
Page No: 1/21

Subject: Irrigation Engineering

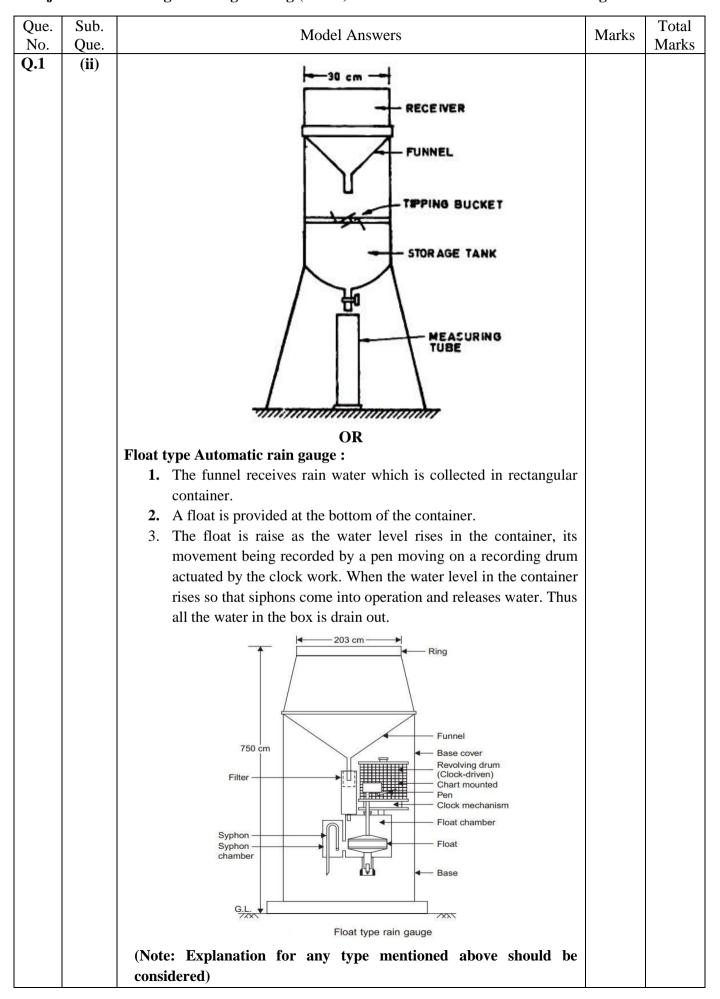
Subject Code: 17502

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and Communication Skills.)
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by the candidate and those in the model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and the model answer.
- 6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Que. Sub. Total Model Answers Marks No. Marks Oue. Q.1 Attempt any THREE of the following: **12M** a) State any four advantages and four ill effects of irrigation. (i) Advantages of irrigation: Ans. 1. Increase in yield of crops 2. Protection from famine $1/_{2}$ 3. Improvement of cash crops / Elimination of mixed crop mark 4. Rise in social standards each 5. Revenue generation (any 6. Navigation four) 7. Hydroelectric power generation 8. Water supply 9. Increase in facilities of communication 4M10. Development of fishery. **Ill effects of irrigation:** $1/_{2}$ 1. Rising of water table /water logging mark 2. Formation of marshy land each 3. Dampness in weather (any 4. Loss of valuable land four) 5. Tendency towards over irrigation.

Subject & Code: Irrigation Engineering (17502)


Page No. 2/21

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q.1	(ii)	Explain with neat sketch automatic rain gauge. (any one)		
	Ans.	Types of automatic rain gauges:		
		1) Weighing bucket gauge		
		2) Tipping bucket gauge		
		3) Syphon gauge (Float type rain gauge)		
		Weighing type rain gauge:		
		1. The rain water passes through a funnel into a bucket called as catch		
		bucket which is placed on weighing platform.		
		2.When weight of bucket is increased due to rain water the weighing	2M	
		platform moves. Movement of weighing platform is transmitted to		
		Links and levers to a pen arm. This pen traces the collected amount of		
		rainfall on a graduated graph paper wrapped around drum.		
		3. Thus increasing weight of the bucket helps in recording the rainfall		
		with time by moving a pen on a revolving drum.		
		Rain water		4M
		Rain water receiving funnel		
		Catch bucket	2M	
		Platform or pan	2111	
		System of (weighing pan)		
		, pen		
		Weighing Revolving drum device with graph paper		
		Graph paper wrapped round a rotating drum		
		Base		
		Fig. Weighing type rain gauge		
		OR		
		Tipping Bucket type rain gauge :		
		1. A Steven's tipping bucket type rain gauge consist of 30 cm dia. Sharp edge receiver		
		2. End of the receiver is provided with funnel. A pair of bucket is		
		provided under the funnel in such a way that one bucket receives		
		0.25 mm of precipitation .it tips, discharging its content to		
		container brining the other bucket the funnel.		
		3. Tipping of the bucket completes an electric circuit causing		
		movement of pen to mark on clock driven revolving drum which carries a record sheet.		
		4. The electric pulses are generated due to tipping of bucket is		
		recorded at the control room far away from the rain gauge station.		

