SUMMER – 16 EXAMINATIONS

Subject Code: 17503 Model Answer-Public Health Engineering Page No- 01/21

Important Instruction to Examiners:-

- 1) The answers should be examined by key words & not as word to word as given in the model answers scheme.
- 2) The model answers & answers written by the candidate may vary but the examiner may try to access the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more importance.
- 4) While assessing figures, examiners, may give credit for principle components indicated in the figure.
- 5) The figures drawn by candidate & model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credit may be given step wise for numerical problems. In some cases, the assumed contact values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidates understanding.
- 7) For programming language papers, credit may be given to any other programme based on equivalent concept.

Important notes to examiner

Page No- 02/21

SUMMER – 16 EXAMINATIONS Subject Code: 17503 **Model Answer-Public Health Engineering**

Q.NO	SOLUTION	MARKS					
Q1. A)	Attempt ANY THREE of following:	12					
a	State the importance of Public Health Engineering with respect to water supply and	04M					
	sanitation.						
	 Environmental engineers also design municipal water supply system and provide safe drinking water or secure water supplies for potable and agricultural use. To achieve these, they examine the watersheds with a hydrological or geological point of view as well as engineering treatment systems for water purification. Various water treatment methods are used, including membrane technology, desalinization, biological water treatment, etc. Water distribution systems are also designed and built. Environmental engineers also develop collection and treatment systems to carry domestic or industrial waste water discharges away and remove some of the pollutants before discharging it into the environment. 	04M					
b	State the precautions required to be taken during water sampling.	04M					
	 Avoid faucets (taps) that are seldom used (i.e. the taps which are rarely used) Avoid sampling from a dead-end. Avoid a faucet (taps) that leaks around the stem Avoid any faucet (taps) that is dusty, dirty or corroded Avoid swing faucets(taps) Avoid faucets (taps) that cannot deliver a smooth stream of water Avoid sampling from a flexible hose, garden hose Avoid sampling from faucets(taps) with aerators or screen Avoid sampling from faucets(taps) that have a point-of-use carbon filter attached Avoid sampling from: a dripping faucet(taps) a frost free yard hydrant or wall hydrant an outside hose bib with an unremovable vacuum breaker a faucet (taps) with an unremovable aerator a metal fixture with external plastic or rubber inserts Choose cold water faucets (taps) only Choose a smooth-end faucet (taps) over a threaded-end faucet 	½ M each Write any Eight					
С	State the objectives of aeration process and describe any one method of aeration.	04M					
	 Removes taste and odours caused due to organic gases. Increases dissolved oxygen content Removes Hydrogen Sulphide and odour due to it. Decreases CO2 content and raises pH. Removes Iron and Manganese. Due to agitation bacteria may get killed. Can be used for mixing chemicals 	½ M each Write any Four					

Subject Code: 17503

Subject Code: 17503

Subject Code: 17503

Solution

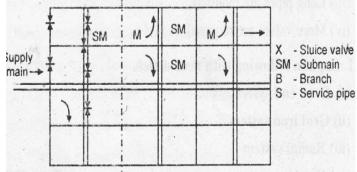
Sol

Q.NO	SOLUTION	MARKS
c)	Method of Aeration:	02M
contnd.	1. Cascades:	For any
	It consist of concrete steps over which water flow down in the form of thin sheet. Weir may	One
	be provided at the edge of each step. Thin sheet of water which comes down over steps	Method
	comes in contact with the atmosphere. More surface area of water is exposed to	
	aatmosphere and thus more oxygen is absorbed by water.	
	2. Spray nozzle: In this method, water is sprinkled in air or atmosphere through special	
	nozzle which breaks the water into droplets thus permitting the escape of dissolved gases. Carbon dioxide gas is thus considerably removed in this method and more oxygen is	
	absorbed by water.	
	3. By air diffusion: In this method, compressed air is bubbled through the water, so as to	
	thoroughly mix it with water. Perforated pipes are, installed at the bottom of the settling	
	tanks, and the compressed air is blown through them. The compressed air is thus bubbled	
	up from the bottom of the tank. During its upward movement through the water body, it	
	gets thoroughly mixed up with the water contained in the tank, therefore completing the	
	aeration process.	
	4. Trickling bed filter: In this method, the water is allowed to trickle down the beds of	
	coke, supported over the perforated bottomed trays, and arranged vertically in series.	
	Generally three beds are used, the depth of each being about 0.6m with clear distance of	
	about 0.45 m in between. The water is applied from the top through perforated distribution	
	pipes and allows trickling down. During this downward motion, the water gets mixed up	
	with air and aeration takes place. This method gives better results than what can be	
	obtained by cascades, but is fewer effectives than the method of spray nozzles.	
<u>d</u>)	Define coagulation and state any four coagulants commonly used.	04M
	Coagulation is the process by means of which the colloidal particles are brought togather	02 M
	(i.e. colloidal particles is changed so that they form floc through the process of	
	flocculation and that can be separated from the water). It can be achieved through the	
	addition of chemicals (called coagulants) to the water. The most common ones	1/2M
	-Alum(Al2(SO4)3.18H2O).	each
	-Ferrous Sulfate(FeSO4.7H2O).	Any
	-Lime Ca(OH)2.	Four
	-Ferric Chloride (FeCl3).	1001
	-Ferric Sulfate (Fe2(SO4)3)	
В	Solve any one of the following:	06M
a)	Describe Ground water Recharging with respect to Necessity and Advantages.	06 M
	A. Necessity of Ground water Recharging	1 M
	To maximize storage(long-term & seasonal)	Each
	> Water quality improvement through dilution	Write
	Preventing saline-water intrusion & land subsidence	any
	Reducing reduction volumes from river flow	Three
	Controlling effects of climate change	

