	a dad Tanadaa		02 marks
		As far as possible less nos. of bolt are pr bolt are provided.	ovided. To reduce	the nos. of bolts high strength	
Q.4	(B)b)	Design tension member consisting of sir 12 mm thk. to carry a factored tensile lo bolted connection. The length of the me Take $f_u = 415$ mPa = 0.80	ad of 300 kN. Assu	e .	
		Castion (mm) Area (mm	2	
		Section (mm)	
		ISA 100x75x			
		125x75x8	1588		
		150x75x8	1748		
	Ans	Area required from the consideration of			
			=1320		
		TRY ISA 125X75X8, Which has a gross a	rea Ag= 1588 mm'	2	
		Strength of 20 mm bolt:			
		a) In single shear=[0+0.78x(20) ² /4]	x 400/1.25x√3		
		=45272 N			
		 b) Strength in bearing : taking e= 4 K_b is smaller of 40/3x22, (60 i.e. K_b = 0.606 	/3x22)-0.25,400/4		01 mark
		design strength of bolt in bearin	•	•	
		design strength of bolt in be	•	06x20x8x400/1.25	
		Design Strength of Bolt In Bearin	-		
		(therefore, Bolt value = 45272 N)		
		Nos.Of Bolt Required = 300 X1	000/ 45272		
		Nos.Of Bolt Required = 6.62			
		(Therefore, provide 7 Nos. of bo	t in a row.)		
		r			
		45 mm		75mm	
				125mm	01 mark
		80 mm			
		40 mm Lc=360 m	m		

		Charling the design :	
		Checking the design :	
		(a)strength against yielding $=A_g f_y / y_{m0}$	
		=1588x250/1.1	
		=360909.09 N > 300000 N	01 mark
		(ОК)	
		(b) strength of plate in rupture :	
		Area of connected leg Area of connected leg	
		$A_{nc} = (125-22-4)x8=792 \text{ mm}^2$ $A_{go} = (75-4)x8=568 \text{ mm}^2$	01 mark
		β =1.4-0.076x(w/t)x(fy/fu)x(b _s /L _c)	
		β = 1.4-0.076 x(75/8)x(250/410)x(112/360)	
		β=1.264	
		$T_{dn} = (0.9 \text{ fu } A_{nc}/y_{m1}) + (\beta A_{go} \text{ fy}/y_{m1})$	
		T _{dn} = (0.9x410x 792 /1.25)+(1.264x568 x 250/ 1.1)	
		T _{dn} = 233798.4+163279=397077.4 N > 300000 N (OK)	
		(c) strength against block shear failure	
		$A_{vg} = (40+60 \text{ X6}) \text{X8} = 3200 \text{ mm}^2$	
		$A_{vn} = (40+60X6-6.5X22)X 8 = 2056 \text{ mm}^2$	
		$A_{tg} = (125-45)X8 = 640 \text{ mm}^2$	
		$A_{tn} = (125 - 45 - 0.5 \times 22) \times 8 = 552 \text{ mm}^2$	
		Smallest of two =($A_{vg x}$ fy /1.732 y_{mo})+(0.9 x A_{tn} x fu / y_{m1})	
		$= (3200 \times 250 / 1.732 \times 1.1) + (0.9 \times 552 \times 410 / 1.25)$	02 marks
		=(419903.422)+(162950)= 582853.4 N	02 11101103
		Smallest of two = $(A_{tg x} fy / y_{mo}) + (0.9 x A_{vn} x fu / 1.732 X y_{m1})$	
		Smallest of two = ($H_{g_x} + y + y_{m_0}$), (6.5 × $H_{m_1} \times H_{m_2} + y_{m_1}$) Smallest of two = ($640 \times 250 / 1.1$)+(0.9 × $2056 \times 410 / 1.732 \times 1.25$)	
		=145454+350422= 495876 N	
		Hence strength of two angles against block failure = 495876 N > 300000 N	
		(ОК)	
		(Hence, use ISA 125X75X8 with 7 Nos. of 20 mm bolt)	
Q.5	a)	A hall of size 12m x 20 m is provided with Howe type roof trusses at 4 m c/c. Calculate panel	
		point load in case of DL and LL for following data-	
		i) unit wt. of roof covering = 165N/m^2 ii) self-wt. of purlin = 100 N/m^2	
		iii) wt. of bracing = 60 N/m^2 iv) rise to span ratio = $1/5$ v) total no. of panels = 08	
4	Ans	Given: i) Unit wt. of roof covering = $165N/m^2$	
		ii) Self-wt. of purlin = 100 N/m ²	
		iii) Wt. of bracing = 60 N/m ²	
		iv) Rise to span ratio = 1/5	
		v) Total no. of panels = 08	
		vi) Span = 12 m.	
		a. Calculation of Dead load:	
		i. Self-weight of truss = [(L/3) + 5] x 10	
		$= [(12/3) + 5] \times 10 = 90 \text{ N/m}^2$	01 mark
		ii. Unit weight of roof covering = 165 N/m^2	
		iii. Self-weight of purlin = 100 N/m ²	
		iv. Weight of bracing = 60 N/m^2	
		Hence Total Dead load per $m^2 = 90 + 165 + 100 + 60 = 415 \text{ N/m}^2$	01 mark
		Dead load per intermediate panel point = Dead load per m ² x plan area of roof per panel	