Subject & Code: Irrigation Engineering (17502)

Page No. 3/21

Subject & Code: Irrigation Engineering (17502)

Page No. 4/21

Que. No.	Sub. Que.			Model	Ansv	vers				Marks	Total Marks
).1	(iii)	From followi	-	out th	e aver	age ann	ual ra	infall b	y		Wark
		Isohyetal me							T		
		Isohytes (m	m)	9- 10	10- 11	11- 12	12- 13	13- 14	14- 15		
		Area betwee (km ²)	en Isohytes	22	80	105	90	70	16		
	Ans.						-1				
		Isohytes (mm)	Area bety Isohytes (•	I	verage ainfall		Product lumns 2	and 3		
					1⁄2	(P1+P2)	A	x 1⁄2 (P)	l+P2)		
		1	2			3		4			
		9-10	22			9.5		209			
		10-11	80			10.5		840			
		11-12	105			11.5		1208	3	4M	4M
		12-13	90			12.5		1125	5		
		13-14	70			13.5		945			
		14-15	16			14.5		232			
		Total	383					4559)		
	(iv) Ans.	takes f 2) Base p time o 3)Duty : per m base p 4) Delta: the en		period is the int of it the per ne last v area in ond of articular al depth of the o	1 2) B period s sow iod in wateri hectar water r crop n of w crop f	ase period in num ing to that days fro ng before res (ha) in flowing vater requ	od 3) I ber of t of its m firs e harve rrigate conti	f days t s harves t waterin esting. ed by or nuously by a crop	hat crop ting. ng at the ne cubic for the p during	1 Mark each	4M

Subject & Code: Irrigation Engineering (17502)

Page No. 5 /21

Que. No.	Sub.		Ν	Iodel A	Answer	S				Marks	Total Marks
Q.1	Que. b)	Attempt any <u>ONE</u> or	f the fol	lowing	•						6M
×	(i)	A tank has a catch				m ² out	of whi	ch 20]	km ² is		0101
		independent. The av									
		The runoff of averag	0								
		The runoff from the	-					-	•		
		20% of actual runoff	-	•							
	Ans.	Total catchment area =		-		v					
		Intercepted catchment	area = 1	00 km^2	2						
		Rainfall annual = 80 c	n								
		Rainfall in bad year =	(80 x 80) / 100	= 64 c	m				1M	
		Runoff from indepen	dent an	d inter	rcepted	l catchr	nent ar	ea is 2	0% of		6M
		rainfall of average bad year. R (independent) = $(20 \times 64) / 100 = 12.8 \text{ cm}$									
		R (intercepted) =(20 x	12.8) /	100 = 2	2.56 cr	n				1M	
		Yield from independe	nt catch	ment a	rea $= 2$	0 x 12.8	= 256 I	Ha-m		1M	
		Yield from intercepted	catchm	ent are	a = 100) x 2.56	= 256 H	Ia-m		1M	
		Total = 256 + 256 = 51	2 Ha-m							1M	
	(::)	Fix control level of m	edium s	ize res	ervoir	from th	ne giver	data.			
	(ii)	Effective storage requ					le given	i uata.			
		Tank losses = 20 % o		_		/ IIa-III					
					-	storage	ρ				
		Carry over allowances = 10 % of effective storage Dead storage = 10% gross storage									
		Contour (RL)	250	253	256	278	281	284			
		Storage (Mm ³) 3.20	4.10	5.25	42.65	47.30	55.12	-		
		Flood lift = 3m, Free	 Roard -	- 3m							
	Ans.	Effective storage requi			300 h	a - m = 31	Mm ³				
	Ans.	Gross storage = Dead storage = Dea		-							
		Live storage = Effecti	•		U		Fank los	ses + C	arrv		
		over allowance	1		1				5		
		Effective storage requi	red for c	crops =	300 h	a-m =(3	Mm^3)				
		Live storage = $3 + (20)$						= 3.9 Mr	n^3	1M	
		Live storage $= 3.900$ N	1m ³								
		From Equation	(1).								
		Gross stora		$\frac{10}{100}$ of g	ross sto	orage + 3	.9				
				00						1M	
		0.9 Gross storage = 3.9 \therefore Gross storage = 4.33 Mm^3									
		∴ Gross stora	From capacity table, by interpolating R.L. corresponding to the capacity 4.33 Mm ³ will be,								
		From capacity	able, by			ng R.L.	corresp	onding	to the		
		From capacity	able, by 11 be,	v inter	polatii	-	corresp	onding	to the	1 M	