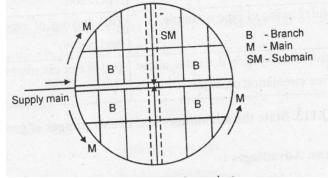
Page No- 04/21

SUMMER – 16 EXAMINATIONS Subject Code: 17503 **Model Answer-Public Health Engineering**

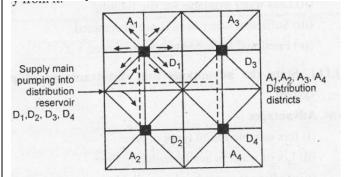
Q.NO	SOLUTION	MARKS
a)	B. Advantages	1 M
a) contd.	 Artificial recharge has several potential advantages, namely: The use of aquifers for storage and distribution of water and removal of contaminants by natural cleansing processes that occur as polluted rain and surface-water infiltrate the soil and percolate down through the various geological formations. The technology is appropriate and generally well understood by both the technologists and the general population. Very few special tools are needed to dig wells. In rock formations with high structural integrity, few additional materials may be required (concrete, soft stone or coral rock blocks, metal rods etc.) to construct the wells. Groundwater recharge stores water during the wet season for use in the dry season, when demand is the highest. 	1 M Each Write any Three
	 The quality of the aquifer water can be improved by recharging with high-quality injected water. Recharge can significantly increase the sustainable yield of an aquifer. Recharge methods are environmentally attractive, particularly in arid regions. Most aquifer recharge systems are easy to operate. In many river basins, control of surface-water run-off to provide aquifer recharge reduces sedimentation problems. Recharge with less-saline surface waters or a treated effluent improves the quality of saline aquifers, facilitating the use of the water for agriculture. 	
	State the advanced methods of water treatment and suggest type of treatment to be	
b)	given To raw water in following cases. i) River water in rainy season with partially contaminated ii) Ground water with hardness-400 ppm and fluoride content- 2 mg/lit.	06M
	1) Membrane filtration 2) Ion exchange 3) Zeolite process 4) Lime soda process 5) Deminerlization or de-ionisation process 6) Reverse osmosis 7) For defluoridation Calcium Phosphate, Bone Charcoal, Synthetic tricalcium phosphate, Fluorex, Lime, Aluminim compounds or activated carbon can be used.	02M


	River water in rainy season with partially contaminated: Means it contains lots of mud and	2M
	clay particles which are causing turbidity. Hence, at water treatment plant, specific treatment	
	shall be given to remove turbidity. i.e. Coagulation, flocculation and sedimentation or	
	Clarifloculation. This will help in removing turbidity of water.	
	Since it is contaminated and it is rainy season prechlorination, superchlorination or double	
	chlorination is required to assure the disinfection of water. All this shall be accompanied by	
	usual filteration process. Further the advanced treatments like Membrane filtration or Ion	
	exchange process may be adopted.	
	Ground water with hardness-400 ppm and fluoride content- 2 mg/lit	
	It indicates hardenss is more as well as fluorides are also more.	
	To remove Hardenss Ion exchange or reverse osmosis may be adopted. Or any of the hardness	
	removal method shall be adopted like:	
	Lime soda process,	2M
	Zeolite process,	21VI
	Deminerlization or de-ionisation process.	
	To remove the excess flourided from water any of the following processes can be used, which	
	are usually called as defluoridation. Defluoridation can be carried out by any of the following	
	methods: Use of calcium Phosphate, Use of Bone Charcoal, Synthetic trycalcium phosphate,	
	Fluorex, Ion-exchanger, Lime, Aluminim compounds or activated carbon. This shall be carried	
	out along with usual water treatment methods.	
Q.No.2	Attempt ANY FOUR of following:	16M
a)	Describe need of protected water supplies.	04M
<u>a)</u>	The contamination of water sources that resulted in loss of human life and illness	04141
	showed the importance of protecting the sources water.	
	➤ Protecting Source Water is the most cost-effective and reliable way to protect our	
	drinking water for generations to come. It is much more expensive to treat	
	contaminated groundwater than to protect it from getting contaminated in the first	
	place	
	Protecting our Source Water is important because:	
	Not all forms of contamination can be easily removed or treated (i.e. many chemical	04M
	compounds).	
	Many people in Ontario, especially in rural areas, are not connected to municipal	
	water. These people supply their own drinking water from a private well or surface	
	water intake. For these people, protecting source water from contamination may be	
	the only barrier they have against contaminated drinking water.	
	• It is often far more expensive to treat contaminated source water than it is to protect it	
	from contamination.	0.47.7
b)	Describe theory of filtration.	04M
	Ans. The filtration process takes place on the basis of following four	
	actions:	
	(i) Mechanical staining:- The suspended particles which are	1M
	unable to pass through the voids of sand grains, arrested and reduce	
	the pore size and removed by the action of mechanical staining.	
	(ii) Sedimentation:— The voids between the sand bed act as	
	small settling basins. The particles are arrested due to	1M
	- presence of gelatinous film or coating developed on sand by	11/1
	previously caught bacteria and colloidal matters.	
	- Physical attraction between two particle matters.	
	ı	