		point	01
		Dead load per intermediate panel point = $415 \times 4 \times (12/8) = 2490 \text{ N}$.	01 mark
		Dead load per end panel point = 2490/2 = 1245 N b. Calculation of Live load:	01 marks
		Angle of truss (θ) = tan ⁻¹ [2.5/(12/2)] = 21.80 ⁰	
		Live load on purlin = $750 - [(\theta - 10) \times 20]$	
		$= 750 - [(21.8 - 10) \times 20]$	
		$= 750 - [(21.8 - 10) \times 20]$ = 514 N/m ² > 400 N/m ² Hence OK	01 marks
		Live load on truss = $(2/3) \times 514 = 342.67 \text{ N/m}^2$	01 marks
		Live load on truss = $(2/3) \times 314 = 342.07$ N/m =	UT Mark
		Live load per intermediate panel point = $342.67 \times 4 \times (12/8) = 2056 \text{ N}$	01 mark
		Live load per end panel point = $2056/2 = 1028 \text{ N}$	01 mark
Q.5	b)	A industrial building has trusses for 14m span. Trusses are spaced at 3.5m c/c and rise of	ULINAIK
Q.5	D)	truss is 3.50m. Calculate panel point load in case of live load and wind load using following	
		data-	
		i) Coefficient of external wind pressure (C_{pe})= - 0.7	
		i) Coefficient of internal wind pressure $(C_{pi})=\pm 0.2$	
		iii) Design wind pressure = 1200 N/m^2	
		iv) No. of panels = 08	
	Ans	Given data:	
	7115	Span = 14 m.	
		Rise = 3.5 m	
		Coefficient of external wind pressure $(C_{pe}) = -0.7$	
		Coefficient of internal wind pressure $(C_{pi})=\pm 0.2$	
		Design wind pressure (p) = 1200 N/m^2	
		No. of panels = 08	
		a) Wind load:	
		i. Design wind pressure $p_d = (C_{pe} - C_{pi}) \times p$	
		$= (-0.7 - 0.2) \times 1200$	
		$= -1080 \text{ N/m}^2$	01 mark
		ii. Angle of truss (θ) = tan ⁻¹ [3.5/(14/2)] = 26.56 [°]	01 mark
		iii. Inclined length of panel = $(14/8)/\cos 26.56^\circ$ = 1.956	01 mark
		iv. Wind load per intermediate panel point = Design wind pressure (p_d) x inclined panel	
		length x spacing	01 mark
		= -1080 x 1.956 x 3.5	
		= -7393.7 N	
		v. Wind load per end panel point = -7393.7/2 3696.85 N	
		b) Live load:	
		Live load on purlin = $750 - [(\theta - 10) \times 20]$	
		$= 750 - [(26.56 - 10) \times 20]$	
		$= 418.8 \text{ N/m}^2 > 400 \text{ N/m}^2 \text{ Hence OK}$	01 mark
		Live load on truss = (2/3) x 418.8 = 279.2 N/m ²	01 mark
		Live load per intermediate panel point = Live load per $m^2 x$ plan area of roof per panel point	01 mark
		Live load per intermediate panel point = 279.2 x 3.5 x (14/8) = 1710 N	01 mark
		Live load per end panel point = 1710/2 = 855 N	