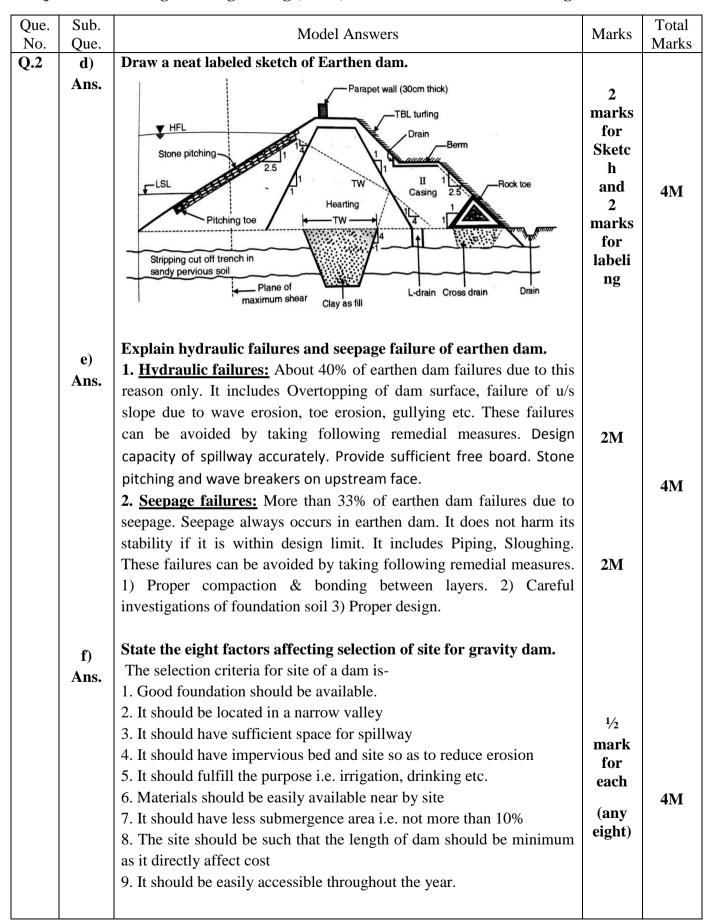
Subject & Code: Irrigation Engineering (17502)

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q.1	b)	∴ F.R.L.= 253.6 M		WILLING
	ii)	Assuming flood lift and free board = 3 m		
		\therefore HFL = FRL + Flood lift		
		= 253.6 + 3		
		$HFL = 256.6 \mathrm{m}$		
		TBL = HFL + Free board	1M	
		= 256.6 + 3		
		= 259.6 m		
		Dead storage = $\frac{10}{100}$ of gross storage		
		$= \frac{10}{100} \times 4.33 = 0.433 \text{ Mm}^3$	1M	6M
		R.L. corresponding to the capacity of 0.433 Mm ³		
		=		
		∴ D.S.L. =		
		appropriate for finding the value of DSL. If suitable value assumed by the students and tried to attempt the question, appropriate marks should be given.	1M	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified) Model Answer: WINTER 2017

Subject & Code: Irrigation Engineering (17502)