Subject Code: 17503


	(iii) Biological action:- When bacteria are caught in the voids of sand grains, a zoological jelly or film is formed around the sand grains. This film consists of large colonies of living bacteria. The bacteria feed on organic impurities in water. They convert such impurities into harmless compounds by complex biochemical action. (iv) Electrolytic changes:- Filter action is also explained by ionic theory. It states that when two substances with opposite electric charges are brought into contact with each other, the electric charges are neutralized and in doing so, new chemical substances are formed. At this stage, it becomes necessary to clean the filter. Sand Contact Impurities → neutralized each other (electric charged (Opposite polarity) − electric power of	1M 1M
	with some polarity) sand get exhausted.	0.43.5
c)	 ▶ The working and washing of rapid sand filter is controlled by six valves I, II, III, IV, V, VI. Valve I is inlet valve or influent valve, through which water from coagulation-clarification basin enters the filter unit. Valve II is the filtered water storage tank valve. Valve III is the waste water valve to drain water from main drain. Valve IV is the waste water valve to drain water from inlet chamber. Valve V is the wash water storage tank valve, fitted after a wash water rate controller. Valve VI is the compressed air valve. ▶ For normal working of the unit, all the valves are kept closed except valves I (Inlet valve) and II (Filtered water storage tank valve). Valve I is open to permit water from coagulation-sedimentation basin to enter the inlet chamber. Valve II is open to carry the filtered water to the filtered water storage tank. The filter operates under gravity flow, there being about 2m head (or more) of water over the bed. Filters are normally designed for a filtration rate of 3000-6000lit/hr/sq.m. of filter area. ▶ Back washing of rapid sand filter must be done between 2 to 4 days. 	04M 04M
d)	Draw neat sketch of any two methods of distribution of water.	04M
	1) Dead end system: houses. SM - Sub-mains B - Branch S - Service pipe Supply main SM - Sub-mains B - Branch S - Service pipe	02M Each Draw any Two

Subject Code: 17503



3) Circular system:

02M Each Draw any Two

4) Radial System:

e)	State any four points of importance and necessity of Sanitation	04M
	a) importance of Sanitation	
	1. To maintain healthy condition in the building.	02M
	2. To dispose of the waste water as early and quickly as possible.	
	3. To avoid the entry of foul gases form sewer or septic tank.	
	4. To facilitate quick removal of foul matter (e.g. Human excreta).	
	5. To collect and remove waste matters systematically.	
	 b) necessity of Sanitation Importance of Environmental Sanitation It promotes health It prevents disease transmission It eliminates breeding places of insects and rodents that may be carrier of diseases It improves the quality of life 	02M

Page No- 08/21

f)	State Necessity of Rain Water harvesting.	04M		
	 Surface water is inadequate to meet our demand and we have to depend on ground water. To arrest ground water decline and augment ground water table To beneficiate water quality in aquifer To conserve surface water runoff during monsoon To reduce soil erosion Due to rapid urbanization, infiltration of rain water into the sub-soil has decreased drastically and recharging of ground water has diminished. 	04M		
Q.No.3	Attempt ANY FOUR of following:	16M		
<u>a)</u>	Describe one pipe system of plumbing with a neat sketch.			
	WC SWP LB WC SWP B MH	02M		
	(SWP=Soil & waste pipe, S= sink,WC= Water closet,LB=lavatory basin, B = Bath,	02M		