Q.5	c)	A column ISMB - 300 carries an axial load of 1.5 MN. Design a slab base and concrete	
		pedestal for the column. Take SBC of soil as 200 kPa and M20 grade of concrete is used for	
		concrete pedestal. For ISMB-300 consider b _f = 140 mm, t _f = 13.1 mm. Take f _y =250 MPa,	
		y _{m1} =1.1.	
	Ans	Given: ISMB 300, $P = 1500 \text{ kN}$, SBC = 200 kPa, M20 – fck = 20 N/mm ² ,	
		$f_y = 250 \text{ mPa}, \qquad b_f = 140 \text{ mm}, \qquad t_f = 13.1 \text{ mm}$	
		$P_u = 1500 \times 1.5 = 2250 \text{ kN}.$	
		Bearing area of base plate (A) = $P_u/(0.6f_{ck})$	
		= (2250 x 10 ³) / (0.6 x 20) = 187500 mm ²	01 mark
		Size of plate for equal projections a and b	
		$L_p = [(D - B)/2] + \sqrt{[(D - B)/2]^2 + A}$	
		$= [(300 - 140)/2] + \sqrt{[(300 - 140)/2]^2 + 187500}$	
		$L_p = 520.34 \text{ mm}$ say $L_p = 530 \text{ mm}$	01 mark
		$B_p = A / L_p = 187500 / 530 = 353.77$ say 360 mm	
		Larger projection $a = (L_p - D) / 2$	
		= (530 - 300) / 2 = 115 mm	
		Smaller projection $b = (B_p - B) / 2$	
		= (360 - 140) / 2 = 110 mm	
		Ultimate pressure from below on the base plate-	
		$W = P_u / (L_p \times B_p) = 2250 \times 10^3 / (530 \times 360) = 11.79 \text{ N/mm}^2$	01 mark
		Thickness of base plate	
		$t_s = \sqrt{[2.5 \times w \times (a^2 - 0.3b^2) \times Y_{mo} / f_v]} > t_f$	
		$= \sqrt{[2.5 \times 11.79 \times (115^2 - 0.3 \times 110^2) \times 1.1 / 250]}$	
			02 marks
		= 35.27 mm say 40 mm > 13.1mm (t _f) Size of concrete block-	
		$A_f = (P_u \times Y_{mo}) / SBC \times Y_f) = (2250 \times 1.1) / (200 \times 1.5) = 8.25 m^2$	
			01 mark
		For equal projection-	
		$L_{f} = [(L_{p} - B_{p})/2] + \sqrt{[(L_{p} - B_{p})/2]^{2} + A_{f}}$	
		$= [(0.53 - 0.36)/2] + \sqrt{[(0.53 - 0.36)/2]^2 + 8.25}$	
		$L_f = 2.95m$ say $L_f = 3m$	
		$B_f = A_f / L_f = 8.25 / 3 = 2.75 m$	
		Provide M20 concrete pedestal of size 3 m x 2.75 m	
		Actual projection-	
		$= (L_f - L_p) / 2 = (3000 - 530) / 2 = 1235 \text{ mm}$ and	01 mark
		$= (B_f - B_p) / 2 = (2750 - 360) / 2 = 1195 \text{ mm}$	
		Considering 45° angle of dispersion, Df = 1235 mm.	

Q.6	b)	State four classification of c/s of beam based on moment-rotation behavior as per	
	Anc	IS- 800/2007	01 mark
	Ans	Classification of c/s of beam based on moment – rotation behavior as per IS 800-2007 1. Class 1 – Plastic	for each
		2. Class 2 – Compact	
		3. Class 3 – Semi compact	
		4. Class 4 – Slender	
Q.6	c)	An ISMB - 250 is used for simply supported span of 4m to carry a factored load of 30 KN/m.	
_	•,	Check the section for shear only. Take $f_v = 250$ mPa, $t_w = 6.4$ mm.	
	Ans	Given data-	
		ISMB 250, Span (I_e) = 4.0 m, Factored load (w_d) = 30 kN/m, f_v = 250 mPa, t_w = 6.4 mm	
		Factored shear force $(V_d) = w_d \times I_e / 2$	
		$= 30 \times 4 / 2$	01 mark
		= 60 kN	
		Check for shear-	
		$V_{dr} = (f_y x t_w x h) / (Y_{mo} x \sqrt{3})$	01 mark
		$= (250 \times 6.4 \times 250) / (1.1 \times \sqrt{3})$	01 mark
		= 209.94 kN > 60 kN(V _d) hence shear check is satisfied.	01 mark
Q.6	d)	Draw plan of gusseted base showing all components.	
	Ans		
		∕ GUSSET ANGLE	
			02 marks
		GUSSET PLATE	for fig
		GUSSET PLATE COLUMN	02 marks
			for
			labeling
		ANCHOR BOLTS $ \oplus$ \odot \oplus \oplus \oplus \oplus \oplus \oplus \oplus \odot	
		PLAN OF GUSSETED BASE	
Q.6	e)	Write steps to calculate the thickness of base plate used in slab base. Why anchor bolts are	
		used in slab base.	
	Ans	Steps to calculate thickness of base plate used in slab base.	
		$t_s = \sqrt{[2.5 \times w \times (a^2 - 0.3b^2) \times Y_{mo} / f_y]}$	01 mark
		Where-	
		W = Ultimate pressure from below on slab base = $P_u / (L_p \times B_p)$	
		P _u = Factored load.	
		L_p = Length of base plate.	
		B_p = Width of base plate.	
		a = Larger projection.	01 mark
		b = Smaller projection.	
		Y_{mo} = Partial safety factor = 1.1	
		f _y = Yield stress (250 N/mm ²)	
		f _y = Yield stress (250 N/mm ²)	

	Function of anchor bolts: To connect the base plate to concrete block so that stability,	02 marks
	stiffness and strength of foundation is achieved.	