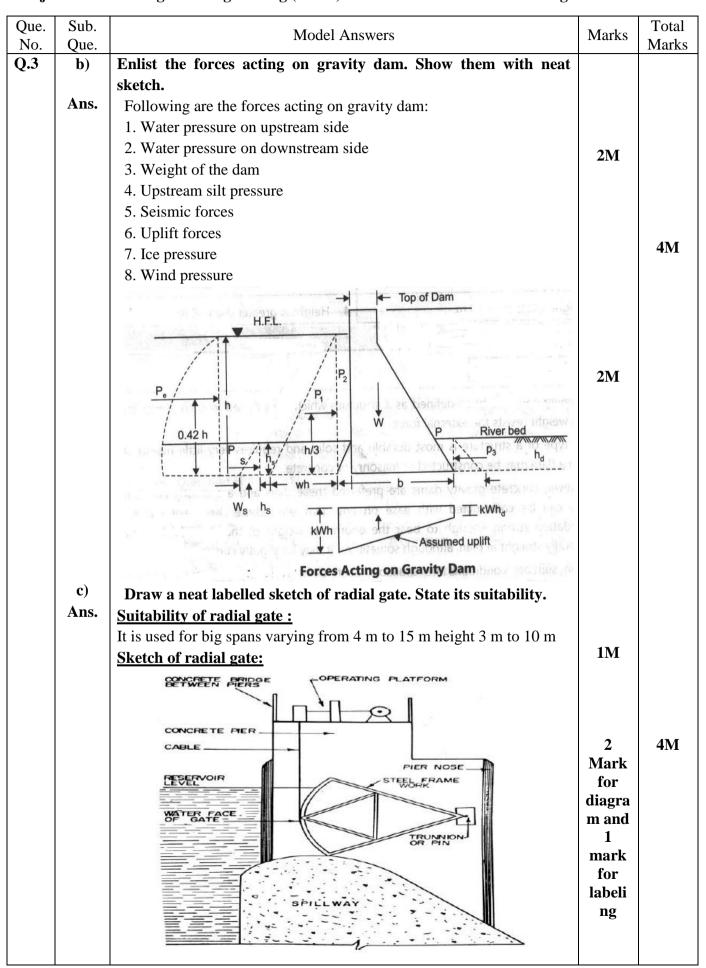
Page No.7 /21


Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
$\overline{\mathbf{Q.2}}$	Que.	Attempt any <u>FOUR</u> of the following:		16M
•	a)	State four factors affecting rate of silting of reservoir.		
	Ans.	Factor affecting silting in a reservoir are as follows:		
		i) Catchment area: If catchment area is more, silting will be more. If	1	
		catchment area is less, silting will be less.	1 Mark	
		ii) Shape of catchment : If catchment area is fan shaped, silting will	each	
		be more. If catchment area is fern shaped, silting will be less.iii) Slope of country: If slope is steep, more particles will be erodes	(any	4 M
		because of high velocity of runoff & will be deposited in reservoir	four)	
		basin and vice versa.		
		iv) Climatic condition : Dry and rainy climate helps in production of		
		more silt material.		
		v) Nature of surface soil : If soil is weathered or loose it can be easily		
		flow with runoff and deposited in reservoir.		
	b)	List the data collected engineering survey for an irrigation		
	Ans.	project. Data to be collected for engineering surveys :		
	1110	Data to be conected for engineering surveys.		
		1. Contour maps		
		2. Contour Area curves	1/2	
		3. Storage elevation curves	Mark	4 M
		4. Hydrological data i.e. rainfall, runoff, MFD etc.	each	
		5. Materials for construction		
		6. Population survey for submergence area		
		7. Land acquisition details		
		8. Existing roads, railway lines and historical monument		
	c)	Write the functions of the following components of earthen dam.		
		i) Berms. ii) Cross Drain. iii) COT. iv) Turfing.		
	Ans.	i) <u>Berms:</u>		
		a) It provides road way for vehicle.	1	
		b) It reduces velocity of rainwater falling on slope.	nark	
		c) It collects rain water and disposes it off safely.	for	4 M
		d) It provides minimum cover of 2 m above seepage line.	each	
		ii) <u>Cross drain:</u> Main function of cross drain is to collect seepage	Functi	
		from L drain and downstream casing and dispose it to the toe drain	on	
		iii) <u>Cutoff trench (COT)</u> : The function of cutoff trench is to prevent	UII	
		or reduce seepage flow through the pervious foundation. And also		
		prevents overturning of dam		
		iv) <u>Turfing:</u> It is special type of grass planted over the downstream face of the dam, which protect downstream slope from eroding action of rain		
		water.		

Subject & Code: Irrigation Engineering (17502)

Page No. 8 /21

Subject & Code: Irrigation Engineering (17502)


Page No. 9 /21

Que.Sub.No.Que.	Model Answers	Marks	Total Marks
Q.3 Q.3 a) Ans.	Attempt any FOUR of the following: Describe with sketch types of joints used in gravity dam. (any two) There are two types of joints – 1) Construction joint 2) Contraction joint (1) Construction Joint: In solid gravity dams, the height between horizontal joints is usually limited to 1.5 m. This height between two successive construction joints or horizontal joints is known as lift. The surface should be properly treated to make the horizontal joint water tight. (2) Contraction Joint : They are provided to avoid cracks formed due	1M	16 M
	to shrinkage of concrete due to temperature changes. These joints are of two types – a) Transverse Joint b) Longitudinal Joint (2.a) <u>Transverse Joint</u> : These are provided normal to axis of dam. They prevent the transverse cracks due to contraction of concrete. The joint is filled with asphaltic filler. (2.b) <u>Longitudinal Joints</u> : These are provided parallel to the axis of dam to prevent longitudinal cracks. Water stops are provided to prevent leakage of water. The spacing of these joints is limited to 15m. Key ways are invariably provided in vertical longitudinal joints. Function of keyway is to permit transfer of shearing stress from one block to other.	1M 2M	4 M