Subject Code: 17503 **Model Answer-Public Health Engineering** Page No- 09/21

b)	Explain different surface and subsurface sources of water.	04M
	Water Resources of Water	
	A) Surface Sources	
	a) Rivers	
	b) Lakes	
	c) Ponds	
	d) Streams	
	e) Oceans	
	B) Subsurface Sources	
	a) Wells	
	b) Tube wells	
	c) Infiltration galleries	
	d) Infiltration Wells	
	A) Surface Sources-:	
	River runoff and regime depend on precipitation, evaporation, water accumulation in soils, land use, vegetation, basin slope, etc. River water forms at the expense	
	of precipitation onto the land surface. The sources of river alimentation include snow, rain, ground water, and glaciers.	02M Surface
	a) Rivers-:	sources
	A River is a natural watercourse, usually freshwater, flowing toward an ocean, a lake, a sea or another river. In a few cases, a river simply flows into the ground or dries up completely before reaching another body of water. Rivers have been used as a source of water, for obtaining food, for transport, as a defensive measure, as a source of hydropower to drive machinery, for bathing, and as a means of disposing of waste.	sources
	b) Lakes and Pond-:	
	A natural large sized depression formed on the surface of the earth, when gets filled up with water is known as a pond or a lake. If the size of depression is small, it is termed as a pond and when the size is large it may be termed as lake.	
	c) Streams:	
	Stream: Stream is a flowing body of water with a current, confined within a bed and stream banks. Streams are important as conduits in the water cycle, instruments in	
	groundwater recharge.	
	d) Oceans: On Earth, an ocean is one of the major conventional divisions of the World Ocean, which covers almost 71% of its surface. These are, in descending order by area, the Pacific, Atlantic, Indian, Southern, and Arctic Oceans	
	B) Subsurface Sources-:	
	The water is available below ground level from any point but saturated strata. They are mainly divided in two groups 1. Wells 2. Percolation Tanks Any saturated strata having ability to transmit stored water can develop for withdrawal 0f water .It must have capacity to transmit water at reasonable rate This type of saturated stratum is termed as Aquifer.	02M Surface sources
	a) Wells-:	
	Water well is an excavation or structure created in the ground by digging, driving, boring, or drilling to access groundwater in underground aquifers.	
	b) Tube wells: To obtain large discharges tube wells which is a long pipe or a tube, is bored or drilled deep into the ground, intercepting one or more water bearing stratum the quantity of water available from tube well is of order of 200 to 220 l/sec. the depth	
	of tube well ranges from 70 m to 300 m. the diameter of tube well is 0.5 to 0.6 m.	

SUMMER – 16 EXAMINATIONS Model Answer-Public Health Engineering

Page No- 10/21

Subject Code: 17503

Infiltration galleries-: Infiltration Galleries (IG) or wells can be constructed near perennial rivers or ponds to collect infiltrated surface waters for all domestic purposes. Since the water infiltrate through a layer of soil/sand, it is significantly free from suspended impurities including microorganisms usually present in surface water. Again, surface water being the main source of water in the gallery/well, it is free from arsenic. If the soil is impermeable, well graded sand may be placed in between the gallery and surface water source for rapid flow of water. d) **Infiltration Wells-:** Infiltration wells are shallow wells constructed along the banks of the river in order to collect the river water seeping through their bottom. • These wells are constructed of brick masonry with open joints. They are generally covered at the top and kept open at the bottom Describe Recycling and Reuse of domestic waste. **04M** c) **Recycling of domestic waste:** 02MIt's the process of recycling the domestic waste by adopting various techniques for minimizing the quantity of waste in landfill site. Many of the items used in the home can be recycled. The benefits of recycling include a cleaner environment, the safe disposal of hazardous materials. The items most commonly recycled are: Glass bottles and jars, Paper (newspapers, magazines, telephone books, office paper, junk mail, comics and light cardboard), Laminated or waxed papers like paper cups, Plastic bottles, Plastic bottle tops, metal and Aluminum lids, Batteries, etc. Recycling helps to create hygienic environment in the society and thus reduces the load on treatment and disposal units. **Reuse of domestic waste:** Reuse office furniture and supplies, such as interoffice envelopes, file folders, and 02MUse durable towels, tablecloths, napkins, dishes, cups, and glasses. > Use incoming packaging materials for outgoing shipments.

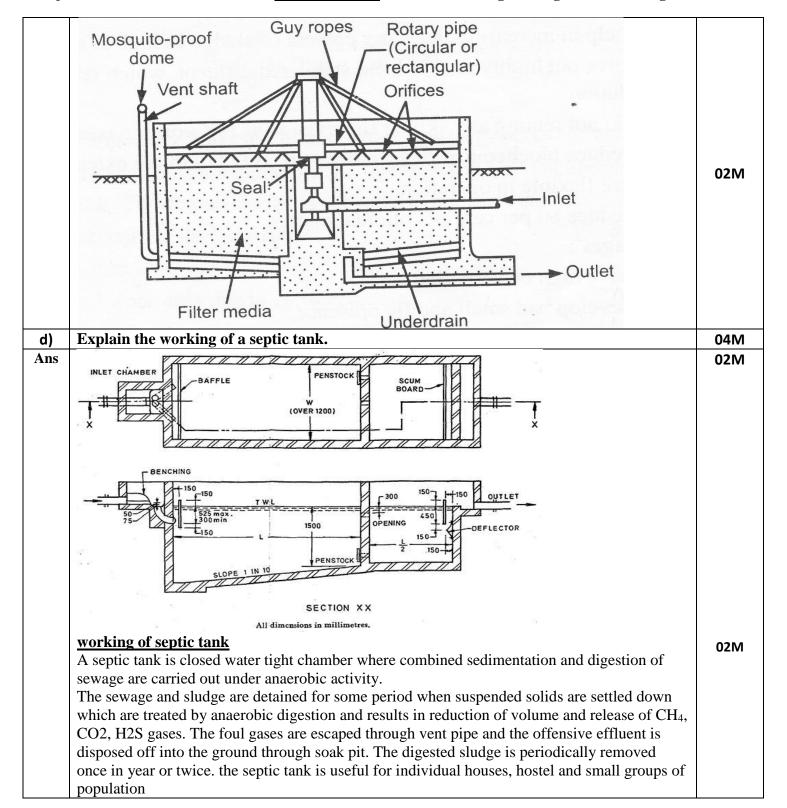
Encourage employees to reuse office materials rather than purchase new ones

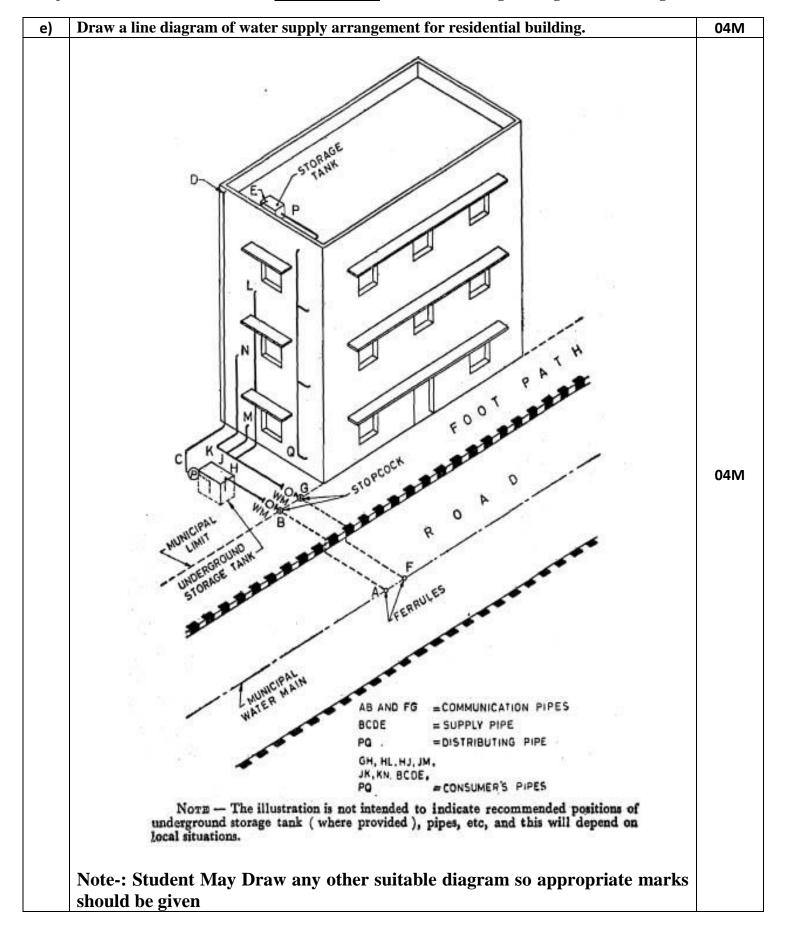
SUMMER – 16 EXAMINATIONS

Subject Code: 17503 <u>Model Answer-Public Health Engineering</u> Page No- 11/21

Q .NO	SOLUTION					
d)	Differentiate between Sl	low Sand filter and Rapid Sa	and filter.	04M		
-		-		1M for		
	Comparison Points	Slow Sand filter	Rapid Sand Filter	each		
	1. Coagulation	Not required	Essential	Points		
	2. Compactness	Requires large area for its installation.	Requires small area for its installation.			
	3. Construction	Simple	Complicated as separate under drainage system is required to be design.			
	4. Cost of operation	Low	High			
	5. Period of cleaning	1-3 Months	2-3 days			
	6. Method of clearing	Long and laborious method	Due to back washing short and speedy method.			
	7. Skilled supervision	Not essential	Essential			
	8. Suitability	For small towns and villages.	For big cities where land cost is high and			
			variation in water demand.			
	9. Base material	Varies from 3-65mm in size	Varies from 3-40mm in size with 600-900			
		with 300-750 mm depth.	mm depth.			
	10. Loss of head	150-750mm	3m -3.50m			
	11. Rate of filtration	100-200lit/hr/m ²	3000-6000lit/hr/m ²			
e)	Define the following term	ms:		04M		
	i)Self cleaning velocity i	i) Non-scouring velocity				
	i) Self-Cleaning velocity: - The minimum velocity which will prevent thesilting or deposition					
	of particles of solid matter in sewers is known as selfcleaning velocity. The gradient of sewer					
	should be such that this velocity isdeveloped at least once in a day preferably twice in a day.					
		Omm per second for normal se	• • • •			
			e velocity at which noscouring action by	02M		
		lly depends onmaterial of sew	ofsewers will occur is known as non-	UZIVI		