Subject & Code: Irrigation Engineering (17502)

Page No. 10 /21

Subject & Code: Irrigation Engineering (17502)

Page No. 11 /21

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q.3	d) Ans.	 State four points for selection of site for percolation tank. Selection of site for percolation tank: The following are the requirements of site for percolation tank, (1) The bed of tank should be pervious. So that water will percolate and join ground water. (2) There should be sufficient number of wells in the command area. If wells are not there then it will have to dig. (3) The site at which bunds are constructed should have sufficient discharge. (4) The side of stream should be steep. If the side are not steep it should be made by rising both sides. (5) For construction the material and labours should available near by the site. 	1 mark each (any four)	4M
	e) Ans.	 Draw layout of bandhara and state its component parts. Image: A state its component parts of andhara irrigation layout Image: A state its component parts of Bandhara- Image: A state its	1 Marks for diagram and 1 mark for labeling 2M	4 M

Subject & Code: Irrigation Engineering (17502) Page No. 12 /21 Oue. Sub. Total Model Answers Marks No. Marks Oue. **12M Q.4** Attempt any THREE of the following: a) Draw layout of lift irrigation scheme, list the components of scheme. i) Ans. Delivery chamber cum pumping house for next stage Centrifugal pump 3 Pumping house Rising main Command (delivery pipe line) area ground leve 2MGround leve Centrifugal pump Grou HEL (of river) (Jack) well Suction pipe **4M** Intake nine line Intake well **Components of lift irrigation scheme:-**2) Inlet chamber 3) Jack well 2M1) Intake channel 4) Inlet pipe 5) pump House 6) Rising Main 7) Storage Tank 8) Water Distribution System 9)Pumping Machinery ii) Compare between drip irrigation and sprinkler irrigation on any four points. Ans. Sr. No **Drip irrigation** Sprinkler irrigation 1 Initial investment is more. Initial investment is less. Dripping valves are present in Spray guns and nozzles are used in 2 drip system. sprinkler system. 1 Sprinkler wets an area of a circle, mark Only root area is irrigated in 3 which covers a number of plants. drip irrigation. each more area is wetted by this system **4M** (any Drip irrigation prevents the sprinkler system does not prevent 4 Four) spreading of diseases. the spreading of diseases. Run off and evaporation is less Run off and evaporation is higher in 5 in Drip method. sprinkler method. The effectiveness and The effectiveness and efficiency is 6 efficiency is higher in drip lesser in sprinkler irrigation. irrigation. iii) What is diversion head works? State its component with functions. **Diversion head works:** Ans. The works which are constructed at the head of the canal, in order to **1M** divert the river water towards the canal, so as to ensure regulated continuous supply of silt free water with certain minimum head into that canal is called as diversion head works.

-----Subject & Code: Irrigation Engineering (17502)

Page No. 13 /21

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q.4	iii)	 Component with functions – <u>Weir-</u> To raise water level To direct water into the canal Divide wall: To separate flow from the scouring weir which is at lower level than proper weir To separate the silting packet from scouring sluices To prevent formation of cross currents to avoid domain effects To cut off the main portion of the river and provide a comparatively quite packet in front of the canal head regulator resulting in deposition of silt in the pocket and enter clear water in canal. Fish ladder: To provide free movement of fishes To help the survival of the fishes Head regulator: Tegulate the supply of water entering in canal. It regulate the river flood entering the canal Scouring Sluice: Deposited silt and soil are scoured through the scouring sluice. Silt Ejectors: To extract the silt from canal water 	1 Mark each (any three)	4M
	Ans.	Full by gate Gate Crest of level by raised crest	2 M	4M
		 There is less silting and better control over the level of water. Low cost of flood banks. Less cost of protective and energy dissipation work. These are more safe than weir as afflux is less. It is economical as cost of protective and energy dissipation work is less. 	1 Mark each (Any two)	

Subject & Code: Irrigation Engineering (17502)