$\left \begin{array}{c} 0.04 \\ A \end{array} \right $ Attempt \underline{A}	ANY THREE of the following: (03x04=12)	MARKS
	rent types of traps. Enlist qualities of good trap.	04M
 P- trap Q- trap S- trap Accord Gully Floor 	o ing to use trap	02 M
Qualities > It show > Interior > Good > An as > It show	of good trap ald provide enough water seal around 50mm with large surface area. or should be smooth so that water flow should not obstruct. trap should achieve the self-cleansing velocity. sess door should be provided for cleaning the trap. ald be made up of non-adsorbent material. yout plan for building drainage.	02 M
	your plant for building dramage.	O IIVI
Side Plot	M.H.B. Bed Room Bed Room N.T. G.T. Bath Room Dining Room Drawing Room Verandah Verandah	04 M

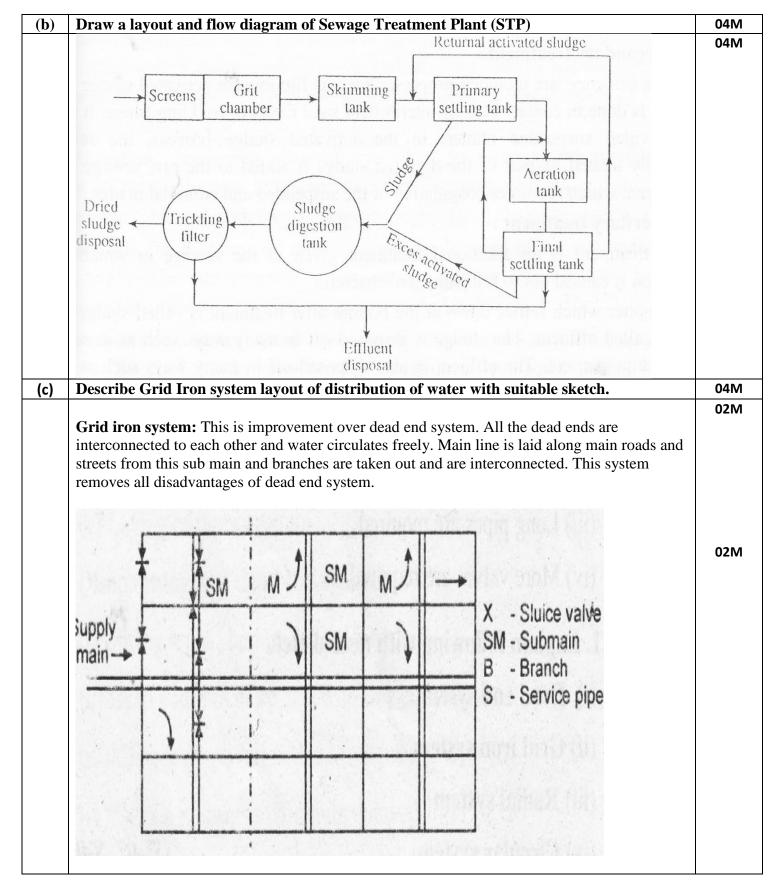

c)	State any eight type of pipes used for conveyance of water.	04M
	The various types of pipe materials used for conveyance of water are as follows:	
	Cast iron pipes	½ M
	➤ Wrought iron pipes	each
	> Steel Pipes	
	Concrete Pipes	
	Wooden Pipes	
	Vitrified pipes	
	Copper and lead pipes	
	> Asbestos cement pipes	
	> Cement lined cast iron pipes	
	Design a circular Sewer for following data-	
•	Zone population- 8500 souls.	0.47.5
d)	Rate of water supply-110lp.c.d.	04M
	n = 0.015, Maximum Flow = 2 x Average Flow	
	Data:	
	Population= 8500	
	Rate of water supply = 110lpcd	
	i=1/400 (assume)	
	Average water supply = (m^3/sec)	
	= 8500 X 110 /24 X 60 X 60 X 1000	
	= 0.010822m ³ /sec	
	Max discharge of sewage produced = $2 \times 0.010822 = 0.021644$ m ³ /sec	
	Q= AV	
	Q=0.021644 m ³ /sec,A= $\frac{\pi}{4}$ XD^2 , V= $\frac{1}{N}$ X $m^{2/3}X$ $i^{1/2}$	
	1) Running Full (m=D/4)	
	Q= AV	
	$0.021644 = \frac{\pi}{4} XD^2 X \frac{1}{0.015} X (\frac{D}{4})^{2/3} X (\frac{1}{400})^{1/2}$	
	$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	02M
	<u>D-0.234111</u>	02111
	1) Running Full (m=D/2)	
	Q = AV	
	$0.021644 = \frac{\pi}{4} XD^2 \times \frac{1}{0.015} \times (\frac{D}{2})^{2/3} \times (\frac{1}{400})^{1/2}$	02M
	1 0.015 2 100	
	<u>D=0.197m</u>	
	Note-:Student may assume hydraulic Gradient(i) value different, so accordingly check the answer	


Subject Code: 17503

a) Est 2041.	imate the j	probable po	pulation for	r a town wi	th follow	ing census	data in the y	ear	
Year	,	1981	1991		2001	2	011		06N
Popu	lation	78000	1220	00	178500		27500		
		increase m	ethod.			•		_	
Incre	nental inc	rease metho	od:						
	Yea	r Po	opulation	Incre	ment	Increme	ntal increase		
	198	1	78,000	-			-		
	1991		1,22,000	44,0	000		_		
	200		1,78,500	56,5			12,500		
	201	1 2	2,27,500	49,0			7,500		
			Total	1,49,		+	5,000		
		A	Average	14950	_	$\frac{5000}{02}$	$\frac{0}{1} = 2500$		
Where		I	$P_n = P$	$\frac{ =49,8}{+nI+\frac{n(1+nI)}{n(1+nI)}}$	$\frac{n+1}{2}r$	I		_	04N
I =	Average i	ncrease per oncremental i	$(2041-2011)$ decade = 1,4 increase = 50 \div 227500 + \div P ₀	9,500/03 = 000/02 = 25	$33 + \frac{3(3)}{3}$		00		01N
There	fore the po	opulation at	$\frac{\cdot \cdot P_2}{\text{t}}$ the end of	·		2.000.			01N
			plumbing s				tch of it.		06N
Suital	oility of Tv	vo pipe syst	em of plumb	oing-					03N
2) 3) 4)	 Suitability of Two pipe system of plumbing- This system consists of two sets of pipe (total four pipes). Soil pipe carries waste from W.C., urinals i.e. lavatory waste and waste pipe carries waste water from kitchen, bathroom, rain water etc. Separate ventilation pipes are connected to both soil pipe and waste pipe. This system is costly and requires more maintenance. This system is very common in India and used for three or four storey buildings where sanitary fittings are not grouped together. 								
Soil vent Vent stack Vent stack Bath Toilet pan Waste discharge Soil discharge							03N For Fig		

Page No- 15/21

Q No.5	Attempt any Four of the following		
(a)	Draw a neat labelled sketch of drop manhole.		
	OGROUND MANHOLE COVER OGM INSPECTION ARM PLUG PLUG BENCHING MAIN SEWER BOTTOM CONCRETE	04M	
b)	DescribeAerobicTreatment process.	04M	
	 This treatment process is carried by aerobic bacteria in the presence of oxygen. Aerobic bacteria use dissolved oxygen present in sewage. Sometimes it is supplied to waste water by some means. There is no recovery of methane gas and end products obtained are CO₂,H₂O This process does not cause nuisance. It is inoffensive. It is useful for moderate waste and end products obtained requires some treatment Unstable organic matter is converted into stable and harmless inorganic matter under aerobic condition. 	04M	
c)	Describe working of trickling filter.	04M	
	Working- Trickling filter is an artificial bed of stones or broken bricks material over which waste water is distributed or applied in drops, films or sprays through which it trickles to the underdrains. A slime layer is formed on the surface media, in which bacteria are present which consumes organic matter present in sewage and waste water is collected in underdrains. Working is simple so it does not requires any skilled supervision and it removes 80% colloidal matter, reduces B.O.D. up to 75%. It gives highly nitrified and stabilized effluent and flexibility in operation. But it requires large area and high construction cost. Also there is problem of bad smell and fly nuisance.	02M	


Page No- 18/21

Sr.No.	Oxidation pond	Oxidation ditch
1	It consist of a shallow pond of depth about 1m.	It consist of a long continuous channel usally oval in plan.
2	Sewage is treated with the help of bacteria and algea.	Sewage is treated by activated sludge process.
3	More land is required.	Land required is less.
4	Detention time is 10 to 15 days.	Detention time is 12 to 15 hours.