Page No. 14 /21

	G 1			T (1
Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q.4	b) i) Ans:	Attempt any <u>ONE</u> of the following: State the need of sprinkler irrigation. Draw layout of sprinkler irrigation scheme (Show various components of sprinkler irrigation scheme in layout). Need of sprinkler irrigation: 1. Where water requirement of crop is less. 2. Where slopes are excessive. 3. Where soil is erosive. 4. Where soil is excessively permeable. 5. Where depth of soil is shallow.	1 Mark Each (Any Two)	6M
		Standard depined of our notation.	3 Marks for diagra m and 1 mark for labelin g	6M

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified) Model Answer: WINTER 2017

Subject & Code: Irrigation Engineering (17502)

Page No. 15 /21

Que.	Sub.	Model Answers	Marks	Total Marks
No. Q.4	Que. b)			Marks
4 .9	ii)	A canal section has following parameters.		
		1) Bottom width of canal = 10 m		
		2) $FSD = 1.5 m$		
		3) Bank width = 2 m		
		4) Side slope in cutting = 1:1		
		5) Side slope of filling = 1.5:1		
		6) $FB = 0.5 m$		
		Calculate the balancing depth of canal.		
	Ans:	Let, d_c be the balancing depth.		
		h be the height of bank above $GL = (1.5+0.5 - d_c) = (2 - d_c)$		
		Area of Cutting = $(b + nd) d$		
		$= (10 + 1x d_c) d_c$	2M	
		$= (10 + d_c) d_c$		
		Area of filling = 2 [Area of one bank]		
		= 2[(2+1.5 h) h]		
		$= 2[\{2+1.5(2 - d_c)\} (2 - d_c)]$		
		$= 2[\{2+3-1.5 d_{c}\}(2-d_{c})]$		
		$= 2[\{5-1.5 d_{c}\}(2-d_{c})]$		
		$= 2[10-5d_c-3 d_c + 1.5 d_c^2]$		
		$= 2[10-8 d_{\rm c} +1.5 d_{\rm c}^2]$	2M	
		$= 20-16 d_{c} + 3 d_{c}^{2}$		
		Now ,For balancing depth, Area of cutting = Area of filling		6M
		Area of cutting = $2 \times \text{Area}$ of each bank		
		$(10 + d_c) d_c = 20-16 d_c + 3 d_c^2$		
		$10 d_{\rm c} + d_{\rm c}^2 = 20{\text -}16 d_{\rm c} + 3 d_{\rm c}^2$		
		$0 = 20-26 d_{\rm c} + 2 d_{\rm c}^{2}$		
		$0 = 10-13 d_{\rm c} + d_{\rm c}^{2}$	2M	
		$d_{c} = \{ 13 \pm \sqrt{(13^{2} - 4 \times 10)} \} / 2$		
		$d_{c} = 0.82m$		

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified) Model Answer: WINTER 2017

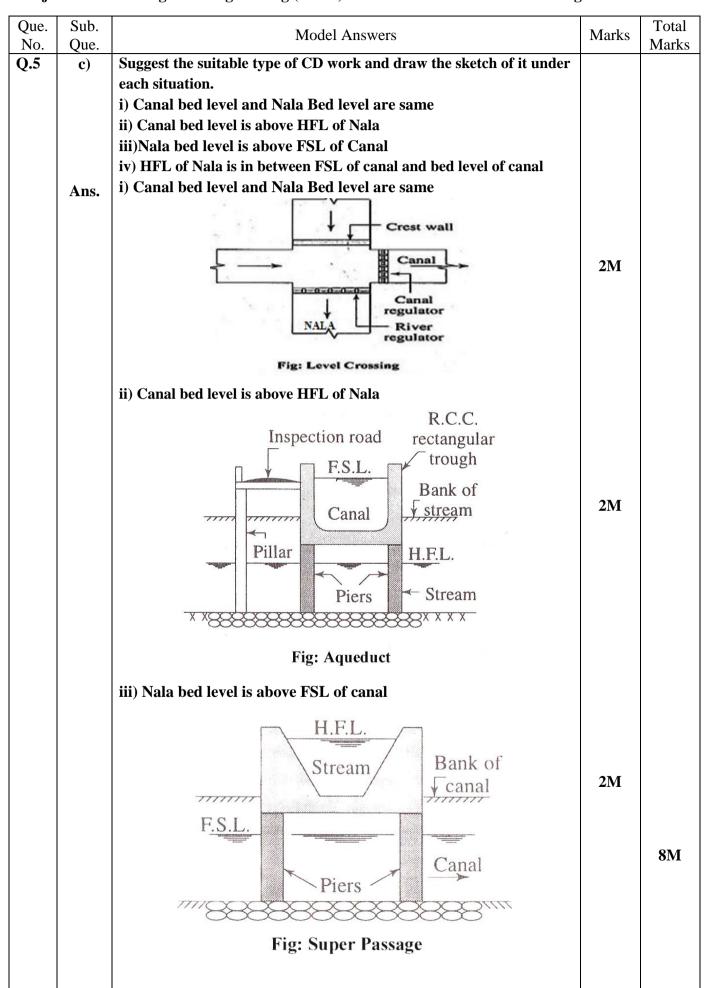
Subject & Code: Irrigation Engineering (17502)

Page No. 16 /21

Que. No.	Sub. Que.		Model A	nswers		Marks	Total Marks		
).5	Que.	Attempt a	ny <u>TWO</u> of the following	g:			16M		
-	a)	-	canal irrigates the follo		calculate the duty of				
		each crop	at the head of main cana	ıl.					
		Sr.No.	Name of Crop	Delta	Transit Losses				
		1	Jowar (Kh)	45cm	20%				
		2	Wheat (Rabi)	30cm	40%				
		3	Sugarcane	180cm	40%				
		4	Vegetable(H.W)	50cm	40%				
		5	Ground Nut (H.W)	30cm	40%				
	Ans.		itable data if required.						
	Alls.	,	war (Kh) lta (Δ) =45cm =0.45m						
			se Period (B) = 120 days						
		Duty (D) = $\frac{8.64 \text{ X B}}{\Delta} = \frac{8.64 \text{ X } 120}{0.45} = 2304 \text{ ha/Cumec}$							
		Du	$\Delta = 0.45$			1½ M			
		Considerin	ng Transit losses Duty (D)=	$\frac{2304 \times 80}{100}$	= 1843.2 ha/Cumec				
			neat (Rabi)	100					
		Del	$lta (\Delta) = 30 cm = 0.30 m$						
			se Period (B) = 120 days						
		Du	ty (D) = $\frac{8.64 \text{ X B}}{4} = \frac{8.64 \text{ X B}}{0.20}$	$\frac{120}{1}$ = 3456 h	a/Cumec	1½M			
			Δ 0.30			172111			
		Considerin	ng Transit losses Duty(D) =	100	= 2073.6 ha/Cumec				
			garcane (Annual)				8		
			$lta (\Delta) = 180 cm = 1.80$						
			se Period (B) = 360 days	860					
		Du	ty (D) = $\frac{8.64 \text{ X B}}{\Delta} = \frac{8.64 \text{ X 3}}{1.8}$	= 1728 h	a/Cumec	1½M			
		Considerin	ng Transit losses Duty(D) =	1728 X 60	= 1036.8 ha/Cumec				
		4) Ve	getable (H.W)						
			Ita (Δ) =50cm =0.5m						
			se Period (B) = 120 days			41/3 5			
		Du	ty (D) = $\frac{8.64 \text{ X B}}{\Delta} = \frac{8.64 \text{ X } 120}{0.5}$	= 2073.6 ha	/Cumec	1½M			
			ng Transit losses Duty(D) =						
			- Tumor 100000 Dury(D)	100					

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified) Model Answer: WINTER 2017

Subject & Code: Irrigation Engineering (17502)



Que. No.	Sub. Que.		Model Answers	3	Marks	Total Mark
$\overline{\mathbf{Q.5}}$	a)	5) Ground N	ut (H.W)			TTUIN
C		,	=30 cm = 0.3 m			
		Base Perio	d(B) = 120 days		2M	
			$=\frac{8.64 \times B}{\Lambda} = \frac{8.64 \times 120}{0.3} = 345$	i6 ha/Cumec		
		Considering Trans	sit losses $Duty(D) = \frac{3456}{100}$	$\frac{1}{2} = 2073.6 \text{ ha/Cumec}$		
		(Note: The base	period of kharif is 120	or123 days, base period of		
		rabbi is 120 or122	2 days, base period of an	nual is 360 or 365 days.		
		•		d values and try to attempt		
		the question , give	e appropriate marks.)			
		~				
	b)	-		nd Gravity dam w.r.t		
				laterial, Length of dam,		
	Ans.	Construction me Criteria	thod, cost, manpower ro Earthen dam	,		
		Criteria	Larmen uam	Gravity dam		
		Foundation	The can be founded	They cannot be		
			on any type of soil	founded on any on any		
				soil without proper		
				foundation.		
		Seepages	Seepage is more	Seepage is less		
		Construction	Locally available soil	Stone brick and		
		Material	stone silt clay and		1	
			sand can be used.	used.	Mark	8M
					Each	01/2
		Length of dam		Can be constructed for		
		Construction	shorter length.	short length. Construction is not		
		method.	Construction is easy			
		methou.		easy.		
		cost	Initial cost is less	Initial cost is high		
		manpower	Skilled labours are not	Skilled labours are		
		required	required for	required for		
			construction.	construction.		
				1		
		Maintenance	Maintenance cost is	Maintenance cost is		
		Maintenance	Maintenance cost is more	Maintenance cost is less		
		Maintenance				