Subject Code: 17503 **Model Answer-Public Health Engineering** Page No- 19/21 **16M** Q. Attempt any Four of the following **No.6** State MPCB norms for discharge of treated sewage (a) 04M**Tolerance limits for** 04M**Characteristics of Tolerance Tolerance limits for** effluent limit for indusrialefluents inland surface water, when used as raw for sewage discharged into public water for effluents discharged supplies and bathing into inland Inland ghats surface surface **Public** water (I) **(IV)** water (II) sewers (III) 20 3 **B.O.D.** (mg/l) 30 500 250 **C.O.D.** (mg/l) pН 5.5-9.0 5.5-9.0 6.0-9.0 **Total Suspended** Solids (mg/l) 30 100 600 **Temperature** 40 45 oil and greese (mg/l)10 100 0.1 **Phenolic** compound (mg/l) 5 0.005 1 2 Cynides (mg/l) 0.2 0.01 Sulphides (mg/l) 2 fluorides (mg/l) 2 1.5 _ total residual chlorine (mg/l) Insecticides ,mg/l 0 0 Arsenic (mg/l) 0.2 0.2 Cadmium, mg/l 2 _ Chromium ,mg/l 0.1 2 0.05 Sulphates, mg/l 1000 _ _ _ Copper,mg/l 3 3 lead,mg/l 0.1 1 0.1 _ Mercury,mg/l 0.01 2 3 Nickel,mg/l -Zinc,mg/l 5 15 Chlorides, mg/l 600 600 Note:- Students can write any four points from any of the columns (I), (II),

(III), (IV).

Subject Code: 17503 **Model Answer-Public Health Engineering**

Page No- 21/21

(d)	Describe testing of sewers after construction.				
	i)Water Test				
	This test is carried out for sewer lines between two manholes.				
	Plugging is done by rubber plug at its lower end.				
	Rubber plug is connected with air blown.				
	❖ The upper end of sewer is plugged with a connection to the funnel.				
	The sewer is filled with water and to maintain the required head, water level in the funnel is				
	kept 2 m above the upper end.				
	❖ This head varies with the material of sewer.				
	❖ In case of cast iron sewer, the head should be at 9m.				
	The acceptable loss or head loss should not exceed 2 litres/cm of length of the sewer.				
	To perform this test sufficient amount of water should be available.				
	ii) Air Test				
		ount of water is not available, then air test is to be carried out.			
		he pipeline, usually via a hand-pump with a control valve, until the reading			
		s around 125-150mm.			
		eft for 5-10 minutes to allow for temperature stabilisation within the pipe			
		is reduced to exactly 100mm on the manometer scale.	02M		
		nen monitored for a period of 5 minutes; the level of water in the manometer			
		w the 75mm mark during this period.			
		e a 'pass' and the pipeline is declared satisfactory and can be backfilled.			
		el in the manometer does fall below the 75mm mark, then the equipment			
		and cleaned and the pipeline examined for leaks or defects.			
		identified, they should be rectified before re-testing.	04M		
(e)	e) State different types of valves used in conveyance of water and write the location where				
	they are used.				
	Types of valve	Location	Marks		
		These valves are provided in straight pipe length at 150-	Each		
		200m interval and when pipe line is inserted, valves are	Write		
	Sluice Valve	fixed on both the sides of intersection. It divides pipeline	ANY		
		in sections.	FOUR		
			. John		
		They are provided at summit points in the alignment of			
	Air Relief Valve	pipe to release accumulate air that can obstruct flow of			
1		water.			
		water.			
	Durana Dali & Walan	At every point along the water pipe where pressure is			
	Pressure Relief Valve				
	Pressure Relief Valve	At every point along the water pipe where pressure is			
	Pressure Relief Valve	At every point along the water pipe where pressure is			
	Pressure Relief Valve	At every point along the water pipe where pressure is likely to be maximum.			
		At every point along the water pipe where pressure is likely to be maximum. They are located at the dead ends and depression or at			
	Pressure Relief Valve Scour Valve	At every point along the water pipe where pressure is likely to be maximum. They are located at the dead ends and depression or at lowest points in mains to remove sand and silt deposited			
		At every point along the water pipe where pressure is likely to be maximum. They are located at the dead ends and depression or at lowest points in mains to remove sand and silt deposited in pipeline.			
		At every point along the water pipe where pressure is likely to be maximum. They are located at the dead ends and depression or at lowest points in mains to remove sand and silt deposited in pipeline. These valves are used in water pipe, which obtains water			
	Scour Valve	At every point along the water pipe where pressure is likely to be maximum. They are located at the dead ends and depression or at lowest points in mains to remove sand and silt deposited in pipeline. These valves are used in water pipe, which obtains water directly from pump. When pump fails or stops, the water			
		At every point along the water pipe where pressure is likely to be maximum. They are located at the dead ends and depression or at lowest points in mains to remove sand and silt deposited in pipeline. These valves are used in water pipe, which obtains water			