Subject & Code: Irrigation Engineering (17502)

Page No. 18 /21

Subject & Code: Irrigation Engineering (17502)

Que. c)	iv) HFL of nala is between FSL of (Canal and bed level of canal		Marks
	iv) HFL of nala is between FSL of Canal and bed level of canal			
a) Ans.	Attempt any FOUR of the following: Differentiate between head regulator and cross regulator on four points. Head regulator Cross regulator These are constructed at off take These are constructed in main regulator Cross regulator			16M
	It regulate the supply of off taking canal It control the silt in off taking	of off take canal. It regulate the supply in parent canal Already silt controlled by head	1 Mark each	4M
	It helps in shutting off the supplies when not needed in off taking canal or when off taking canal is required to close for repair.	It helps in closing the supply to d/s of parent for close to repair.		
		a) Attempt any <u>FOUR</u> of the following of the following of the following points. Ans. Head regulator These are constructed at off take point It regulate the supply of off taking canal It control the silt in off taking canal It helps in shutting off the supplies when not needed in off taking canal or when off taking canal is required to close for	a) Attempt any <u>FOUR</u> of the following: Differentiate between head regulator and cross regulator on four points. Ans. Mas. $\frac{Head regulator}{These are constructed in main canal or parent canal at d/s side of off take canal. It regulate the supply of off taking canal It control the silt in off taking canal It helps in shutting off the supplies when not needed in off taking canal or when off taking canal is required to close for \frac{Fig: Siphon Aqueduct}{Fig: Siphon Aqueduct}$	a) Attempt any FOUR of the following: Fig: Siphon Aqueduct Concrete floor Cut-off wall 1 a) Attempt any FOUR of the following: Differentiate between head regulator and cross regulator on four points. 1 Ans. 1 1 1 Ans. 1 1 1 It regulate the supply of off take canal. 1 1 1 It control the silt in off taking canal 1 1 1 1 It control the silt in off taking canal 1 1 1 1 1 It helps in shutting off the supplies when not needed in off taking canal or when off taking canal is required to close for 1 1 1 1 Alteredy silt control to close to repair. 1 1 1 1 1 1 It helps in closing the supply to d/s of parent for close to repair. 1 1 1 1 1 1 1 It alt required to close for 1 1 1 1 1 1 1 1 1 1 <

Subject & Code: Irrigation Engineering (17502)

Page No. 20 /21

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q.6	b) Ans.	Draw the neat sketch of diversion headwork and show component parts of it.	3 Mark for diagram and 1 Mark for labeling	4M
	c) Ans.	3 Mark for diagram And 1 mark for labeling	4 M	
	d) Ans.	Compare between contour canal and Ridge Canal.Sr. NoContour canalRidge Canal.1Can irrigate only one sideCan irrigate only both side2Contour canal is not economicalRidge canal is economical3Large number of cross drainage worksNo cross drainage is required4Velocity of water needs not to be controlled.Velocity of water needs not to higher velocities5Less Scouring of bedScouring of bed due to higher velocities6Suitable in hilly areasNot Suitable in hilly areas	Mark each (any four)	4M

Subject & Code: Irrigation Engineering (17502)

Page No. 21 /21

Que. No.	Sub. Que.	Model Answers			Marks	Total Marks
Q.6	e) Ans.	Compa Sr. No	Aqueduct and super	passage. Super passage	1 Mark each (any four)	
		1	The irrigation structure constructed for passing the canal water safely over the drainage water is called aqueduct.	The hydraulic structure in which the drainage is passing over the irrigation canal is known as super passage.		4M
		2	Bed level of canal is sufficiently above the high flood level in the drain.	This structure is suitable when the bed level of drainage is above the flood surface level of the canal.		
		3	The discharge through drain is more than canal discharge.	The discharge through canal is more than drain discharge.		
		4	The section of canal is design as per FSL with sufficient Free Board	A free board of about 1.5 m should be provided for safety.		
		5	The water of the drain passes clearly below the canal.	The water of the canal passes clearly below the drainage.		